肌球蛋白轻链激酶抑制剂及其使用的制作方法

xiaoxiao2020-6-23  198

专利名称:肌球蛋白轻链激酶抑制剂及其使用的制作方法
相关申请的交叉参考本申请要求2004年4月21日提交的US临时申请No.60/564,313的权益。
关于联邦赞助研究的陈述本发明得到由国家卫生学院授予的美国政府支持而进行。
引言本发明涉及肌球蛋白轻链激酶抑制剂(″MLCK″)。肌球蛋白轻链激酶在Ca2+/钙调蛋白和ATP存在下催化肌球蛋白轻链(MLC)的磷酸化,和调节肌动球蛋白的收缩,它在宽范围的细胞活动中涉及,其中一些活动牵涉疾病状态。MLCK抑制剂可用于治疗或改善这样的疾病状态。
发明概述在一方面,本发明提供具有通式A-B-C的肌球蛋白轻链激酶抑制剂,其中B共价键合到A和C和其中A和C每个包括至少两种碱性氨基酸;和B包括Xaa1-Xaa2-Xaa3,其中Xaa1,Xaa2和Xaa3是以下所述的氨基酸。抑制剂包括是D-氨基酸的至少一个氨基酸,或包括至少一个不可水解的键。
在一个特别的实施方案中,本发明提供包括九肽的肌球蛋白轻链激酶抑制剂,其中序列的最先三个氨基酸和最后三个氨基酸包括碱性氨基酸,和其中抑制剂包括至少一个D-氨基酸或至少一个不可水解的键。
在另一方面,本发明提供药物组合物,该组合物包括MLCK的抑制剂。也提供抑制MLC的磷酸化的方法,改变上皮单层渗透性的方法,抑制细胞迁移的方法,抑制肿瘤生长的方法,抑制细胞荷包式(purse-string)伤口闭合的方法或抑制血管发生的方法。在进一步的方面,本发明提供治疗与MLCK活性相关的各种疾病的方法。
优选实施方案的详细描述肌球蛋白轻链激酶(MLCK)调节肌动球蛋白收缩,它在各种细胞活动中涉及,包括上皮紧密连接(TJ),细胞迁移,荷包式伤口闭合,和肌肉收缩的调节。
设想本发明的化合物和组合物可用于治疗与MLCK活性相关的各种病症。本发明的抑制剂可用于治疗由细胞中MLCK介导的肌动球蛋白收缩引起或恶化的任何病症。本发明的抑制剂可用于各种治疗应用。其中本发明的抑制剂可具有治疗价值的状况或病症的例子包括,但不限于肠疾病,如传染性,局部缺血,和自发性炎性疾病以及移植物对宿主疾病;由感染剂引起的疾病,包括致病性大肠杆菌(EPEC),肠出血性大肠杆菌(EHEC),霍乱弧菌,耶尔森菌,艰难梭菌,和弗氏志贺氏菌(Shigella fiexineri);内皮渗漏的疾病,如败血症,休克,过敏反应,和急性肺损伤;与平滑肌收缩相关的疾病,如哮喘和高血压疾病;与细胞迁移相关的疾病,如炎症和肿瘤移位;与血管发生相关的疾病,如癌症,肿瘤相关疾病,心脏病,糖尿病性视网膜病;和与血小板聚集相关的疾病,如血栓形成疾病。
肠疾病通常与增加的肠渗透性相关联。肌球蛋白II调节轻链(MLC)的磷酸化与增加的肠上皮TJ渗透性相关。感染剂,包括致肠病细菌也可改变旁细胞渗透性。
克罗恩病和溃疡性结肠炎是慢性肠道疾病,统称为炎性肠病且与增加的肠渗透性有关。肠渗透性在具有活性或非活性克罗恩病的患者中增加且在他们第一代亲属的显著亚类中增加(May等人,Gastroenterology 1993;1041627-1632;Teahon等人,Gut 1992;33320-323)。炎性肠病具有家庭关联且已经识别几种炎性肠病相关的基因。增加的肠渗透性是病程的先兆标志,这是由于非活性克罗恩病的复活在增加的肠渗透性之后(Amott等人,Scand J Gastroenterol 2000;351163-1169)。这些数据显示增加的肠渗透性是克罗恩病发病机理中的早期情况。
移植物抗宿主病也与增加的肠渗透性关联。移植物抗宿主病由成熟供体T-细胞引起,该T-细胞由宿主抗原递呈细胞表达的同种抗原活化。增加的肠渗透性和腹泻可能是由于细胞因子,如TNF-α的增加。
MLCK抑制剂可通过降低细胞迁移或直接杀死或损伤肿瘤细胞而有效抑制瘤转移。根据本发明,当将有效数量的MLCK抑制剂给予具有癌症或赘生物的患者,或给予肿瘤时,异常赘生细胞的增殖活性受到抑制,降低,或稳定。
脊椎动物具有至少两种MLCK基因骨骼肌MLCK和平滑肌MLCK。平滑肌MLCK在成人组织中无处不在,而骨骼肌MLCK是组织特异性的。脊椎动物表达短和长形式的MLCK,以及相关的C-末端Ig模块(module)非激酶蛋白质末端(telokin)。短形式MLCK包括催化中心,调节序列,该序列包含自动抑制结构域和Ca2+/钙调蛋白结合结构域,及在N末端的肌动蛋白结合序列。长形式MLCK包括短形式的结构域和同样具有另外的肌动蛋白结合基序的N-末端延伸。长形式MLCK正常情况下不在平滑肌细胞中表达,而且也称为210-KDa,非肌肉或内皮MLCK。MLCK由在催化结构域和自抑制性结构域之间的分子内相互作用调节。该抑制性结构域,以及报导具有MLCK-抑制性能力的其它肽倾向于由蛋白酶,特别地胃和肠的蛋白酶识别和切割。
在一个实施方案中,本发明提供抑制MLCK活性,耐由蛋白酶的降解,和体内具有稳定性的MLCK抑制剂。更优选,本发明的抑制剂显示相对于其它蛋白酶对于MLCK抑制的特异性和/或设计以耐蛋白酶的降解。提供在内皮,上皮,其它非肌肉细胞,或平滑肌细胞中抑制MLCK表达的抑制剂。
根据本发明的MLCK抑制剂是抑制MLC的磷酸化或预防或降低肌动球蛋白收缩的抑制剂。如在以下的实施例中所述,抑制剂可以使用体外测定方法测定,该体外测定方法包括底物MLC和γ-ATP。可以由生物化学方式,通过成像或由它与经上皮阻力(TER)的降低的关联而测量给予到细胞或包括MLCK的细胞上皮层的抑制剂的效果。此外,在推定的MLCK抑制剂存在或不存在下标记的代谢产物,如3H-甘露糖醇经过上皮细胞单层的通量可以测量,和用作抑制剂效力的测定方法(Zolotarevsky等人,Gasteroenterology 124,163-172,2002)。
在此使用的抑制剂可以是防止由MLCK导致的肌球蛋白轻链磷酸化的肽或肽模拟物。本发明的肽抑制剂可包括L-氨基酸,D-氨基酸或L-氨基酸和D-氨基酸的组合。
本发明的优选抑制剂具有通式A-B-C,其中B共价键合到A和C,且其中A和C每个包括至少两种碱性氨基酸,和B包括至少三个氨基酸Xaa1,Xaa2和Xaa3。合适地,A和C可每种包括至少三种碱性氨基酸。优选的抑制剂A-B-C进一步包括至少一个D-氨基酸,或不可水解的键。
在优选的实施方案中,B的Xaa1选自Tyr,Val,Lys,Gln,Phe,Ser,Pro,Thr,Asn或Arg;Xaa2共价键合到Xaa1,且选自Lys,Val,Thr,Trp,His,Met,Asn,Ala,Glu,Phe,Gln或Arg;和Xaa3共价键合到Xaa2,且选自Ala,Asp,Glu,Phe,Gly,Lys,Leu,Met,Asn,Pro,Gln,Arg, Ser,Thr,Val或Tyr。
在一个实施方案中,B的Xaa1选自Tyr,Val,Lys,Gln或Phe;Xaa2选自Lys,Val,Thr,Trp或His;和Xaa3选自Tyr,Met,Pro,Ser或Phe。
在特别优选的实施方案中,B包括选自如下的序列Tyr-Lys-Ala,Tyr-Lys-Asp,Tyr-Lys-Glu,Tyr-Lys-Phe,Tyr-Lys-Gly,Tyr-Lys-Lys,Tyr-Lys-Leu,Tyr-Lys-Met,Tyr-Lys-Asn,Tyr-Lys-Pro,Tyr-Lys-Gln,Tyr-Lys-Arg,Tyr-Lys-Ser,Tyr-Lys-Thr,Tyr-Lys-Val或Tyr-Lys-Tyr。
在优选的实施方案中,A和C每科包括精氨酸,赖氨酸或其组合。在优选的抑制剂中,在B和A之间,及在B和C之间,或在Xaa2和Xaa1之间,及Xaa2和Xaa3之间的共价键是肽键。
在此使用的不可水解的键是耐酶(如,蛋白酶)的水解的键。本领结构域技术人员认识到不可水解的键如果经历极端条件,如在强碱或强酸中加热可以被水解。然而,这样的水解超出在此处使用的不可水解的范围以外。
需要防止抑制剂的降解。抑制剂的降解可以通过包括不可水解的肽键而防止。这样的键,和包含这样键的肽的合成方法是本领结构域已知的。不可水解的键的例子包括,但不限于硫代肽键,还原的酰胺肽键,酮基亚甲基肽键(ketomethylene peptide bonds),(氰基亚甲基)氨基肽键((cyanomethylene)amino peptide bonds),羟基亚乙基肽键,和硫代亚甲基肽键(thiomethylene peptide bonds)(参见如,U.S.专利6,172,043,在此引入作为参考)。某些不可水解的肽键的结构见表1。
表1
进一步理解在此叙述的任何数值包括从较低值到较高值的所有数值。例如,如果肽说明为含有7-300个氨基酸,则数值如7-25,8-30,9-90或50-300在此说明书中清楚列举。这些仅是具体希望的例子,和在列举的最低值和最高值之间的数值的所有可能组合被认为在此申请中清楚地陈述。
根据本发明的肽抑制剂可包括一种或多种D-氨基酸。如在以下的实施例中所展示,与包括L-氨基酸的同等长度的肽相比,在大鼠肠液存在下包括100%D-氨基酸的MLCK抑制剂的半衰期更长。设想包括小于100%D-氨基酸的肽也耐蛋白水解。
也设想通过调节抑制剂中包含的D-氨基酸的比例,本领结构域技术人员可以识别半衰期在含有所有D-氨基酸的抑制剂和含有所有L-氨基酸的抑制剂之间的MLCK抑制剂。用于其中中间半衰期是所需的应用中的抑制剂可含有10%-100%D-氨基酸。优选,MLCK抑制剂含有足够数目的D-氨基酸以耐蛋白水解,该性能可以使用任何合适的方法如,在实施例中所述的方法测量。
抑制MLCK的化合物可基于平滑肌MLCK的分子内抑制结构域。优选的抑制结构域含有来自人MLCK的序列(SEQ ID NO1)。根据来自绵羊(Ovis aries)(SEQ ID NO2),黑青斑河豚(Tetraodonnigroviridis)(SEQ ID NO3),鲫鱼(Carassius auratus)(SEQ ID NO4),和犬(Canis familiaris)(SEQ ID NO5)的MLCK抑制结构域的比较,可以衍生共有序列(Xaa-Lys-Lys-Leu-Ser-Lys-Xaa-Arg-Met-Lys-Lys-Tyr-Xaa-Xaa-Arg-Arg-Lys-Trp-Gln-Lys-Xaa-Xaa;SEQ ID NO6),其中每个Xaa表示任何天然或修饰的氨基酸。
尽管在优选的实施方案中,在此使用的MLCK抑制序列衍生自人MLCK,设想序列也可衍生自另一种哺乳动物来源,或衍生自上述的共有序列(SEQ ID NO6)。在特别优选的实施方案中,肽抑制剂包括抑制性结构域的连续序列的反向序列(reverse)。
本发明的肽抑制剂可包含抑制性的序列中的一种或多种变化。这样的变体可以合成和分析MLCK激酶活性。(Lukas等人,J.Med.Chem.42,910-919,1999)。因此,本发明的抑制剂包括肽,该肽包括来自MLCK抑制性结构域的7-22个连续氨基酸的任何数目,或其逆转。特别优选的肽包括SEQ ID NO12或SEQ ID NO13,其中一种或多个氨基酸是D-氨基酸,或序列包含一个或多个不可水解的键。
合适地,在九肽MLCK抑制剂中,1-9个氨基酸是D-氨基酸。在特别优选的实施方案中,包含所有D-氨基酸的MLCK抑制剂是包含所有L-氨基酸的MLCK抑制剂的反向(N-末端到C-末端)。反向序列表示C-末端氨基酸成为逆转序列的N-末端氨基酸,及剩余的氨基酸以逆转的顺序跟随。例如,序列FLM的反向序列是MLF。
设想ESQ ID NO12或SEQ ID NO13的中心氨基酸残基(在位置5的赖氨酸)可以由任何氨基酸残基取代且仍然起抑制MLCK的功能。
也设想SEQ ID NO12或SEQ ID NO13的中心三氨基酸回文对称(在位置4,5和6的酪氨酸-赖氨酸-酪氨酸残基)可以由任何氨基酸残基取代且仍然起抑制MLCK的功能。
进一步设想包括九个或多个氨基酸的序列,如SEQ ID NO14的肽,其中序列的中心区结构域(在SEQ ID NO14的位置4,5和6的氨基酸)由包括两种或多种,或三种或多种的序列侧接(flank),碱性氨基酸也在本发明的范围内。在优选的实施方案中,中心区结构域由三个氨基酸组成和侧接区结构域每个包括三种碱性氨基酸。在此实施方案中,中心区结构域可进一步包括两个酪氨酸残基,每个酪氨酸残基侧接中心氨基酸。
设想肽抑制剂的中心区结构域中不同氨基酸的选择导致具有一定范围MLCK抑制活性的抑制剂,其可适合用于不同的治疗状况,或其它可用于根据特定的需求调节肌球蛋白轻链的磷酸化。
用于本发明的肽抑制剂可以是长度为7-300或更多氨基酸残基的肽。有用的片段可以是从7个氨基酸长度到约300个氨基酸长度的任何长度。
在此使用的氨基酸用于表示包含氨基和羧酸基团的分子。氨基酸可以是天然氨基酸或非天然氨基酸。天然氨基酸是通常在天然蛋白质中发现的那些。非天然氨基酸包括通常不在天然蛋白质中发现的氨基酸,如修饰的氨基酸。
修饰的氨基酸包括例如,2-氨基己二酸,3-氨基己二酸,β-丙氨酸,β-氨基丙酸,2-氨基丁酸,4-氨基丁酸,哌啶酸(piperidinicacid,),6-氨基己酸,2-氨基庚酸,2-氨基异丁酸,3-氨基异丁酸,2-氨基庚二酸(2-aminopimelic acid),2,4二氨基丁酸,锁链素,2,2′-二氨基庚二酸,2,3-二氨基丙酸,N-乙基甘氨酸,N-乙基天冬酰胺,羟基赖氨酸,别-羟基赖氨酸,3-羟基脯氨酸,4-羟基脯氨酸,异锁链素,别-异亮氨酸,N-甲基甘氨酸,肌氨酸,N-甲基异亮氨酸,6-N-甲基赖氨酸,N-甲基缬氨酸,正缬氨酸,正亮氨酸,鸟氨酸。
除以上定义的通式结构A-B-C以外,肽抑制剂可包括功能是允许抑制剂被动经过细胞膜的序列。设想肽抑制剂可进一步包括促进抑制剂向细胞的进入的靶向序列。通过例子,这样的靶向序列可包括,但不限于HIV TAT蛋白质的转导结构域(SEQ ID NO7),来自卡波西成纤维细胞生长因子的信号肽(SEQ ID NO8),人整合素β3的信号序列(SEQ ID NO9),HSV-VP22蛋白质转导结构域(SEQ ID NO10),控制触角的基因果蝇同源转录因子(SEQ ID NO11),禽兽棚病毒(flockhouse virus)外壳蛋白质,或来自DNA结合蛋白质的碱性亮氨酸拉链片段的肽,如c-Fos,c-Jun,和GCN4。
MLCK抑制剂也可以连接到配体或载体,该配体或载体具有对于特定细胞类型,组织或器官的高亲合力且因此促进向该细胞类型,组织或器官的靶向输送。靶向载体合适地是增加MLCK抑制剂到所需靶的输送的载体(如,靶向细胞,靶向器官,想得到的组织的靶向组分,肿瘤等)。合适的靶向载体包括显示靶特异性的化学官能度如,激素(如,生物学响应剂)和抗体(如,单克隆或多克隆抗体),或具有如,对特异细胞表面抗原所必须的靶特异性的抗体片段。许多载体如单克隆抗体和胶体输送系统如脂质体和从生物相容性聚合物形成的聚合物微球或微胶囊是本领域已知的。参见如,Davis等人,Site-Specific DrugDelivery,(Tomlinson等人eds.),John Wiley,纽约,1986,p.93;Roth等人,U.S.专利5,879,713.Use of Hepatoptes(Charodhury,N.L,等人,J.Biol.Chem.268,11265(1993))和也已经报导的免疫脂质体。溶解性分子,包括寡核苷酸,凝集素,聚-L-赖氨酸,病毒小体,胰岛素,葡聚糖,HCG,二肽,脂蛋白和细胞体系如红细胞和成纤维细胞可促进MLCK抑制剂向靶细胞或组织的输送。参见如,Poznansky等人,36 Pharmacol.Rev.277(1984);Counsell等人,25J.Med.Chem.1115(1982);Takle,等人,U.S.专利5,891,689;Chari等人,U.S.专利5,846,545。
寻找肿瘤的载体包括某些抗体,如用于血管渗透性因子的抗体和单克隆抗体,氧化糖基化蛋白,聚赖氨酸,人血清白蛋白,葡聚糖,对于特定受体具有亲合力的肽或蛋白质,如胃泌素释放肽受体,表皮生长因子受体,血小板衍生的生长因子受体,肿瘤坏死因子受体,成纤维细胞生长因子受体,胰岛素样生长因子受体,转移素受体,层粘连蛋白受体,细胞因子受体,纤连蛋白受体,白介素受体,干扰素受体,蛙皮素(bombesen)/胃泌素释放肽受体,生长激素抑制素(somatostation)受体等,聚阴离子化合物和聚合物,如sumarin和sumarin的类似物或衍生物,多硫酸化(polysulphated)化合物和聚合物,如肝素,硫酸乙酰肝素,硫酸chrondroitin,硫酸角质素,硫酸dennatan,硫酸化几丁质,硫酸脱乙酰壳多糖,硫酸海藻酸,多硫酸戊聚糖,硫酸化环糊精,和合成有机聚合物,该有机聚合物包括聚苯乙烯磺酸盐,硫酸化聚乙烯醇,聚乙烯基硫酸酯,和聚乙烯磺酸酯,和肽激素的类似物,如LH-RH,dombesin和生长激素抑制素。
内皮靶向载体可包括CD31抗体。骨靶向载体可包括分子如双膦酸酯,雌激素和其它类固醇,如脱氢表雄甾酮(DHEA),四环素,和聚丙二酸酯。皮肤寻找载体包括某些金属离子-氨基酸螯合物;前列腺寻找分子包括某些类固醇如DHEA。肝寻找载体包括甘油三酯,特别是中等链甘油三酯。
用于本发明的抑制剂可以是线性的,或可以是环状的或由天然或合成措施环化,条件是抑制剂保持MLCK-抑制活性。例如,在半胱氨酸残基之间的二硫化物键可环化肽序列。双官能试剂可用于提供在肽的两个或多个氨基酸之间的连接。肽环化的其它方法,如由Anwer等人(Int.J Pep.Protein Res.36392-399,1990)和Rivera--Baeza等人(Neuropeptides 30327-333,1996)描述的那些也是本领结构域已知的。
抑制剂可以由常规自动化肽合成方法获得,如在实施例中所述,或可以从通常肽的供应商购得。设计和制备肽的通用原则是本领结构域技术人员公知的。
抑制剂可以在溶液中或在固体载体上根据常规技术合成。抑制剂可以从各科合成或酶方案制备,它们是本领结构域公知的。在需要短抑制剂的情况下,这样的抑制剂可以使用自动化肽合成在溶液中或在固体载体上根据常规技术制备。
抑制剂也可以修饰,这样的修饰可以在合成器上采用非常少的干预进行。酰胺可以在抑制剂的C-末端增加。乙酰基,生物素,硬脂酸酯和其它修饰可以增加到N-末端。其它修饰可包括增加部分到抑制剂因此能够使抑制剂共价键合到MLCK,使得MLCK分子的抑制是不可逆的。合适地,可以合成抑制剂以包含一个或多个D氨基酸。包含D氨基酸的肽的生产方法是本领域公知的(Pritsker等人,PNAS USA95;137287-7292)。
也设想MLCK的肽模拟物抑制剂。肽模拟物通常是本领域已知的。优选,MLCK的肽模拟物抑制剂具有二级结构如肽MLCK抑制剂,和任选的进一步结构特性。肽模拟物抑制剂可以根据肽抑制剂通过将一个或多个氨基酸残基由非天然氨基酸替代而制备。优选,非天然氨基酸允许肽模拟物保持它的构型,或稳定优选的如,生物活性构型和具有总体正电荷。来自肽的非肽模拟类似物于可以如在Nachman等人,Regul.Pept.57359-370(1995)中所述制备。
肽模拟物的例子是支架模拟物,非肽模拟物,类胨,氮杂肽(azapeptides),低聚氨基甲酸酯,低聚吡咯烷酮,低聚脲,乙烯基类磺酰氨基肽(vinylogous sulfonamidopeptides),β-肽,和γ-肽。
支架模拟物例如,包括分子如色酮,异苯并二氢吡喃-4-酮(Isochromosomes),二酮基哌嗪和吡啶衍生物。
类胨例如,可包含多样烷基,芳族,杂环,阳离子和阴离了N-取代基,如N-取代甘氨酸。类胨结构相似于α-氨基-酸聚合物,但它们的主链缺乏手性中心和氢键供体。机器人的类胨合成可用于有效产生多样组合库,允许对于所需结构或活性筛选多个类胨序列。
氮杂肽由如下方式形成氨基酸残基的Cα由氮原子的替代。
低聚氨基甲酸酯和低聚脲是可含有各种侧链的序列特异性低聚物。
低聚吡咯烷酮具有引入5元环的刚硬主链。具有限字母表的蛋白质侧链的低聚吡咯烷酮的序列特异性五聚体可以使用溶液相方法合成。短低聚吡咯烷酮采用确定的构型和低聚吡咯烷酮亚氨基可与相邻五元环的羰基形成分子内氢键,以得到模拟β-条的结构,或可以与另一个低聚物上的羰基形成分子间氢键以模拟β-片。
N-甲基化3,5-连接的吡咯啉-4-酮在溶液中和在固相中采用螺旋。手性乙烯基类氨基磺酸是具有延长非天然主链的结构化肽模拟物,它带有强负电荷,且可引入手性侧链的特定序列。
β-肽由于另外亚甲基单元的存在而具有不同于正常肽的主链。与天然肽相比,γ-肽含有两个另外的主链亚甲基单元,和因此允许每个单体单元的两个不同位置的侧链取代。
以下的实施例描述抑制细菌生长或是杀菌的MLCK抑制剂。具体地设想其它细菌可采用实施例中的相似方式MLCK抑制剂敏感。在本领结构域技术人员的能力范围内的是筛选和获得其它易感细菌,MLCK抑制剂可对其具有相似的效果。
根据本发明的MLCK抑制剂用作药物组合物中的活性成分,该药物组合物用于给药以治疗与MLCK活性相关的各种病症。这些药物组合物可以体内改变上皮紧密连接的渗透性中具有特定用途。设想药物组合物包括如下通式的抑制剂的A-B-C,其中B共价连接到A和C,且其中A和C每个包括至少两种碱性氨基酸和B包括Xaa1-Xaa2-Xaa3,其中Xaa1选自Tyr,Val,Lys,Gln,Phe,Ser,Pro,Thr,Asn或Arg;Xaa2共价键合到Xaa1,且选自Lys,Val,Thr,Trp,His,Met,Asn,Ala,Glu,Phe,Gln或Arg;和Xaa3共价键合到Xaa2,且选自Ala,Asp,Glu,Phe,Gly,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val或Tyr。合适地,B的Xaa1选自Tyr,Val,Lys,Gln或Phe;B的Xaa2选自Lys,Val,Thr,Trp或His;B的Xaa3选自Tyr,Met,Pro,Ser或Phe。合适地,A和C可每个包括至少三个碱性氨基酸。
本发明的药理学活性抑制剂可以根据常规药学方法加工以生产给药到患者的药剂,如在与常规赋形剂如药学可接受的有机或无机载体物质的混合物,该载体物质适于胃肠外,肠内(如,口服),局部或经皮施加,它们不有害地与活性化合物反应。
也设想其它常规给药途径,如由皮下,静脉内,真皮内,肌内,乳房内,腹膜内,鞘内,眼内,眼球后,肺内(如,期限释放),气溶胶,舌下,鼻内,肛门,阴道,或经皮输送,或由在特定部位的直接注入或通过动脉内或静脉的区域输送。治疗可由在一定时间内的单一单位剂量或多个剂量组成。针剂是方便的单位剂量。
单位剂量是在合适载体中分散的个别量(discrete amount)的治疗组合物。在某些实施方案中,治疗化合物的胃肠外给药由随后为连续输入的初始快速注射进行,以保持药物产品的治疗循环水平。本领域技术人员容易由良好的医疗实践和单个患者的临床条件优化确定有效的剂量和给药方案。
合适的药学可接受的载体包括,但不限于水,盐(缓冲剂)溶液,醇,阿拉伯胶,矿物油和植物油,苄醇,聚乙二醇,明胶,碳水化合物如乳糖,直链淀粉或淀粉,硬脂酸镁,滑石,硅酸,粘性石蜡,香料油,脂肪酸甘油单酯和二甘油二酯,季戊四醇脂肪酸酯,羟基甲基纤维素,聚乙烯基吡咯烷酮等。
药物制剂可以消毒,如需要与辅助试剂,如润滑剂,防腐剂,稳定剂,润湿剂,乳化剂,影响渗透压的盐,缓冲剂,着色,调味和/或芳族活性化合物混合。如果使用药学可接受的固体载体,类似物的剂型可以是片剂,胶囊,粉末,栓剂,或锭剂。如果使用液体载体,软明胶胶囊,经皮贴剂,气溶胶喷雾剂,局部乳膏,糖浆或液体悬浮液,乳液或溶液可以是剂型。
对于胃肠外应用,特别合适是可注射,无菌溶液,优选油性或水溶,以及悬浮液,乳液,或包括栓剂的植入物。针剂是方便的单位剂量。用于胃肠外给药的MLCK抑制剂剂量每天1-300mg是合适的,或足以在连续基础上保持与上皮接触的介于50-500μM MLCK抑制剂的剂量的量。
对于肠内应用,特别合适的是片剂,锭剂,液体,滴剂,栓剂,或胶囊如软明胶胶囊。可以使用糖浆,酏剂等,或也可采用增甜载体的那些。
持续或直接释放组合物可以配制,如脂质体或那些,其中活性化合物由不同的可降解包衣保护,如由微囊封,多个包衣等。也可以冷冻干燥MLCK抑制剂并使用获得的冻干物,例如,用于制备注射用产品。通式(I)的类似物的药物组合物的经皮输送也是可行的。
对于局部应用,不可喷雾形式,粘性到半固体或固体形式被采用,该形式包括与局部应用相容的载体和具有动力粘度,优选大于水。合适的配制剂包括,但不限于溶液、悬浮液、乳液、乳膏、软膏、粉末、搽剂、油膏、气溶胶等,如需要它们被消毒或与助剂,如防腐剂等混合。
对于MLCK抑制剂的直接给药,如直接输送到肿瘤,剂量为5mg-1500mg/剂量,合适地,200-800mg/剂量。
剂型也可包含佐剂,如防止或稳定佐剂。它们也可包含其它治疗有价值的物质或可包含多于一种在此和在权利要求中说明的在混合物中的化合物。
如上所述,将MLCK抑制剂优选以口服剂量制剂给予人类或动物患者,用于治疗肠功能障碍。根据本发明的抑制剂从口服剂量制剂释放,它被吸收入肠细胞,或从肠道进入血液。
口服给药优选用于其中MLCK可起作用的一些疾病,如肠疾病。通常,合适的数量为1-3000mg每天,或在连续基础上的每单位剂量药学可接受的载体上的足以保持与上皮接触的50-500μM的抑制剂。
例如对于癌症和其它肿瘤相关疾病的治疗,测试组每天可接受在癌症或肿瘤部位由胃肠外给药的0.1mg-500mg/kg体重的肽类药物。
本领域技术人员容易地优化根据良好的医疗实践和单个患者的临床状况确定有效剂量和共给药方案(如下所述)。不管给药方式,认识到在具体情况下活性化合物的实际优选数量根据采用的具体化合物的效力,配制的特定组合物,应用模式,和治疗的特定部位和有机体而变化。例如,对于特定患者的具体剂量依赖于年龄,性别,体重,通常健康状态,饮食,给药定时和模式,排泄速率,和用于结合的医药和治疗应用于其的特定疾病的严重性。给定患者的剂量可以使用常规考虑确定,如由目标化合物和已知药剂不同活性的常规比较,如通过适当的常规药理学方案。本领域的医师可容易地确定和规定要求用于抵抗或抑制状况进展的有效数量。在达到效力而没有毒性的范围的药物浓度的最优精确度要求基于可获得性的药物到靶部位的动力学的方案,该精度。这涉及药物的分布,平衡,和消除的考虑。在本发明的组合物中的活性成分的剂量可以变化;然而,活性成分的数量必须使得获得有效剂量。以提供最优药物效力的剂量将活性成分给予需要治疗的患者(动物和人)。
治疗剂的总剂量可以在多个剂量中或在单一剂量中给予。在某些实施方案中,单独给予化合物或组合物,在其它实施方案中与其它涉及疾病或涉及其其它症状的治疗剂结合给予化合物或组合物。
合适地,制备直接给药到肺的组合物,其中优选的给药途径是通过吸入的口服方式。吸入剂用具是用于给予可吸入药物的任何用具。吸入器用具的例子包括雾化器、计量的剂量吸入器、干粉吸入器、间歇正压呼吸设备、增湿器、气流分布区环境(bubble environments)、氧腔、氧罩和人造呼吸器。特别设想肽抑制剂配制为可吸入组合物。本发明的组合物包括试剂盒,其中可吸入的医药配制在适于通过吸入给药的容器中。
可以修饰的用于本发明治疗方法的抑制剂以通过毒性的降低,循环时间的增加,或生物分布的改进而改善它们的治疗效力。改进药物活力的策略是采用水溶性聚合物。(Greenwald等人,Crit Rev TherapDrug Carrier Syst.2000;17101-161;Kopecek等人,J ControlledRelease.,74147-158,2001)。
本领域技术人员知道用于药物有效修饰的PEG化技术。(Harris等人,Clin Pharmacokinet.2001;40(7)539-51)。在不同的方案中,将PEG和氨基酸的共聚物开发为新颖的生物材料,该生物材料保持PEG的生物相容性,但增加了每个分子许多连接点的优点(提供更大的药物加载量),和可以合成地设计以适于各种应用。(Nathan等人,Macromolecules.1992;254476-4484;Nathan等人,Bioconj Chem.1993;454-62)。
MLCK抑制剂可以采用非活性形式输送,连接物可用于保持药物前体形式的治疗剂直到由具体的触发物,典型地在靶向组织中的酶活性从主链聚合物释放。(参见U.S.专利No.6,673,574,在此引入作为参考)。例如,MLCK抑制剂可以通过MLCK抑制剂活性中心以外的蛋白水解断裂部位连接到连接物。用于活化药物输送的连接基团库是本领结构域技术人员已知的和可基于酶动力学,活性酶的普遍,和选择的疾病特异性酶的断裂特异性(参见如,由VectraMed,Plainsboro,NJ建立的技术)。这样的连接物可用于修饰在此所述的用于治疗输送的肽。
当然,应当理解抑制性肽可形成治疗方案的一部分,其中对于给定的病症抑制性肽类治疗与多种其它治疗结合使用。同样,组合治疗是特别希望的。
实施例本发明进一步由如下实施例解释,它们应当不被解释为限制本发明的范围。
实施例1MLCK抑制剂的合成和表征A.L-和D-肽的合成评价肽抑制剂的MLCK抑制活性。如下所述合成表2所示的肽抑制剂。
表2
采用大写字母开始的氨基酸称为L-氨基酸采用小写字母开始的氨基酸称为D-氨基酸使用由固相肽合成技术使用F moc(9-芴基甲氧基羰基(fluorenylmethoxycarbonyl))化学自动化Symphony Quartet PeptideSynthesizer(Zinsser analytic,Maidenhead)合成肽。精氨酸脒基由2,2,4,6,7-五甲基二氢苯并呋喃-5-磺酰基保护;赖氨酸和酪氨酸侧链由叔丁氧基羰基和叔丁基分别保护。将Rink酰胺MBHA树脂100mg(0.78mmol/g)采用二氯甲烷溶胀30分钟。Fmoc-氨基酸的解保护由采用20%(v/v)哌啶/二甲基甲酰胺(DMF)处理20min完成。初始偶合反应由如下方式进行以当量1/5/5/4.9/10加入树脂/氨基酸/HOBt/PyBOP/N,N,二异丙基乙胺(DIEA)混合2小时。每个随后的偶合反应由如下方式进行采用20%(v/v)哌啶/DMF的N-α-Fmoc基团断裂12分钟,随后混合溶于DMF的0.05 M Fmoc-氨基酸与0.1M HBTU和0.4M 4-甲基吗啉30分钟,随后在DMF中洗涤树脂。在一些肽上N-末端乙酰基化在从树脂断裂之前由采用50%乙酸酐,25%吡啶和25%DMF的处理而进行。
将粗肽在95%三氟乙酸(TFA),2.5%三异丙基硅烷和2.5%H2O中从树脂上断裂3小时,旋转蒸发以脱除溶剂,采用冷醚沉淀,采用2%乙腈2%乙酸溶解,然后冷冻干燥。所需肽从粗材料的精制由半制备性HPLC使用Vydac 218TP C18反向硅胶柱(10×250mm,300孔度,5μm粒度)达到。使用2%B到50%B在20分钟梯度中将粗产物分离(流量=1ml/min),其中洗脱剂A是水中的0.3%TFA和洗脱剂B是乙腈中的0.3%TFA)。粗肽混合物的分离在280nm下监测。将收集的肽部分汇集,浓缩和由液相色谱分离和质谱分析(LC-MS)检验。肽的HPLC分离在218TP C18反相二氧化硅柱(4.6×250mm,300孔度,5μ粒度)上使用2%B到50%B在20分钟梯度中进行(流量=0.5ml/min),其中洗脱剂A是水中的0.1%TFA,洗脱剂B是乙腈中的0.1%TFA)。肽在280nm下监测和由使用Thermo Finnigan LCQTMDECA质谱仪(MS)进行正电喷射电离和使用来自(Thermo SeparationProducts,Riveria Beach,FL)的Thermo Finnigan XcalibarTM软件分析。
B.肽抑制剂在体外激酶测定中抑制MLCK肽抑制MLCK的能力根据Zolotarevsky等人,(2002)Gastroenterology 123163-172进行。简单地,表达215 kDa MLCK的融合Caco-2单层用作MLCK来源。单层在含蛋白酶抑制剂的裂解缓冲液lysis(20mM MOPS pH7.4,0.5%Triton X-100(非离子去污剂),0.5%NP-40,1mM DTT)中收获,并在激酶反应缓冲剂(20mM MOPS,pH7.4;2mMMgCl2;0.25mM CaCl2;和0.2μM钙调蛋白)中稀释到0.1mg/ml。
在冰中,将PIK(SEQ ID NO12)在激酶反应缓冲剂(20mmol/L吗啉丙磺酸,pH7.4;2mmol/L MgCl2;0.25mmol/L CaCl2;和0.2μmol/L钙调蛋白)中稀释到各种浓度(0,1,10,33,100和330μM),通过加入γ32p-ATP(ICN,Costa Mesa,CA)和5mol/L重组MLC开始反应。然后将混合物从冰上转移到30℃下5-30分钟,以使测定是在线性范围内。MLC磷酸化由SDS-PAGE分离的反应混合物的放射自显影法测定。
SEQ ID NO12的加入引起IC50为29μmol/L的Caco-2 MLC激酶活性的剂量依赖性抑制。
C.抑制剂是膜渗透的膜渗透性使用在Zolotarevsky等人Gastroenterology 123163-172,(2002)中描述的测定方法测量。简单地,使用自动化Pioneer PeptideSynthesizer(Applied Biosystems,Foster City CA)合成肽以在氨基末端包括D-生物素(Sigma,St.Louis,MO)。将Caco-2单层与在HBSS中的330μM肽孵育,清洗以脱除细胞外肽,并采用1%低聚甲醛固定。然后将细胞采用在磷酸盐缓冲盐水(PBS)中的0.1%Triton X-100透化或不透化。生物素化的肽由如下方式检测采用Alexa 488-偶联的在含有1%牛血清白蛋白的PBS中的抗生蛋白链菌素(分子探针,Eugene,OR)孵育。染色的单层在SlowFade试剂(分子探针)中包埋(mounted)和由落射荧光显微镜(epifluorescence)检查。膜渗透性由渗透的每个细胞的亮周缘环指示,但不是非渗透化的制剂。
D.抑制剂在细胞中抑制MLCK经上皮阻力(TER),紧密连接(TJ)渗透性的敏感标记用于测量细胞中的MLCK活性。
抑制剂可防止肌动球蛋白收缩或诱导细胞中的肌动球蛋白松弛。MLCK对肌动球蛋白收缩的影响引起培养中生长的细胞中TER的降低。将表达SGLT1的Caco-2细胞在胶原涂覆的0.4-μm膜孔径聚碳酸酯膜Transwell载体(Coming-Costar,Cambridge,MA)上保持和生长为极化单层。将单层采用500μM的PIK,D-PIK,D-PIK(逆转的),或D-PIK(int.)孵育1小时,其后测量经上皮阻力(TER)。电生理学测量使用琼脂桥与Ag-AgCl甘汞电极和电压夹进行(University of IowaBioengineering,Iowa City,IA)。固定的50μA电流通过Caco-2单层,允许TER使用欧姆定律计算。在随后的分析之前从所有数值减去流体阻力。
表3指示测试的肽渗透细胞,且能够抑制MLCK。此外,将L-氨基酸由D-氨基酸取代对肽抑制MLCK的能力的影响非常小。ΔTER指示与对照Caco-2单层相比TER中的提高。当在至多1mM的浓度下与对照单层比较时,D-PIK和D-PIK(逆转的)两者也产生与乙酰基化PIK相似的TER中的增加。这些结果展示使用D-氨基酸生产的抑制剂类似物可产生与使用L-氨基酸生产的那些相同的MLCK的生理学抑制和包含D-氨基酸的抑制剂以相似于PIK的方式是膜渗透的。
表3
F.PIK类似物的特异性与MLCK一起,PKA和CaMPKII是与钙调蛋白介导的通路相互作用的两种其它丝氨酸/苏氨酸激酶。对于要体内使用的稳定MLCK抑制剂,重要的是它们也选择性地仅抑制MLCK。
cAMP-依赖性的蛋白质激酶(PKA)活性使用非放射活性蛋白质激酶测定试剂盒通过加入20单位PKA到0.5,1,2.5和5mM的MLCK抑制剂肽和遵循制造商的批示进行测定。蛋白质激酶抑制剂6-22酰胺用作正对照物。
钙/钙调蛋白依赖性的蛋白质激酶II(CaMPKII)活性使用肽假底物(生物素-PLSRTLSVSS-NH2)测定,该底物由先前所述的Fmoc固相肽合成(13)制备。通过在4℃下孵育过夜,将生物素化假底物(PBS中的0.5μg/ml)固定到先前由100μl抗生蛋白链菌素(PBS中的3μg/ml)涂覆的96-孔聚苯乙烯微量滴定孔。将孔采用100μl的TBS(包含0.05%Tween-20的PBS)洗涤3次以脱除未结合假底物肽。将CaMPKII(20单位)与0,0.5,1,2.5或5mM MLCK抑制剂肽在108μl的CaMPKII反应缓冲剂(50mM Tris-HCI,10mM MgCl2mM二硫苏糖醇,0.1mMNa2 EDTA,100μl ATP,1.2μM钙调蛋白和2mMCaCl2)中混合。在30℃下的5分钟预孵育之后,将12μl激酶-MLCK抑制剂样品与100μl的CaMPKII反应缓冲剂一起加入假底物涂覆的池中。在30℃下的20分钟孵育之后,加入100μl的20%H3PO4和将池采用PBS洗涤5次。磷酸化假底物使用生物素化单克隆抗磷酸丝氨酸抗体(100μl克隆PSR-45,以1/50,000在PBS中稀释的进行检测,随后施加过氧化物酶偶联的抗生蛋白链菌素且测量邻苯二胺(0.5mg/ml)转化率(在492nm下读取)。
D-PIK或D-PIK(逆转的)或D-PIK(int)在至多5mM的浓度下都不显著影响对PKA或CaMPKII的抑制性效果。因此,D-PIK和D-PIK(逆转的)两者能够特异地抑制MLCK,而不影响PKA或CaMPKII活性。
F.肽抑制剂对肠蛋白酶的易感性体内给予的肽易受蛋白酶断裂的影响,特别是给予到肠的那些。PIK,D-PIK,D-PIK(逆转的)和D-PIK(int.)每个与鼠肠液和也等Caco-2肠上皮细胞提取物孵育,它包含混合物刷状缘和细胞溶质蛋白酶。通过将分离的鼠肠(十二指肠到回肠)采用10ml的20mM N-2-羟基乙基哌嗪-N′-2-乙磺酸(HEPES)缓冲剂,pH7.4冲洗获得腔肠分泌物。将排出的内容物离心以脱除固体和在确定总蛋白质含量之前将上清液通过0.20μm过滤器过滤。将融合Caco-2细胞采用PBS清洗,由简单胰蛋白酶并移入小体积的Dulbecco′s修饰的Eagles′s培养基(DMEM)和采用磷酸盐缓冲盐水(PBS)洗涤2次。最终的细胞沉淀在小体积裂解缓冲液(50mM Tris-HCL,2mM EDTA,20%甘油,pH7.4)中再悬浮和在冰上超声。分离的肠流体和溶解的Caco-2细胞提取物的蛋白质浓度使用Bio-Rad Protein Assay测定。将PBS中MLCK的肽抑制剂(1mg/ml)与0.1mg肠分泌物的蛋白质或Caco-2细胞溶解产物在冰上混合和分别在4℃和37℃下孵育。在选择的时间,将100μl等分试样抽出并与等体积的0.5%TFA(在50/50水/乙腈中)混合以终止酶反应。离心样品和将上清液由LC-MS分析方法分析以确定PIK的切割图谱。
残余肽含量由液相色谱-质谱(Tiller等人,Anal Bioanal Chem2003;377788-802)和正离子电喷射电离评定。在鼠肠液存在下,在PIK的K和R残基的C-末端侧的肽键初始切割,在胰蛋白酶样内肽酶的部位特征。鼠肠液中的延长孵育导致PIK的总水解。Caco-2肠上皮细胞提取物经过中心回文序列断裂PIK,提示糜胰蛋白酶样内肽酶的存在。
将表2中列举的肽(0.1mg)采用鼠肠液(0.2mg)在37℃下孵育0.5分钟到6小时。在t1/2的结果在表3的提供。
表3
如表3所示,与具有相同序列但包含所有L-氨基酸的肽相比,包含所有D-氨基酸的抑制剂肽显著地更具抵抗力。令人惊奇地,包含所有D氨基酸的肽和含L-氨基酸的抑制剂肽的反向序列展示甚至更大的抵抗力而未损失抑制活性(表3)。
实施例2由致病性大肠杆菌感染的细胞抗在由MLCK抑制剂的治疗剂时的切割此实施例显示MLCK的D-PIK(逆转的)在防止紧密连接的切割中的效力,该紧密连接在致肠病细胞的感染时出现。
T84细胞(极化的人肠道上皮细胞)在含有6%新生牛血清(Invitrogen)的Dulbecco-Vogt改良的Eagle培养基(Invitrogen,Carlsbad,CA)和Hams F-12(Invitrogen)的1∶1(vol/vol)混合物中在37℃下在5%CO2中生长。Caco-2细胞在含有10%胎牛血清(Invitrogen)补充的高葡萄糖Dulbecco-Vogt修饰的Eagle培养基中在37℃下在5%CO2中生长。
T84和Caco-2单层每个由致病性大肠杆菌(EPEC)菌株E2348/69在100的感染多重性(MOI)下感染。在1小时之后,将培养基抽吸和替代。
T84和Caco-2细胞的对照,EPEC-感染的,和EPEC-感染的+D-PIK(逆转的)单层在玻璃盖玻片上采用3.7%低聚甲醛固定,然后采用0.2%Triton X-100透化15分钟。将细胞采用2.5%牛血清白蛋白孵育1小时,然后采用抗咬合(occludin)的一抗孵育1小时,随后罗丹明-或荧光素异硫氰酸酯-偶联的二抗孵育1小时。将单层洗涤和在玻璃显微镜玻片上由Antifade试剂包埋(分子探针,Eugene,OR)。将染色的单层显现和采用装配Spot-RT数字成像系统(DiagnosticInstruments,Sterling Heights,MI)的Nikon Opti-Phot倒置显微镜照相。在由EPEC感染之后,测量经上皮电阻四小时。D-PIK(逆转的)以30,100和300μmol/L给药。
细胞的显像揭示在EPEC感染之后,紧密连接防止D-PIK(逆转的)穿膜蛋白质咬合的再分布。D-PIK(逆转的)也防止EPEC感染的细胞中经上皮电阻的降低。D-PIK(逆转的)抑制剂肽可因此具有抗致肠病细菌的治疗用途。
实施例3MCLK的肽抑制剂有效逆转急性T-细胞介导的TNF-依赖性腹泻此实施例展示蛋白酶抗MLCK抑制剂的在治疗与MLCK活性相关的疾病时是体内有效的。在此实施例中,疾病是由T-细胞活化介导的急性腹泻。通过测量净流体分泌和血清蛋白质的血液对内腔通量,测定肽的效力。
体内小肠渗透性在对照鼠和在测定之前90分钟由抗-CD3的抗体注射的小鼠中测定。将7-10周大的野生型C57BL/6,210kDMLCK-/-(45),或ΔF508 CFTR(36)雌鼠在研究之前禁食12或24小时和向腹膜内注入200μl PBS中的200μg抗-CD3(克隆2C11)或仅载体。鼠然后用于肠渗透性测定或灭杀用于组织获取。将获取的组织在OCT中快速冷冻用于免疫荧光,放入Trizol(Invitrogen)中用于mRNA分析,或用于上皮细胞分离,如下所述。所有动物试验根据国家健康研究院指南按照由芝加哥大学的动物保护和使用委员会批准的方法进行。肠渗透性测定。通过采用先前用于鼠的体内测定,测量肠渗透性和水通量。在每个试验之前将7-9周大的雌鼠禁食24小时。在采用抗-CD3或载体与氯胺酮(75mg/kg,腹膜内注射,Fort Dodge)和赛拉嗪(25mg/kg,腹膜内注射,Lloyd Laboratories)的处理之后诱导麻醉1小时。将鼠采用250μl 1mg/ml Alexa 488偶联牛血清白蛋白(分子探针)静脉内注入或眶后注入和诱导麻醉。腹部由中线切口打开和4-5cm空肠回路在近端和远端由0.76mm内径聚乙烯管插套管。将升温到37℃的冲洗液(140mM NaCI,10mM HEPES,pH7.4)首先在1ml/min下使用蠕动泵(BioRad)通过空肠回路灌注10分钟。在此之后采用再循环方式在1ml/min下灌注测试溶液(50mM NaCI,5mM HEPES,2mM亚铁氰化钠,2.5mM KCI,20mM葡萄糖,pH7.4)3小时,在抗-CD3或载体处理之后90分钟开始。腹腔由湿纱布覆盖和使用加热灯将通过直肠温度计测量的体温保持在37℃。对于涉及无Na+灌注液的试验,将N-甲基-Dglucamine-Cl取代NaCI。或者,当要求时将抑制剂加入灌注液中,包括D-PIK(逆转的)和D-PIK(25-250μM)。将测试溶液的1ml等分试样在开始和在灌注结束时取出。在灌注之后,将动物杀死和将灌注的空肠段切除和测量长度。将切除的肠回路在OCT中快速冷冻或用于上皮细胞分离。灌注液中的亚铁氰化物浓度使用先前描述的色度测定法测量(Sadowski和Meddings,Can J Physiol Pharmacol 1993;71835-9)。由于亚铁氰化物不能经过紧密连接,它的浓度反映水进入或离开内腔灌注液的移动。Alexa 488偶联的牛血清白蛋白浓度使用全自动定量绘图酶标仪(Synergy HT,Bio-Tek Instruments,Inc.)使用485nm的激发波长和528nm的发射波长测量。BSA进入内腔灌注液的移动由定量化荧光使用485nm的激发波长和528nm的发射波长测量。初步定量化SDS-PAGE分析显示Alexa 488荧光精确地表示整体牛血清白蛋白在内腔灌注液中的含量。探针间隙(clearance)计算为C探针=(CiVi-CfVf)/(CavgTL);水通量计算为(Vi-Vf)/(TL)。在这些公式中,Ci是测量的初始探针浓度;Cf是测量的最终探针浓度;Vi测量为初始灌注液体积;Vf计算为Vi([亚铁氰化物]i/[亚铁氰化物]f);Cavg计算为(Ci-Cf)/ln(Ci/Cf);T是灌注小时;和L是以cm计的灌注空肠段的长度。
抗-CD3处理,它在这些动物中引起急性TNF-介导的腹泻(Musch等人J Clin Invest 2002;1101739-47),被发现与净流体分泌,而不是吸收有关。抗-CD3抗体向鼠的注入引起流体进入小肠,而不接受抗-CD3抗体的对照鼠从小肠吸收流体。由抗-CD3抗体的给药引起的全身T细胞活化在鼠中引起急性腹泻。通过测量粘膜干扰素-γ和TNF-α副本的增加和小肠的重量对长度比例中确认响应于抗-CD3抗体的给药,腹泻的细胞因子诱导。肠炎症的总体证明,包括血管舒张,注射,和水肿也存在。因此抗-CD3注射是在小鼠中诱导急性,自限制,免疫介导腹泻的有效措施。
在不同浓度(25,80,和250μM)下给予MLCK,D-PIK(逆转的)的肽抑制剂以剂量依赖性的方式降低或逆转小鼠中抗-CD3抗体的效果。抗-CD3抗体向小鼠的注入引起蛋白质从血液进入肠内腔的泄漏的增加。在此例子中,注入血液的荧光标记的牛血清白蛋白(BSA)在小肠的内腔中回收。与未接受抗-CD3抗体的对照小鼠相比,采用抗-CD3的T细胞活化增加BSA泄漏的数量。D-PIK(逆转的)在不同浓度(25,80,和250μM)的给药以剂量依赖性的方式降低或防止抗-CD3抗体对肠中BSA水平的影响。当D-PIK(逆转)在内腔灌注液中在所示浓度下包括时,看到流体分泌和蛋白质泄漏的剂量依赖性逆转。这些数据指示肽抑制剂能够体内逆转肠渗透性缺陷和腹泻两者。
在抗-CD3处理的细胞中D-PIK(逆转的)逆BSA的净流体分泌和血液到内腔通量的能力的确证在如下观察情况中提供。首先,与全身T细胞活化相关的腹泻和屏蔽缺陷不是由于Na+的吸收障碍或Cl-的分泌。在CD3处理不存在下,阻断NHE2和NHE3依赖性Na+吸收不逆转净水移动以引起分泌或引起增加BSA的旁细胞通量。在CD3处理时,氯化物转运体CFTR的突变小鼠(CFTRΔF508)显示与野生型鼠相同的BSA净流体分泌和血液到内腔通量。其次,由CD3-处理引起的屏蔽功能障碍不是由于粘膜溃疡发生或上皮凋亡,而是在完整上皮层存在下发生。第三,体内改变紧密连接蛋白质咬合在组织中的分布,和在抗-CD3处理之后细胞质斑紧密连接蛋白质ZO-1显像为更薄和更迂回。第四,紧密连接和周围细胞骨架形态的改变可以在抗-CD3处理的小鼠中观察到,它显示围绕紧密连接的增加的细胞质密度,与细胞骨架缩合一致。第五,肌球蛋白轻链磷酸化,如由分离的肠上皮细胞的免疫荧光和由SDS-PAGE免疫印迹检测,在采用抗-CD3注射鼠之后3小时,在消胀(falling)之前空肠绒毛肠细胞的周围环增加3倍以上与腹泻的显现和消退相关的变化。第六,将缺乏MLCK(210 KDa)的鼠保护以免由抗-CD3注射诱导的腹泻。
在此实施例中使用D-PIK(逆转的)。然而,发现D-PIK以相似的方式起作用,且预期含有D-氨基酸,L-氨基酸或不可水解的键的MLCK抑制剂用于逆转急性T-细胞介导的TNF-依赖性腹泻。
实施例4MCLK的肽抑制剂抑制细菌的生长,且是杀菌的将JM109实验室菌株大肠杆菌或ATCC大肠杆菌菌株35150(0157溶血的)的液体培养物培育成对数中期。D-PIK(逆转)肽,或L-乱序肽在0-200μm的最终浓度下加入,在各个时间点使用分光光度计在600nm下测量光学密度。L-乱序肽含有与D-PIK(逆转)相同数目的氨基酸残基,并包括相同的氨基酸含量,但L-乱序肽的氨基酸是L亚型且处于无规,乱序顺序。JM109的生长被150或200μM下由D-PIK(逆转)或L-乱序肽抑制,及在几小时后光学密度降低至多5.5倍。O157溶血大肠杆菌显示被D-PIK(逆转)剂量依赖性地抑制过夜生长,但不被L-乱序肽所抑制。菌落形成从D-PIK(逆转)-处理的培养物的系列稀释确定,在抑制剂给药之后21小时之后在板上孵育。由菌落形成单元测定的较低的培养物浊度显示为生长抑制的良好标记。在由100和200μM D-PIK(逆转)处理的培养物中,与未处理或L-乱序处理的细胞相比,JM109大肠杆菌显示2-对数(2-log kill)杀死或更大。
将D-PIK(逆转)处理的JM109细胞采用两个核染剂,SYTO 9和碘化丙锭孵育。透化的细胞允许碘化丙锭进入,其中它淬灭SYT09信号。处理的细胞由荧光显微镜显像或荧光由荧光分光光度法定量荧光。在200μM D-PIK(逆转)下定量化的细胞死亡揭示小于10%细胞在15分钟处理之后存活,展示D-PIK(逆转)的杀菌作用模式。D-PIK(逆转)-处理的细胞的显微镜检查揭示围绕死核的细菌与活细胞的大凝块,它提示D-PIK(逆转)-介导的细胞切割缺陷(通过肌球蛋白同源物的抑制),它防止更年轻一代从它们的切割前代分离。生物素化D-PIK(逆转)-处理的JM109的荧光显微镜检查显示D-PIK(逆转)定位到细胞切割中隔(division septa)和周围凝块两者。
为了电子显微镜检查,将JM 109大肠杆菌采用50μM生物素化D-PIK(逆转)处理,在2%低聚甲醛/1%戊二醛或高碘酸盐赖氨酸低聚甲醛固定剂中固定15分钟或2h并采用Alexa Fluor*594FluoroNanogold处理。在由荧光显微镜检查和采用1%戊二醛后固定1小时之后,样品由银沉淀显影直到样品由光学显微镜检查显像为棕色。电子显微镜检查显示D-PIK(逆转)结合到外部膜/周质和皮层细胞质的。细胞质增强显示D-PIK(逆转)对细丝的接近。
在此实施例中使用D-PIK(逆转的)。然而,发现D-PIK,PIK和D-PIK(int)以相似的方式起作用。预期含有D-氨基酸,或不可水解的键的MLCK抑制剂用于抑制细菌生长或用于杀死细菌。
实施例5MCLK的肽抑制剂调节荷包式伤口闭合期间肌动蛋白环的收缩在此实施例中,设想包括D-氨基酸或不可水解的键的抑制剂采用与包括L-氨基酸的肽相同的方式起作用。
A.材料和方法保持表达EGFP-β-肌动蛋白融合蛋白的Caco-2 BBe细胞和单层在大鼠尾胶原涂覆的35mm细胞培养盘上生长。将盘在37℃受热台上在pH7.4 HEPES-缓冲的HBSS(没有碳酸氢盐)在伤害和随后成像期间放置。将单层采用10μM Y-27632(Calbiochem,San Diego,CA)或250μM PIK在创伤之前处理。创伤使用0.003线规钨丝手动产生。
活细胞中的伤口闭合使用装配Endow GFP通道发射立方体和由MetaMorph 6(Universal Imaging Corporation,Downingtown,PA)控制的Roper Coolsnap HQ照相机的落射荧光显微镜(epifluourescencemicroscope)成像。系列z-堆叠图像,在1μm间隔下在创伤之后每2分钟获得。将固定的创伤在使用四通道88000过滤器组(ChromaTechnology)染色之后成像。损伤区结构域使用MetaMorph 6在手动追踪创伤边缘之后确定。象素强度采用MetaMorph 6使用在相同条件下染色和成像的匹配样品确定。对于这些分析,将沿垂直于创伤边缘的线的像素强度作图。肌动蛋白强度峰值,对应于发展或建立的肌动蛋白环,用于排列多个线和任意地指定0。对于多个创伤进行这些分析。
在损伤之后将创伤在PBS中的1%低聚甲醛中在指示时间下固定。立体定向(stereotactically)标记创伤部位以在染色之后协助识别具体的创伤。在采用0.1%Triton X-100的渗透化之后,施加特异性抗体。活化rho由如下方式检测采用GST-rhotekin rho结合结构结构域融合蛋白孵育(Upstate Biotechnology,Lake Placid,NY),随后采用多克隆山羊抗GST抗体孵育和然后Alexa 594驴抗-山羊IgG的孵育。对照试验显示GSTrhotekin由不相关GST融合蛋白的替代不标记创伤边缘但非特异地标记创伤中的死/损害的细胞。ROCK使用鼠单克隆抗-ROCK-I/ROK-β抗体(Becton-Dickinson),随后Alexa-594山羊抗-鼠IgG标记。MLCK使用鼠单克隆抗MLCK克隆K-36(Sigma,St.Louis,MO),随后Alexa-594山羊抗-鼠IgG检测。磷酸化MLC使用亲合力纯化的多克隆兔抗血清,随后Alexa-350山羊抗-兔抗体(分子探针)检测。在固定制剂中,F-肌动蛋白使用Alexa-488-鬼笔毒环肽染色。活化MLCK使用生物素化PIK和Alexa-594抗生蛋白链菌素检测。抑制剂的标记使用荧光全自动定量绘图酶标仪定量评定。
激酶测定如实施例1所述进行,使用来自Caco-2细胞和重组肠上皮MLC的长MLC激酶。将PIK或载体加入反应混合物中和由γ32P-ATP和5μM重组MLC的加入引发反应。MLC磷酸化由反应混合物的SDS-PAGE放射自显影法测定。
B.结果当伤口闭合的收缩阶段在Caco-2肠上皮细胞中开始时,由收缩肌动球蛋白环共定位的磷酸化MLC和MLCK以点状图案装饰肌动球蛋白环。在创伤部位的MLCK活化使用形态PIK探针显示,开发该探针以对于活化MLCK是特异的。发现PIK结合以活化,但不是非活性的,醛固定MLCK,和使用荧光抗生蛋白链菌素偶联物,生物素化PIK肽探针允许PIK结合的定位。测试PIK探针的效率PIK探针优选结合到周围肌动球蛋白环,富含由MLCK的MLC磷酸化的部位,和Caco-2细胞中MLCK基因表达的逐渐诱导导致增加的PIK标记,该标记与MLCK催化亚单元表达程度密切相关(r2=0.98)。使用生物素化PIK探针,当收缩阶段在离散病灶中在创伤边缘开始时,检测活化MLCK。MLCK的募集和活化因此与荷包式伤口闭合期间的收缩关联。发现相似MLCK依赖性工艺涉及低细胞创伤体内愈合,涉及人结肠粘膜的快速固定活组织检查。伤口闭合的MLC磷酸化机理因此是体内活化的。
MLCK的PIK抑制不阻止肌动球蛋白环组装,但引起组合体的收缩停止。肌动蛋白环开始产生片段,创伤边缘变得不规则,而不是圆形,和创伤返回到它的初始区结构域。PIK可因此用于调节荷包式伤口闭合期间的收缩。单个细胞的荷包式伤口闭合的分析也显示对于PIK的潜在调节作用。完整单层中的单个细胞由从微电极输送的电流破坏,导致局部漏电,其大小当屏蔽恢复时呈指数降低。由PIK的MLCK抑制导致修复的显著缓慢。在产生损害之后2分钟和8分钟之间,与对照单层中的53%相比,局部漏电仅降低36%。这对应于对于恢复74%的时间常数的增加。因此,如更大的创伤,单细胞创伤的荷包式闭合要求MLCK活性,它可以由PIK的加入调节。
实施例6MCLK的肽抑制剂抑制肿瘤细胞生长每隔一天,将小鼠的肿瘤采用盐水或盐水加0.5mg D-PIK(逆转)注射。在3次注射之后,灭杀小鼠和记录肿瘤的尺寸。注意到在盐水和D-PIK(逆转)注射组之间肿瘤尺寸的统计显著(p<0.05)差异。肿瘤切片的显微镜检查揭示在由D-PIK(逆转)注射的肿瘤中出现显著的坏死。设想抑制剂,特别地以稳定的形式,可用于治疗性治疗癌症。
在此实施例中使用D-PIK(逆转的)。然而,也发现D-PIK,PIK和D-PIK(int)以相似的方式起作用。预期含有D-氨基酸,L-氨基酸或不可水解的键的MLCK抑制剂引起肿瘤细胞的坏死和肿瘤尺寸的降低。
实施例7MCLK的肽抑制剂影响细胞迁移对于MLCK特异性的生物素化PIK探针,在实施例5中描述,用于确定抑制剂是否起作用以在迁移细胞中抑制MLCK。使用荧光抗生蛋白链菌素偶联物,生物素化PIK肽允许PIK结合的定位。为确认生物素化PIK探针适当地起作用,它显示为在完整上皮单层中优选结合到富含由MLCK的MLC磷酸化的部位,周围肌动球蛋白环。生物素化PIK也显示为在迁移Caco-2细胞中在层形足板中高度浓缩,显示MLCK在迁移细胞中活化。暗示抑制剂在调节细胞迁移中的作用。
细胞迁移是胚胎发育,肿瘤形成和代谢需要的。设想本发明的抑制剂抑制细胞迁移和可用于治疗性治疗需要细胞迁移的疾病,该疾病包括癌症,代谢和肿瘤相关疾病,也用于控制胚胎发育。
实施例8炎性肠病的治疗进行临床试验,其中选择5-50个对象用于临床研究。患者患有炎性肠病。将对象分成两组,一组接收抑制性片段作为活性剂和另一组接收安慰剂。测试组中的对象每天由口服途径接收1-3000mg抑制性肽类药物。将对象保持此治疗3-12个月。在两个组中关于症状的数目和严重性保持精确记录并在研究结束时比较这些结果。既在每个组的成员之间比较结果和也将每个患者的结果与由每个患者在研究开始之间报告的症状比较。结果显示与对照组相比和与在研究开始时与测试成员症状相比,测试组中的患者具有降低的肠窘迫。
认识到本发明的药物组合物和治疗方法用于人医药和兽医药领结构域。因此要治疗的对象是哺乳动物,如人或其它哺乳动物。对于兽医目的,对象包括例如,农场动物,包括奶牛,绵羊,猪,马和山羊,陪伴动物如狗和猫,外来和/或动物园动物,实验室动物,包括小鼠,大鼠,兔子,天竺鼠和仓鼠;和家禽如鸡,火鸡,鸭子和鹅。要治疗的其它对象包括非哺乳动物,如鸟,鱼,两栖动物和爬虫。
尽管现在采用一些具体情况描述和例示了本发明,本领结构域技术人员认识到各种改进,包括变化,增加,和省略可以在描述的情况中进行。因此,希望这些改进由本发明包括,且本发明的范围仅由法律上可以根据的所附权利要求的最宽解释限制。
在此引用的所有专利,出版物和参考文献因此引入作为参考。在本公开内容和引入的专利,出版物和参考文献之间出现冲突的情况下,本公开内容应当控制(control)。
序列表<110>芝加哥大学<120>肌球蛋白轻链激酶抑止剂和使用方法<130>092234-9030-WO00<140>PCT/US2005/013411<141>2005-04-21<150>60/564,313<151>2004-04-21<160>14<170>PatentIn version 3.2<210>1<211>22<212>PRT<213>人<400>1Ala Lys Lys Leu ser Lys Asp Arg Met Lys Lys Tyr Met A1a Arg Arg1 5 10 15Lys Trp Gln Lys Thr Gly20<210>2<211>22<212>PRT<213>绵羊<400>2Ala Lys Lys Leu Ser Lys His Arg Met Lys Lys Tyr Met Ala Arg Arg1 5 10 15Lys Trp Gln Lys Thr Gly20<210>3<211>22<212>PRT<213>黑青斑河豚<400>3Ala Lys Lys Leu Ser Lys Glu Arg Met Lys Lys Tyr Ile Leu Arg Arg1 5 10 15Lys Trp Gln Lys Thr Gly20
<210>4<211>22<212>PRT<213>鲫鱼<400>4Val Lys Lys Leu Ser Lys Glu Arg Met Lys Lys Tyr Ile Leu Arg Arg1 5 10 15Lys Trp Gln Lys Thr Gly20<210>5<211>22<212>PRT<213>犬<400>5Ala Lys Lys Leu Ser Lys Asp Arg Met Lys Lys Tyr Met Ala Arg Arg1 5 10 15Lys Trp Gln Lys Arg Lys20<210>6<211>22<212>PRT<213>人造序列<220>
<223>合成寡核苷酸<220>
<221>misc_feature<222>(1)..(1)<223>Xaa可以是任何天然产生的氨基酸<220>
<221>misc_feature<222>(7)..(7)<223>Xaa可以是任何天然产生的氨基酸<220>
<221>misc_feature<222>(13)..(14)<223>Xaa可以是任何天然产生的氨基酸<220>
<221>misc_feature<222>(21)..(22)<223>Xaa可以是任何天然产生的氨基酸<400>6
Xaa Lys Lys Leu Ser Lys Xaa Arg Met Lys Lys Tyr Xaa Xaa Arg Arg1 5 10 15Lys Trp Gln Lys Xaa Xaa20<210>7<211>11<212>PRT<213>人<400>7Tyr Gly Arg Lys Tys Arg Arg Gln Arg Arg Arg1 5 10<210>8<211>26<212>PRT<213>Kaposi′s病毒成纤维细胞生长因子<400>8Ala Ala Val Ala Leu Leu Pro Ala Val Leu Leu Ala Leu Leu Ala Pro1 5 10 15Val Asn Arg Lys Arg Asn Lys Leu Met Pro20 25<210>9<211>15<212>PRT<213>人<400>9Val Thr Val Leu Ala Leu Gly Ala Leu Ala Gly Val Gly Val Gly1 5 10 15<210>10<211>34<212>PRT<213>单纯疱疹病毒VP22蛋白转导结构域<400>10Asp Ala Ala Thr Ala Thr Arg Gly Arg ser Ala Ala ser Arg Pro Thr1 5 10 15Glu Arg pro Arg Ala pro Ala Arg Ser Ala ser Arg Pro Arg Arg Pro20 25 30Val Glu
<210>11<211>16<212>PRT<213>黑腹果蝇<400>11Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys Lys1 5 10 15<210>12<211>9<212>PRT<213>人造序列<220>
<223>合成寡核苷酸<400>12Arg Lys Lys Tyr Lys Tyr Arg Arg Lys1 5<210>13<211>9<212>PRT<213>人造序列<220>
<223>合成寡核苷酸<400>13Lys Arg Arg Tyr Lys Tyr Lys Lys Arg1 5<210>14<211>9<212>PRT<213>人造序列<220>
<223>合成寡核苷酸<220>
<221>misc_feature<222>(1)..(9)<223>Xaa可以是任何天然产生的氨基酸<400>14Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa1 权利要求
1.肌球蛋白轻链激酶的抑制剂,具有通式A-B-C其中B共价键合到A和C,且其中(a)A和C每个包括至少两种碱性氨基酸;和(b)B包括Xaa1-Xaa2-Xaa3,其中(i)Xaa1选自Tyr,Val,Lys,Gln,Phe,Ser,Pro,Thr,Asn或Arg;(ii)Xaa2共价键合到Xaa1,并选自Lys,Val,Thr,Trp,His,Met,Asn,Ala,Glu,Phe,Gln或Arg;和(iii)Xaa3共价键合到Xaa2,且选自Ala,Asp,Glu,Phe,Gly,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val或Tyr;和其中(c)至少一个氨基酸是D-氨基酸,或该抑制剂包括至少一个不可水解的键。
2.根据权利要求1的抑制剂,其中所述的A和C每个包括3种碱性氨基酸。
3.根据权利要求1的抑制剂,其中所述的A和C的碱性氨基酸包括精氨酸或赖氨酸。
4.根据权利要求1的抑制剂,其中所述的B的氨基酸包括选自如下的序列Tyr-Lys-Ala,Tyr-Lys-Asp,Tyr-Lys-Glu,Tyr-Lys-Phe,Tyr-Lys-Gly,Tyr-Lys-Lys,Tyr-Lys-Leu,Tyr-Lys-Met,Tyr-Lys-Asn,Tyr-Lys-Pro,Tyr-Lys-Gln,Tyr-Lys-Arg,Tyr-Lys-Ser,Tyr-Lys-Thr,Tyr-Lys-Val或Tyr-Lys-Tyr。
5.根据权利要求1的抑制剂,其中至少三个氨基酸是D-氨基酸。
6.根据权利要求1的抑制剂,其中所述的A-B-C包括10%-100%D氨基酸。
7.根据权利要求1的抑制剂,其中所述的A-B-C包括与缺乏D-氨基酸的对比序列相比,足以赋予对蛋白酶降解的更大稳定性的D-氨基酸。
8.根据权利要求1的方法,其中所述的A-B-C包括7-300个氨基酸的氨基酸序列。
9.根据权利要求8的方法,其中所述的A-B-C包括7-120个氨基酸的氨基酸序列。
10.根据权利要求9的抑制剂,其中所述的氨基酸序列包括SEQID NO12。
11.根据权利要求9的抑制剂,其中所述的氨基酸序列包括SEQID NO13。
12.根据权利要求1的抑制剂,其中所述的A-B-C包括肌球蛋白轻链激酶的分子内抑制结构域。
13.根据权利要求1的抑制剂,其中所述的A-B-C包括SEQ IDNO6,其中位置1,7,13,14,21和22的氨基酸残基每个独立地选自天然或修饰的氨基酸。
14.根据权利要求13的抑制剂,其中所述的氨基酸序列包括SEQID NO1。
15.根据权利要求1的抑制剂,进一步包括可切割的膜转运靶向序列。
16.根据权利要求1的抑制剂,其中所述的该抑制剂进一步包括靶向载体。
17.根据权利要求1的抑制剂,其中所述的B基本由Xaa1-Xaa2-Xaa3组成,其中(i)Xaa1选自Tyr,Val,Lys,G1n,Phe,Ser,Pro,Thr,Asn或Arg;(ii)Xaa2共价连接到Xaa1,且选自Lys,Val,Thr,Trp,His,Met,Asn,Ala,Glu,Phe,Gln或Arg;和(iii)Xaa3共价连接到Xaa2,且选自Ala,Asp,Glu,Phe,Gly,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val或Tyr。
18.根据权利要求1的抑制剂,其中所述的该至少一个不可水解的键选自硫代肽键,还原的酰胺肽键,酮基亚甲基肽键,(氰基亚甲基)氨基肽键,羟基亚乙基肽键或硫代亚甲基肽键。
19.根据权利要求1的抑制剂,其中所述的A-B-C包括肽模拟物。
20.包括SEQ ID NO14的肌球蛋白轻链激酶抑制剂,其中在位置1,2,3,7,8,和9的残基每个包括碱性氨基酸,且其中抑制剂包括至少一个D-氨基酸或至少一个不可水解的键。
21.根据权利要求20的抑制剂,其中在位置5和7的氨基酸是酪氨酸残基。
22.一种药物组合物,包括权利要求1的抑制剂和药学可接受的载体。
23.一种药物组合物,包括权利要求11的抑制剂和药学可接受的载体。
24.体内改变上皮紧密连接渗透性的药物组合物,包括具有如下通式的肌球蛋白轻链激酶抑制剂A-B-C其中B共价连接到A和C,其中(a)A和C每个包括至少两种碱性氨基酸;(b)B包括Xaa1-Xaa2-Xaa3,其中(i)Xaa1选自Tyr,Val,Lys,Gln,Phe,Ser,Pro,Thr,Asn或Arg;(ii)Xaa2共价键合到Xaa1,其中Xaa2选自Lys,Val,Thr,Trp,His,Met,Asn,Ala,Glu,Phe,Gln或Arg;和(iii)Xaa3共价键合到Xaa2,其中Xaa3选自Ala,Asp,Glu,Phe,Gly,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val或Tyr;和药学可接受的载体。
25.在包括肌球蛋白轻链激酶的细胞中抑制肌球蛋白轻链激酶的方法,包括将细胞与有效数量抑制细胞中肌球蛋白轻链激酶活性的权利要求1的抑制剂接触。
26.根据权利要求25的方法,其中所述的细胞选自上皮细胞,内皮细胞或平滑肌细胞。
27.根据权利要求25的方法,其中所述的细胞是哺乳动物细胞。
28.权利要求27的方法,其中所述的哺乳动物细胞在体内接触。
29.一种在包括肌球蛋白轻链激酶的细胞中抑制肌球蛋白轻链激酶的方法,包括细胞与权利要求22的药物组合物接触。
30.一种体内改变上皮紧密连接的渗透性的方法,包括向需要其的哺乳动物给予有效数量改变渗透性的权利要求1的抑制剂。
31.一种降低或预防哺乳动物中肌动球蛋白收缩的方法,包括向哺乳动物给予权利要求1的抑制剂。
32.根据权利要求31的方法,其中所述的该抑制剂引起肌动球蛋白松弛。
33.根据权利要求31的方法,其中将有效量的抑制剂给予具有选自如下病症的哺乳动物肠疾病,与血管渗漏相关的疾病,哮喘,血栓形成疾病或高血压疾病,以降低或预防肌球蛋白轻链激酶的磷酸化。
34.根据权利要求33的方法,其中所述的肠疾病选自移植物抗宿主病,传染病,缺血性疾病或炎性疾病。
35.根据权利要求31的方法,其中给予的抑制剂数量有效抑制细胞的迁移。
36.根据权利要求35的方法,其中所述的细胞是炎症细胞。
37.根据权利要求35的方法,其中所述的细胞是肿瘤细胞。
38.根据权利要求31的方法,其中将该抑制剂给予具有肿瘤的哺乳动物,采用有效抑制肿瘤生长的数量给予抑制剂。
39.根据权利要求38的方法,其中以有效抑制血管发生制的数量给予抑制剂。
40.根据权利要求31的方法,其中将有效数量的抑制剂给予具有选自如下病症的哺乳动物败血症,休克,过敏反应和急性肺损伤,以降低或预防肌球蛋白轻链激酶的磷酸化。
41.根据权利要求31的方法,其中将有效数量的抑制剂给予具有平滑肌细胞的哺乳动物,以诱导平滑肌细胞的松弛。
42.根据权利要求31的方法,其中将一定数量的抑制剂给予具有多于一种血小板的哺乳动物,且该数量有效抑制血小板的聚集。
43.根据权利要求31的方法,其中将有效数量的抑制剂给予具有受伤上皮细胞的哺乳动物,以改变上皮细胞的肌动球蛋白介导的荷包式伤口闭合。
44.根据权利要求31的方法,其中将有效数量的抑制剂给予需要改变上皮紧密连接的哺乳动物,以改变上皮紧密连接的渗透性。
45.根据权利要求44的方法,其中抑制剂的给予逆转上皮屏蔽功能障碍。
46.根据权利要求45的方法,其中上皮屏蔽功能障碍与肠道病感染或致炎细胞因子相关。
47.根据权利要求31,36,41或42的方法,其中口服给予抑制剂。
48.一种抑制肿瘤生长的方法,包括向哺乳动物给予采用有效抑制肿瘤生长的数量的具有如下通式的肌球蛋白轻链激酶抑制剂。A-B-C其中B共价连接到A和C和其中(a)A和C每个包括至少两种碱性氨基酸;(b)B包括Xaa1-Xaa2-Xaa3,其中(i)Xaa1选自Tyr,Val,Lys,Gln,Phe,Ser,Pro,Thr,Asn或Arg;(ii)Xaa2共价键合到Xaa1,其中Xaa2选自Lys,Val,Thr,Trp,His,Met,Asn,Ala,Glu,Phe,Gln或Arg;和(iii)Xaa3共价键合到Xaa2,其中Xaa3选自Ala,Asp,Glu,Phe,Gly,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val或Tyr。
49.一种抑制细菌生长的方法,包括向细菌给予权利要求1的抑制剂。
50.权利要求49的方法,其中在给予权利要求1的抑制剂时杀死细菌。
51.一种抑制细菌生长的方法,包括向细菌给予采用有效抑制细菌生长的数量的具有如下通式的肌球蛋白轻链激酶抑制剂A-B-C其中B共价连接到A和C和其中(a)A和C每个包括至少两种碱性氨基酸;(b)B包括Xaa1-Xaa2-Xaa3,其中(i)Xaa1选自Tyr,Val,Lys,Gln,Phe,Ser,Pro,Thr,Asn或Arg;(ii)Xaa2共价键合到Xaa1,其中Xaa2选自Lys,Val,Thr,Trp,His,Met,Asn,Ala,Glu,Phe,Gln或Arg;和(iii)Xaa3共价键合到Xaa2,其中Xaa3选自Ala,Asp,Glu,Phe,Gly,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val或Tyr。
52.权利要求51的方法,其中在给予肌球蛋白轻链激酶抑制剂时杀死细菌。
53.一种试剂盒,包括包括权利要求1的抑制剂和药学可接受的载体的药物组合物。
54.权利要求53的试剂盒,进一步包括使用说明。
全文摘要
公开了肌球蛋白轻链激酶抑制剂,包括该抑制剂的药物组合物和试剂盒及使用方法。
文档编号A61K38/08GK1997660SQ200580019765
公开日2007年7月11日 申请日期2005年4月21日 优先权日2004年4月21日
发明者J·R·蒂尔内, R·J·姆斯尼, D·麦凯 申请人:芝加哥大学, 卡迪夫大学学院顾问有限公司, 麦克马司特大学

最新回复(0)