一种基于485总线的温深度探测装置及系统的制作方法
【技术领域】
[0001] 本实用新型设及海洋环境信息监测技术领域,尤其设及一种基于485总线的温深 度探测装置及系统。
【背景技术】
[0002] 投弃式温度探头(expend油lebathythermograph,简称XBT),可W在不影响船舰 航行状态下,快速获取海洋温度剖面,用来解决船舰在机动状态下的海洋环境参数测量问 题,同时也是海洋调查、水声探测等方面非常重要的测量装备和测量手段。
[0003] XBT主要由姿态控制部件、温度传感器、信号传输线等组成。探头上的姿态控制部 件,使探头按照一定的规律在海水中下降。投放XBT后,当探头到达海面时,数据采集板上 的计时器开始计时,该样由探头的下降速度和下降时间,就可W计算出探头在海水中的深 度值;同时,装在探头前端的温度传感器,把海水的温度值按一定的规律,转换成相应的电 阻值,并通过信号传输线,把温度传感器的电阻值,实时地传输到数据采集器中用于采样。 根据电阻值就可W计算出当前海水的温度值,从而得到海水的温度深度剖面。然而,该种利 用水面采集系统采集探头中温度传感器的阻值,海洋深度数据通过探头下降时间估计得到 的方式所获得的深度数据精度不够,重复性与一致性也较差。
【发明内容】
[0004] 本实用新型的目的,在于提供一种基于485总线的温深度探测装置及系统,利用 485总线可W将温深度探测装置中分别获取的与海洋温度、深度的相关数据实时的传递给 上位机,并通过上位机实时计算海洋温度信息W及海洋深度信息。本实用新型中利用485 总线传输具有抗干扰能力强,传输速率高等特点,并且将温深度探测装置中采集的数据实 时的上传至上位机,从而解决了需要通过探头下降时间估计海洋深度的问题,并且,对探头 的下降速度及投放方式没有任何的限制。
[0005] 第一方面,本实用新型提供了一种基于485总线的温深度探测装置,所述装置包 括;压力探测模块、温度探测模块、处理器、传输模块;
[0006] 压力探测模块的输出端和温度探测模块的输出端分别连接处理器的两个输入端; 处理器的输出端连接传输模块的输入端;
[0007] 压力探测模块用于获取第一模拟信号;并将第一模拟信号发送给处理器;
[000引温度探测模块用于获取第二模拟信号;并将第二模拟信号发送给处理器;
[0009] 处理器用于分别接收第一模拟信号和第二模拟信号;并将第一模拟信号和第二模 拟信号分别转换为第一数字信号和第二数字信号;
[0010] 将第一数字信号和第二数字信号发送给传输模块;
[0011] 传输模块用于接收处理器发送的第一数字信号和第二数字信号。
[0012] 优选的,压力探测模块包括压力探测单元W及发送单元;压力探测单元与发送单 元相连接;
[0013] 压力探测单元用于输出第一模拟信号;
[0014] 发送单元用于将第一模拟信号发送给处理器。
[0015] 进一步优选的,压力探测单元包括:压力传感器和放大电路;压力传感器与放大 电路相连接;
[0016] 压力传感器用于将压力信号转换为第=模拟信号,并将第=模拟信号输入到放大 电路中;
[0017] 放大电路用于将第=模拟信号进行放大,输出第一模拟信号。
[001引优选的,温度探测模块具体包括;温度探测单元W及发送单元;温度探测单元与 发送单元相连接;
[0019] 温度探测单元用于输出第二模拟信号;
[0020] 发送单元用于将第二模拟信号发送给处理器。
[0021] 进一步优选的,温度探测单元包括:温度传感器和调理电路;温度传感器与调理 电路相连接;
[0022] 温度传感器用于将海洋温度信号转换为第四模拟信号;
[0023] 调理电路用于对第四模拟信号进行调制,输出第二模拟信号。
[0024] 优选的,处理器包括:接收单元,转换单元W及发送单元;
[0025] 接收单元的输出端连接转换单元的输入端;转换单元的输出端连接发送单元的输 入端;
[0026] 接收单元用于分别接收压力探测模块发送的第一模拟信号和温度探测模块发送 的第二模拟信号;
[0027] 转换单元用于分别将第一模拟信号和第二模拟信号转换为第一数字信号W及第 二数字信号;
[002引发送单元用于将第一数字信号W及第二数字信号发送给传输模块。
[0029] 第二方面,本实用新型提供了一种基于485总线的温深度的探测系统,所述系统 包括如上述介绍的基于485总线的温深度探测装置W及上位机;该装置与上位机相连接;
[0030] 上位机用于接收传输模块发送的第一数字信号和第二数字信号,其中,
[0031] 根据所述第一数字信号,确定海洋深度信息;
[0032] 根据所述第二数字信号,确定海洋温度信息。
[003引本实用新型提供的一种基于485总线的温深度探测装置及系统,利用485总线可W将温深度探测装置中分别获取的与海洋温度、深度的相关数据实时的传递给上位机,并 通过上位机实时计算海洋温度信息W及海洋深度信息。本实用新型中利用485总线传输具 有抗干扰能力强,传输速率高等特点,并且将温深度探测装置中采集的数据实时的上传至 上位机,从而解决了需要通过探头下降时间估计海洋深度的问题,并且,对探头的下降速度 及投放方式没有任何的限制。
【附图说明】
[0034] 图1为本实用新型实施例提供的一种基于485总线的温深度探测装置的结构示意 图;
[0035] 图2为本实用新型实施例提供的一种基于485总线的温深度探测系统的结构示意 图;
[0036] 图3为压力探测模块结构示意图;
[0037] 图4为温度探测模块示意图;
[003引图5为压力探测模块中的压力探测单元电路图;
[0039] 图6为温度探测模块中的温度探测单元电路图。
【具体实施方式】
[0040] 下面通过附图和实施例,对本实用新型的技术方案做进一步的详细描述。
[0041] 图1为本实用新型实施例提供的一种基于485总线的温深度探测装置的结构示意 图。如图1所示,该装置包括:
[0042] 压力探测模块10、温度探测模块20、处理器30、传输模块40 ;压力探测模块10的 输出端和温度探测模块20的输出端分别连接处理器30的两个输入端;处理器30的输出端 连接传输模块40的输入端。
[0043] 压力探测模块10包括压力探测单元101和发送单元102 (如图3所示),压力探 测单元101与发送单元102相连接。压力探测单元101用于输出第一模拟信号;发送单元 102用于将第一模拟信号发送至处理器30。温度探测模块20包括温度探测单元201和发 送单元202 (如图4所示),温度探测单元201与发送单元202相连接。温度探测单元201 用于输出第二模拟信号,发送单元202用于将第二模拟信号发送至处理器30。
[0044] 需要说明的是,其中压力探测模块中的发送单元102和温度探测模块中的发送单 元202可W通过上位机控制,使压力探测模块中的发送单元102和温度探测模块中的发送 单元202分时段的将第一模拟信号和第二模拟信号分别发送至处理器中。例如:压力探测 模块中的发送单元102在第一时间段将第一模拟信号发送至处理器中;第二时间段,温度 探测模块中的发送单元202将第二模拟信号发送至处理器中,W此类推。处理器30又包括 了接收单元,转换单元W及发送单元,其中,接收单元的输出端连接转换单元的输入端;转 换单元的输出端连接发送单元的输入端。处理器30中的接收单元包括两个接收通道,用于 分别接收压力探测模块10中的发送单元102发送的第一模拟信号,W及温度探测模块20 中的发送单元202发送的第二模拟信号;处理器30中的转换单元(本实施例中WA/D转换 器为例)将会分时间段的分别转换到处理器30的接收单元两个通道中(其中一个通道接 收第一模拟信号,另一个通道接收第二模拟信号),将第一模拟信号和第二模拟信号分别转 换为第一数字信号和第二数字信号。处理器30中的发送单元将第一数字信号和第二数字 信号进行分字节传送至传输模块40(可W根据需要,自行设置每一数据帖中的对于第一数 字信号和第二数字信号的字节分配,例如,在一个数据帖中前几个字节为第一数字信号,余 下字节为第二数字信号)。其中,传输模块40接收第一数字信号和第二数字信号。
[0045] 本实用新型实施例提供的一种基于485总线的温深度探测装置,利用485总线可 W将温深度探测装置中分别获取的与海洋温度、深度的相关数据实时的传递给上位机,并 通过上位机实时计算海洋温度信息W及海洋深度信息。本实用新型中利用485总线传输具 有抗干扰能力强,传输速率高等特点,并且将温深度探测装置中采集的数据实时的上传至 上位机,从而解决了需要通过探头下降时间估计海洋深度的问题,并且,对探头的下降速度 及投放方式没有任何的限制。
[0046] 图2为本实用新型实施例提供的一种基于485总线的温深度探测系统的结构示意 图;如图2所示,该系统包括了上述介绍的基于485总线的温深度探测装置W及上位机50, 该装置与上位机50相连接。
[0047] 温深度探测装置中的传输模块还用于将接收到第一数字信号和第二数字信号根 据485总线的通信协议,通过双绞线发送至上位机50中。上位机50按照一定的规则将第 一数据信号和第二数据信号在数据帖中解析后,将第一数字信号(二进制)转换为第一数 值(第一数字信号的十进制形式,同时也是第一模拟信号的数字显示形式),根据第一数值 计算海洋深度信息,将第二数字信号(二进制)转换为第二数值(第二数字信号的十进制 形式,同时也是第二模拟信号的数字显示形式),根据第二数值计算海洋温度信息。
[0048] 具体的,因为第一数值与海洋的深度成线性关系,所W根据一定的比例关系,上位 机50可W通过第一数值计算出海洋的深度信息。
[0049] 同样,上位机50根据第二数值计算温度传感器中的热敏电阻的阻值,根据热敏电 阻的阻值,通过热敏电阻的阻值一温度曲线常用Steinhart-Hart方程进行拟合:
[0050] 1/T=A+Bln(R)+C(lnR)3 (1-1)
[0051] 式中:
[0化2] T-绝对温度化。);
[005引 R-热敏电阻的阻值(Q)
[0054] A,B,C一曲线拟合
的常数。
[0化5] 在所需的测温范围内选取S个温度点即可确定方程中的常数项。在实际应用中往 往取更多温度点进行校准,可W得到更精确的拟合曲线。进而相应的计算出海洋的温度信 息。
[0056] 图5为压力探测模块中的探测单元电路图,如图5所示,该探测单元包括;压力传 感器(图中未示出)W及放大电路,压力传感器与放大电路相连接。压力传感器用于将海 洋中的压力信号转换为第=模拟信号,并将第=模拟信号输入到所述放大电路中;
[0057] 放大电路具体用于将第=模拟信号进行放大,输出所述第一模拟信号。其中,放大 电路包括:第一运算放大器、第二运算放大器、第=运算放大器、数字电位器(图中未示出) W及电阻R1~R9 ;
[005引压力传感器(本图中并未标出压力传感器,压力传感器的四端分别对应连接电源V01的四个端子,即4v端子连接电源V01的4V端子,VO+、VO-分别对应连接压力传感器的 两个输出端,接地端子连接电源V01的接地端子,并通过V01的接地端子接地,所W图中的 V01的4个端子可W视为压力传感器的4个连接端子)的正4V端子连接电阻R1的第一端 与电阻R2的第一端之间的结点;正输出端与负输出端分别连接第一运算放大器的正输入 端与第二运算放大器的正输入端;压力传感器的接地端子接地;电阻R1的第二端通过数字 电位器的第一通道与第一运算放大器的负输入端相连接(图中L0与册之间为数字电位器 的第一通道,数字电位器在图中并未标出);电阻R2的第二端与第二运算放大器的负输入 端相连接;电阻R3的第一端连接电阻R2与所述第二运算放大器负输入端之间的结点;电 阻R3的第二端通过数字电位器的第二通道与第一运算放大器的负输入端相连接(图中L1 与册之间为数字电位器的第二通道,数字电位器在图中并未标出);第一运算放大器的负 输入端通过电阻R4与该运算放大器的输出端相连接,电阻R5的第一端与第二运算放大器 的负输入端相连接,第二端与第二运算放大器的输出端相连接;电阻R6的第一端与第二运 算放大器的输出端和电阻R5的第二端之间的节点相连接;电阻R6的第二端与第=运算放 大器的负输入端相连接;电阻R7的第一端与第一运算放大器的输出端和电阻R4之间的结 点相连接;第二端与第=运算放大器的正输入端连接;第=运算放大器的正输入端还连接 电阻R9的第一端;负输入端连接电阻R8的第一端;第=运算放大器的输出端连接电阻R8 的第二端;电阻R9的第二端接地。
[0化9] 此外,压力探测单元还包括;第一恒压源(4V)W及第二恒压源(1. 8V);第一恒压 源,用于为压力探测单元中除了第=运算放大器W外的所有电路提供电压;第二恒压源,用 于为第=运算放大器提供电压。
[0060] 需要说明的是上述所介绍的数字电位器的主要作用是为了调整该电路中的零点 和满量程输出,第一通道的电阻和第二通道中的电阻可W分别记为RdO和Rdl。
[0061] 其中,输出第一模拟信号化的具体表达式如下式所示:
[0062]
(2-1)
[0063] 由于所求出的第一模拟信号的数值化与海洋的深度成线性关系,所W当上位机 获取第一模拟信号的数值化时,就可W相应的计算出海洋的深度。
[0064] 图6为温度探测模块中的温度探测单元电路图,如图6所示,温度探测单元包括: 温度传感器和调理电路;温度传感器与调理电路相连接。
[00化]温度传感器用于将海洋温度信号转换为第四模拟信号;调理电路用于对第四模拟 信号进行调制,输出第二模拟信号。
[0066] 其中,温度探测单元电路(即调理电路与温度传感器共同组成的电路)具体包括: 第S恒压源,电阻R14~R17W及电阻R19,温度传感器RT1,第四运算放大器W及第五运算 放大器;
[0067] 第S恒压源(1. 8V)的输出端分别连接电阻R15的第一端,第四运算放大器的电源 端子中的正极输入端,W及电阻R17的第一输入端;电阻R15的第二端连接电阻R14的第一 端;电阻R14的第二端接地;第四运算放大器的正输入端连接至电阻R15与电阻R14之间的 结点;第四运算放大器的负输入端连接该运算放大器的输出端与电阻R16第一端之间的结 点;第四运算放大器的电源端子中的负输入端接地;
[0068] 电阻R16的第二端连接至第五运算放大器的负输入端与电阻R19第一端之间的结 占. '?、、 ?
[0069] 电阻R17的第二端连接至第五运算放大器的正输入端与温度传感器RT1第一端之 间的结点;
[0070] 温度传感器RT1的第二端接地;
[0071] 第五运算放大器的输出端连接至电阻R19的第二端。
[0072] 根据该电路输出的第二模拟信号Vout的具体表达式如下式所示:
[0073]
(3-1)
[0074] 由式3-1可W看出,合理调整各电阻的阻值,就可W将输出电压限定在0V至A/D 转换器的满刻度输入范围内。该式还说明除R17巧17为低温漂电阻,当温度变化较大时,电 阻值也几乎不会发生改变)W外,如果其他各电阻元件具有相同的温度系数,则不会影响 测量结果。但R17须选用温度系数小、性能稳定的金属膜电阻。选择低温漂、低噪声的运算 放大器对于保证测量稳定性和精度是有益的。
[0075] 需要说明的是,第S恒压源的电压为1.8V,该恒压源作为温度传感器RT1的激励 电源,同时该恒压源提供温度测量时的A/D转换器的基准参考电压。该样的设计消除了激 励源变化对A/D输出结果的影响,从而降低了对基准电源的要求,提高了测量的稳定性。并 且,温度传感器RT1上串联一个电阻R17,用于限制流过温度传感器的电流,减小自发热导 致的测量误差。
[0076] 本实用新型实施例提供的一种基于485总线的温深度探测系统,利用485总线可 W将温深度探测装置中分别获取的与海洋温度、深度的相关数据实时的传递给上位机,并 通过上位机实时计算海洋温度信息W及海洋深度信息。本实用新型中利用485总线传输具 有抗干扰能力强,传输速率高等特点,并且将温深度探测装置中采集的数据实时的上传至 上位机,从而解决了需要通过探头下降时间估计海洋深度的问题,并且,对探头的下降速度 及投放方式没有任何的限制。
[0077] W上所述的【具体实施方式】,对本实用新型的目的、技术方案和有益效果进行了进 一步详细说明,所应理解的是,W上所述仅为本实用新型的【具体实施方式】而已,并不用于 限定本实用新型的保护范围,凡在本实用新型的精神和原则之内,所做的任何修改、等同替 换、改进等,均应包含在本实用新型的保护范围之内。
【主权项】
1. 一种基于485总线的温深度探测装置,其特征在于,所述装置包括:压力探测模块、 温度探测模块、处理器、传输模块; 所述压力探测模块的输出端和所述温度探测模块的输出端分别连接所述处理器的两 个输入端;所述处理器的输出端连接所述传输模块的输入端; 所述压力探测模块用于获取第一模拟信号;并将所述第一模拟信号发送给所述处理 器; 所述温度探测模块用于获取第二模拟信号;并将所述第二模拟信号发送给所述处理 器; 所述处理器用于分别接收所述第一模拟信号和第二模拟信号;并将所述第一模拟信号 和第二模拟信号分别转换为第一数字信号和第二数字信号; 将所述第一数字信号和第二数字信号发送给所述传输模块; 所述传输模块用于接收所述处理器发送的所述第一数字信号和第二数字信号。2. 根据权利要求1所述的装置,其特征在于,所述压力探测模块包括压力探测单元以 及发送单元; 所述压力探测单元与所述发送单元相连接; 所述压力探测单元用于输出所述第一模拟信号; 所述发送单元用于将所述第一模拟信号发送给所述处理器。3. 根据权利要求2所述的装置,其特征在于,所述压力探测单元包括:压力传感器和放 大电路; 所述压力传感器与所述放大电路相连接; 所述压力传感器用于将压力信号转换为第三模拟信号,并将所述第三模拟信号输入到 所述放大电路中; 所述放大电路用于将所述第三模拟信号进行放大,输出所述第一模拟信号。4. 根据权利要求1所述的装置,其特征在于,所述温度探测模块具体包括:温度探测单 元以及发送单元; 所述温度探测单元与所述发送单元相连接; 所述温度探测单元用于输出所述第二模拟信号; 所述发送单元用于将所述第二模拟信号发送给所述处理器。5. 根据权利要求4所述的装置,其特征在于,所述温度探测单元包括:温度传感器和调 理电路; 所述温度传感器与所述调理电路相连接; 所述温度传感器用于将海洋温度信号转换为第四模拟信号; 所述调理电路用于对所述第四模拟信号进行调制,输出所述第二模拟信号。6. 根据权利要求1所述的装置,其特征在于,所述处理器包括: 接收单元,转换单元以及发送单元; 所述接收单元的输出端连接所述转换单元的输入端;所述转换单元的输出端连接所述 发送单元的输入端; 所述接收单元用于分别接收所述压力探测模块发送的所述第一模拟信号和所述温度 探测模块发送的所述第二模拟信号; 转换单元用于分别将所述第一模拟信号和所述第二模拟信号转换为第一数字信号以 及第二数字信号; 发送单元用于将所述第一数字信号以及所述第二数字信号发送给所述传输模块。7. -种基于485总线的温深度探测系统,其特征在于,所述系统包括如权利要求1所述 的装置及上位机; 所述装置与上位机相连接; 所述上位机用于接收所述传输模块发送的第一数字信号和第二数字信号,其中, 根据所述第一数字信号,确定海洋深度信息; 根据所述第二数字信号,确定海洋温度信息。
【专利摘要】本实用新型公开了一种基于485总线的温深度探测装置及系统,该系统包括:基于485总线的温深度探测装置和上位机。其中,该探测装置用于获取第一模拟信号和第二模拟信号,并将第一模拟信号和第二模拟信号分别转换为第一数字信号和第二数字信号发送到上位机中,上位机用于接收探测装置发送的第一数字信号和第二数字信号,根据第一数字信号计算出海洋深度信息,根据第二数字信号计算出海洋温度信息。本实用新型中利用485总线将温深度探测装置中采集的数据实时的上传至上位机,从而解决了需要通过探头下降时间估计海洋深度的问题,并且,对探头的下降速度及投放方式没有任何的限制。
【IPC分类】G01C13/00, G01K13/02, G01K7/22
【公开号】CN204694368
【申请号】CN201520365515
【发明人】于钟德, 王晓东, 李春
【申请人】中国科学院声学研究所
【公开日】2015年10月7日
【申请日】2015年5月29日