一种Lamb波时频能量密度析出走时提取方法
【技术领域】
[0001 ]本发明设及无损检测技术领域,具体设及一种Lamb波时频能量密度析出走时提取 方法。
【背景技术】
[0002] 利用超声Lamb波缺陷层析成像技术可W快速、有效地获得缺陷的轮廓和尺寸等具 体信息,该技术继承了传统超声Lamb波检测的诸多优点。Lamb层析成像技术在缺陷两侧并 排布置换能器阵列,从检测的Lamb波波形中提取投影数据,根据投影数据和一定的重建算 法,反演出缺陷的形状、尺寸等具体信息。Lamb波走时是常用的投影数据,是指Lamb波在收 发换能器对之间的传播时间。Lamb走时作为层析成像重建算法的输入量,其提取的准确度 直接决定了缺陷成像质量及缺陷尺寸量化精度。传统的Lamb波走时提取包括基于Lamb波时 域波形峰值的提取方法、希尔伯特-黄变换化nbed-huang transfo;rm,HHT) W及其他时频 分析方法等,其走时提取的准确度不高,尤其是在走时提取局部区域的波形振动剧烈,无法 确定真正意义上的走时,并带有很多人为因素,给走时提取带来很大误差,严重破坏了缺陷 重建质量W及降低了缺陷尺寸量化精度。上述问题是制约Lamb波层析成像技术发展及缺陷 成像质量的一个瓶颈问题。中国专利文献公开了 "一种地质雷达波速层析探测的走时数据 快速采集方法",该技术设及一种地质雷达波速层析探测的走时数据快速采集方法,对地质 雷达波速层析探测的走时数据进行快速、连续的采集,但仍然采用时域波形峰值时间的走 时提取方式,走时提取的准确度低,误差较大,降低了层析探测的精度。
【发明内容】
[0003] 本发明旨在至少解决上述技术问题之一。
[0004] 为此,本发明的一个目的在于提出一种Lamb波时频能量密度析出走时提取方法。
[0005] 为了实现上述目的,本发明的实施例公开了一种Lamb波时频能量密度析出走时提 取方法,包括如下步骤:S1:在待测材料检测区域两侧分别设置发射EMAT和接收EMAT; S2:设 定Lamb波检测的工作点,设定所述工作点的工作频率为f。,令发射端激发所需模态Lamb波, 对侧接收端接收Lamb波,对接收到的Lamb波检测信号进行放大和窄带滤波,滤波中屯、频率 为fc,然后再进行采集和存储,得到检测波形数据;S3:利用离散短时傅里叶变换对检测波 形数据进行时频分析,得到检测数据的时频能量密度分布,时频能量密度的时间坐标为ti, 频率坐标为fk,在某一组确定的时间点和频率点(ti,fk)处的能量密度为E(ti,fk);其中,i = 1,2,…,M,k=l,2,…,N,M、N为正整数;S4:在时频能量密度分布中,对于某一离散的时间点 ti,时间点t拥应的频率坐标为fk,其中k为自然数,判断是否存在频率点fk的值与中屯、频率 fc的值相等,若是,提取出对应于中屯、频率fc处的能量密度E(ti,fc),并进行S7;若不是,进 行S5; S5:对于离散时间点ti对应的频率坐标fk,在中屯、频率f C两侧分别提取与其最接近的 频率点fi和fh,其中fi<fc<fh,并分别提取出在(ti,fi)和(ti,fh)处的能量密度E(ti,fi)和E (心&);56:根据6扣^1)和6扣^〇,采用线性插值法,求取对应于离散时间点*冲屯、频率 fc的能量密度E(ti,fc); S7:判断是否所有的离散时间点ti对应于中屯、频率fc处的能量密度E (ti,fc)均已获得,若是,则进行S8;若不是,则判断离散时间点变为tw,并返回S4;S8:利用 所有的离散时间点t和中屯、频率处的能量密度E(t,fc),通过对离散时间点处能量密度的拟 合,建立中屯、频率的时域能量密度曲线E(t,fc);S9:提取时域能量密度曲线E(t,fc)各峰值 所对应的时间tp,作为所需模态Lamb波的走时,并结束走时提取,其中,P = 1,2,…,Ml,Ml为 正整数且化<M。
[0006] 根据本发明实施例的Lamb波时频能量密度析出走时提取方法,通过求取检测波形 数据的时频能量密度分布,建立数据中屯、频率时频能量密度析出方法,并采用建立的时域 能量密度曲线准确提取Lamb波的走时,计算准确、高效、快速,解决了传统Lamb波走时提取 方法提取精度低、导致缺陷层析成像质量差的问题。
[0007] 另外,根据本发明上述实施例的Lamb波时频能量密度析出走时提取方法,还可W 具有如下附加的技术特征:
[000引进一步地,EMAT采用圆形回折线圈设计,通过工作频率和导线间距的匹配关系,激 发和接收所需模态的Lamb波。
[0009] 进一步地,用高阶滤波电路对接收EMAT得到的Lamb波信号进行窄带滤波。
[0010] 进一步地,利用离散短时傅里叶变换对检测波形数据进行时频分析,得到检测数 据的时频能量密度分布,设Lamb波检测波形数据为x(m),其中m= 1,2,…,M,则其离散短时 傅里叶变换为:
[0011]
[0012]其中,DSTFT(i,k)为Lamb波检测波形数据的离散短时傅里叶变换结果;g(i)为离 散短时傅里叶变换的窗函数。检测数据的时频能量密度分布为:E(ti,fk)=|DSTFT(i,k)|2。 [OOU] 进一步地,提取中屯、频率两侧频率点的方法为:fi = argmin I fk-fc I,fk<fc,fh = argmin I fk-fc I,fk>fc。
[0014] 进一步地,采用线性插值法求取离散的时间点ti对应中屯、频率处的能量密度E(ti,
[0015] 进一步地,通过最小二乘拟合建立基于中屯、频率的时域能量密度曲线E(t,fc),设 拟合函数为科(?),时频能量密度为:
[0016] 进一步地,提取时域能量密度曲线的峰值时间作为所需模态Lamb波的走时tp:^ = 曰rgm曰xE(t,fc) D
[0017] 本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变 得明显,或通过本发明的实践了解到。
【附图说明】
[0018] 本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得 明显和容易理解,其中:
[0019] 图1是本发明一个实施例的Lamb波时频能量密度析出走时提取流程图;
[0020] 图2是本发明一个实施例的实验结构示意图。
【具体实施方式】
[0021] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终 相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
[0022] 在本发明的描述中,需要理解的是,术语"中屯、"、"纵向横向上"、"下"、 "前"、"后V'左'、"右V'竖曹'、"水甲V'顶'、"底V'胖V'外"等指示的方位或位置关系为 基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗 示所指的装置或元件必须具有特定的方位、W特定的方位构造和操作,因此不能理解为对 本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对 重要性。
[0023] 在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相 连"、"连接"应做广义理解,例如,可W是固定连接,也可W是可拆卸连接,或一体地连接;可 W是机械连接,也可W是电连接;可W是直接相连,也可W通过中间媒介间接相连,可W是 两个元件内部的连通。对于本领域的普通技术人员而言,可W具体情况理解上述术语在本 发明中的具体含义。
[0024] 参照下面的描述和附图,将清楚本发明的实施例的运些和其他方面。在运些描述 和附图中,具体公开了本发明的实施例中的一些特定实施方式,来表示实施本发明的实施 例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的 实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
[0025] W下结合附图描述根据本发明实施例的Lamb波时频能量密度析出走时提取方法。
[0026] 图1是本发明一个实施例的Lamb波时频能量密度析出走时提取流程图。请参考图 1,一种Lamb波时频能量密度析出走时提取方法,包括如下步骤:
[0027] S1:在待测材料检测区域两侧分别设置发射EMAT和接收EMAT。
[0028] 在本发明的一个示例中,取一件厚度为1~10mm的待测钢板,在钢板两侧分别布置 发射EMAT和接收EMAT,两EMAT直径为10~80mm,两EMAT中屯、间距为800mm。
[0029] S2:设定Lamb波检测的工作点,设定所述工作点的工作频率为f。,令发射端激发所 需模态Lamb波,对侧接收端接收Lamb波,对接收到的Lamb波检测信号进行放大和窄带滤波, 滤波中屯、频率为fc,然后再进行采集和存储,得到检测波形数据。
[0030] 接着S1相应的示例,用射频功率放大器激励发射EMAT,用接收EMAT接收Lamb波,激 发频率为25化化;采用窄带滤波电路对接收到的Lamb波检测信号进行滤波,滤波中屯、频率 为256曲Z,再进行采集和存储,得到检测波形数据。
[0031 ] S3:利用离散短时傅里叶变换对检测波形数据进行时频分析,得到检测数据的时 频能量密度分布,时频能量密度的时间坐标为ti,频率坐标为fk,在某一组确定的时间点和 频率点(ti,fk)处的能量密度为E(ti,fk);其中,i = l,2,…,M,k=l,2,…,N,M、N为正整数。 [0032] 接着S2相应的示例,利用离散短时傅里叶变换(Discrete sho;rt-time Fourier 化ansfo;rm,DSTFT)对检测波形数据进行时频分析,时频能量密度的时间坐标为ti(i = l, 2,…,Μ),频率坐标为fk化=1,2,…,N),在某一组确定的时间点和频率点(ti,fk)处的能量 密度为E(ti,fk);其中,M、N为正整数;设Lamb波检测波形数据为x(m),其中m=l,2,…, 其离散短时傅里叶变换为:
[0033]
[0034] 其中,DSTFT(i,k)为Lamb波检测波形数据的离散短时傅里叶变换结果;g(i)为离 散短时傅里叶变换的窗函数。
[0035] 求取检测数据的时频能量密度分布
[0036] E(ti,fk)= |DSTFT(i,k) |2。
[0037] S4:在时频能量密度分布中,对于某一离散的时间点ti,时间点ti对应的频率坐标 为fk,其中k为自然数,判断是否存在频率点fk的值与中屯、频率fc的值相等,若是,提取出对 应于中屯、频率f C处的能量密度E (ti,f C),并进行S7;若不是,进行S5。
[003引S5:对于离散时间点ti对应的频率坐标fk,在中屯、频率fc两侧分别提取与其最接近 的频率点fl和fh,其中fl<fc<fh,并分别提取出在(ti,fl)和(ti,fh)处的能量密度E(ti,fl) 和 E(ti,fh)。
[0039] 接着S4,对于离散时间点ti对应的频率坐标fk化=1,2,…,N),在中屯、频率fC两侧 分别提取与其最接近的频率点fl和fh,其中fl<fc<fh
[0040] fi = a;r卵in I fk-fc I ,fk&l
t;fc
[0041] fh=argmin I fk-fc I ,fk>fc
[00创分别提取出在(ti,fi)和(ti,fh)处的能量密度E(ti,fi)和E(ti,fh)。
[0043] S6:根据E (ti,f 1)和E (ti,fh),采用线性插值法,求取对应于离散时间点ti中屯、频率 片的能量密度6(*1,片)。
[0044] 接着S5的示例,根据E(ti,fi)和E(ti,fh),采用线性插值法,求取对应于离散时间 点ti中屯、频率fc的能量密度E(ti,fc)
[0045]
[0046] S7:判断是否所有的离散时间点ti对应于中屯、频率fc处的能量密度E(ti,fc)均已 获得,若是,则进行S8;若不是,则判断离散时间点变为tw,并返回S4。
[0047] S8:利用所有的离散时间点t和中屯、频率处的能量密度E(t,fC),通过对离散时间 点处能量密度的拟合,建立中屯、频率的时域能量密度曲线E(t,fc)。
[0048] 接着S7,利用所有的离散时间点ti (i = 1,2,…,Μ)和中屯、频率处的能量密度E(ti, fc),通过对离散时间点处能量密度的最小二乘拟合,建立中屯、频率的时域能量密度曲线E (t,f。),设拟合函数为餐(打,时频能量密度为:
[0049]
[0050] S9:提取时域能量密度曲线E(t,fc)各峰值所对应的时间tp,作为所需模态Lamb波 的走时,并结束走时提取,其中,P = 1,2,…,Ml,化为正整数且Mi<M。
[0051 ]接着S8的示例,提取时域能量密度曲线E( t,fC)各峰值所对应的时间tp(P = 1, 2,...,Mi)
[0052] tp = argmaxE(t,fc)
[0053] 作为所需模态Lamb波的走时,并结束走时提取,其中,Ml为正整数且化<M。
[0054] 本发明的Lamb波时频能量密度析出走时提取方法,还公开了另外一个实施例,具 体如下:
[0055] 步骤1:取一件厚度为4mm的待测侣板,在侣板两侧分别布置发射EMAT和接收EMAT, 两EMAT直径均为40mm,两EMAT中屯、间距为800mm。
[0056] 步骤2:用射频功率放大器AG124激励发射EMAT,产生A0模态Lamb波,用接收EMT接 收Lamb波,激发频率为128曲Z;采用窄带滤波电路对接收到的Lamb波检测信号进行滤波,滤 波中屯、频率为128曲Z,再进行采集和存储,得到检测波形数据。
[0057]步骤3:利用离散短时傅里叶变换(Discrete short-time Fourier transform, DSTFT)对检测波形数据进行时频分析,时频能量密度的时间坐标为ti(i = 1,2,…,Μ),频率 坐标为fk(k=l,2,…,Ν),在某一组确定的时间点和频率点(ti,fk)处的能量密度为E(ti, fk);其中,M = 636,N = 458;设Lamb波检测波形数据为x(m),其中m=l,2,···,M,则其离散短 时傅里叶变换为:
[0化引
[0059] 其中,DSTFT(i,k)为Lamb波检测波形数据的离散短时傅里叶变换结果;g(i)为离 散短时傅里叶变换的窗函数,采用Hamming窗,窗函数时宽为159。
[0060] 求取检测数据的时频能量密度分布 [0061 ] E(ti,fk)= |DSTFT(i,k) |2
[0062] 步骤4:在时频能量密度分布中,对于某一离散的时间点ti,其对应的频率坐标为fk 化=1,2,…,N),判断是否存在频率点fk的值与中屯、频率fc= 128曲Z的值相等,若是,提取出 对应于中屯、频率f C处的能量密度E (ti,f C),并进行步骤7;若不是,进行步骤5。
[0063] 步骤5:对于离散时间点ti对应的频率坐标fk化=1,2,…,N),在中屯、频率fc两侧分 别提取与其最接近的频率点fi和fh,其中fl<fc<fh
[0064] fi = a;r卵in I fk-fc I ,fk<fc [00化]fh=a;r卵in I fk-fc I ,fk>fc
[0066] 分别提取出在(ti,fi)和(ti,fh)处的能量密度E(ti,fi)和E(ti,fh)。
[0067] 步骤6:根据E(ti,fi)和E(ti,fh),采用线性插值法,求取对应于离散时间点ti中屯、 频率fc的能量密度E(ti,fc)
[006引
[0069] 步骤7:判断是否所有的离散时间点ti (i = 1,2,· · ·,Μ)对应于中屯、频率f C处的能量 密度E(ti,fc)均已获得,若是,则进行步骤8;若不是,则考虑离散时间点tw,并返回步骤4。
[0070] 步骤8:利用所有的离散时间点ti (i = 1,2,…,M)和中心频率处的能量密度E(ti, fc),通过对离散时间点处能量密度的最小二乘拟合,建立中屯、频率的时域能量密度曲线E (t,f。),设拟合函数为界(?),时频能量密度为:
[0071]
[0072] 步骤9:提取时域能量密度曲线E(t,fc)各峰值所对应的时间tp(p = l,2,…,Ml)
[0073] tp = argmaxE(t, f 〇)
[0074] 作为所需模态Lamb波的走时,并结束走时提取,其中,Ml为正整数且化<M。
[0075] 本实施例最后得到的Lamb波直达波(直接从发射EMAT到接收EMAT的Lamb波)的走 时为28化S,A0模态Lamb波在4mm侣板、128kHz工作频率下的理论群速度为2944m/s,直达波 传播距离为800mm,则其理论传播时间为27化S。走时提取得到的时间与理论传播时间的相 对误差为3.3%,利用本发明得到的Lamb波走时精度较高。
[0076] 另外,本发明实施例的Lamb波时频能量密度析出走时提取方法的其它构成W及作 用对于本领域的技术人员而言都是已知的,为了减少冗余,不做寶述。
[0077] 在本说明书的描述中,参考术语"一个实施例"、"一些实施例"、"示例"、"具体示 例"、或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特 点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不 一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可W在任何 的一个或多个实施例或示例中W合适的方式结合。
[0078] 尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可W理解:在不 脱离本发明的原理和宗旨的情况下可W对运些实施例进行多种变化、修改、替换和变型,本 发明的范围由权利要求及其等同限定。
【主权项】
1. 一种Lamb波时频能量密度析出走时提取方法,其特征在于,包括如下步骤: Sl:在待测材料检测区域两侧分别设置发射EMT和接收EMT; S2:设定Lamb波检测的工作点,设定所述工作点的工作频率为f。,令发射端激发所需模 态Lamb波,对侧接收端接收Lamb波,对接收到的Lamb波检测信号进行放大和窄带滤波,滤波 中心频率为f。,然后再进行采集和存储,得到检测波形数据; S3:利用离散短时傅里叶变换对检测波形数据进行时频分析,得到检测数据的时频能 量密度分布,时频能量密度的时间坐标为ti,频率坐标为fk,在某一组确定的时间点和频率 点(ti,fk)处的能量密度为E(ti,f k);其中,i = l,2,…,M,k=l,2,…,N,M、N为正整数; S4:在时频能量密度分布中,对于某一离散的时间点ti,时间点ti对应的频率坐标为fk, 其中k为自然数,判断是否存在频率点fk的值与中心频率f。的值相等,若是,提取出对应于中 心频率f。处的能量密度E(ti,f。),并进行S7;若不是,进行S5; S5:对于离散时间点ti对应的频率坐标fk,在中心频率f。两侧分别提取与其最接近的频 率点fi和fh,其中fi<fc<fh,并分别提取出在(ti,fi)和(ti,fh)处的能量密度E(ti,fi)和E (ti,fh); S6:根据E(ti,f 1)和E(ti,fh),采用线性插值法,求取对应于离散时间点ti中心频率f。的 能量密度E(ti,f。); S7:判断是否所有的离散时间点ti对应于中心频率f。处的能量密度E (t i,f。)均已获得, 若是,则进行S8;若不是,则判断离散时间点变为t1+1,并返回S4; S8:利用所有的离散时间点t和中心频率处的能量密度E (t,f。),通过对离散时间点处能 量密度的拟合,建立中心频率的时域能量密度曲线E (t,f。); S9:提取时域能量密度曲线E (t,f。)各峰值所对应的时间tP,作为所需模态Lamb波的走 时,并结束走时提取,其中,P = 1,2,…,MlM1为正整数且Mi<M。2. 根据权利要求1所述的方法,其特征在于:EMAT采用圆形回折线圈设计,通过工作频 率和导线间距的匹配关系,激发和接收所需模态的Lamb波。3. 根据权利要求1所述的方法,其特征在于:用高阶滤波电路对接收EMAT得到的Lamb波 信号进行窄带滤波。4. 根据权利要求1所述的方法,其特征在于:利用离散短时傅里叶变换对检测波形数据 进行时频分析,得到检测数据的时频能量密度分布,设Lamb波检测波形数据为x(m),其中m =1,2,…,M,则其离散短时傅里叶变换为:其中, DSTFT(i,k)为Lamb波检测波形数据的离散短时傅里叶变换结果; g(i)为离散短时傅里叶变换的窗函数。 检测数据的时频能量密度分布为: E(ti,fk)= |DSTFT(i,k) I205. 根据权利要求1所述的方法,其特征在于:在时频能量密度分布中,提取中心频率两 侧频率点的方法为:6. 根据权利要求1所述的方法,其特征在于:采用线性插值法求取离散的时间点t对应 中心频率处的能量密度E(ti,f。):7. 根据权利要求1所述的方法,其特征在于:通过最小二乘拟合建立基于中心频率的时 域能量密度曲线E(t,f。),设拟合函数为皆(?久时频能量密度为:8. 根据权利要求1所述的方法,其特征在于:提取时域能量密度曲线的峰值时间作为所 需模态Lamb波的走时tP: tP = argmax E(t,fc)〇
【专利摘要】本发明公开了一种Lamb波时频能量密度析出走时提取方法,包括步骤:在待测材料检测区域两侧分别设置发射EMAT和接收EMAT,令发射端激发所需模态Lamb波,对侧接收端接收Lamb波;得到检测波形后,对检测波形数据进行离散短时傅里叶变换,得到检测波形的时频能量密度分布;根据时频能量密度分布,建立基于数据中心频率的时频能量密度析出方法,提取出数据中心频率下能量密度随时间变化的离散曲线;通过对离散曲线的拟合建立时域能量密度曲线,提取时域能量密度曲线各峰值所对应的时间,作为所需模态Lamb波的走时。本发明具有如下优点:对窄带Lamb波走时提取精度高、计算高效快速。
【IPC分类】G01N29/07, G01N29/44
【公开号】CN105486759
【申请号】CN201610018399
【发明人】黄松岭, 赵伟, 王珅, 张宇, 魏争
【申请人】清华大学
【公开日】2016年4月13日
【申请日】2016年1月12日