一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
【技术领域】
:
[0001]本发明属于半导体薄膜晶体管制备技术领域,涉及一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法,特别是一种基于低成本溶胶-凝胶技术以超薄氧化镁(MgO)为高介电常数(k)介电层,以氧化铟(Ιη203)为半导体沟道层的薄膜晶体管的制备方法。
【背景技术】
:
[0002]20世纪计算机网络技术以及平板显示技术的出现,把人类带入了信息社会,人类社会从此发生了质的飞跃。纵观信息时代迅猛发展的各项技术,在这些技术中,无论计算机网络与软件,还是通信技术和其他电子技术,如果没有以TFT-LCD为代表的平板显示技术作为人机交互的界面,就构不成现在的信息社会,而平板显示的核心元件就是薄膜晶体管TFT(Thin Film Transistor)。薄膜晶体管(Thin Film Transistor,TFT)在有源矩阵驱动液晶显示器件(Active Matrix Liquid Crystal Display,AMIXD)中发挥了重要作用,从低温非晶硅TFT到高温多晶硅TFT,技术越来越成熟,应用对象也从只能驱动LCD(Liquid CrystalDisplay)发展到既可以驱动LCD又可以驱动0LED(0rganic Light Emitting Display)、甚至电子纸。随着大规模集成电路的发展,作为硅基集成电路核心器件的TFT的特征尺寸一直不断减小,其减小规律遵循摩尔定律,这种缩减的结果不仅可以增加器件密度,降低单位成本,更重要的是其每次开关操作所消耗的功率也随之减少(IBMJournal of Research andDevelopment, 43 245,1999)。当超大规模集成电路的特征尺寸小于0.Ιμπι时,二氧化娃(Si02)介电层的厚度必须小于1.5nm,因此很难控制Si02薄膜的针孔密度,从而导致较大的漏电流,研究表明Si 02厚度由3.5nm减至1.5nm时栅极漏电流由10—12A/cm2增大到10A/cm2(IEEE Electron Device Letters, 18 209,1997)。较大的漏电流会引起高功耗及相应的散热问题,这对于器件集成度、可靠性和寿命都造成不利的影响。目前,在集成电路工艺中广泛采用高介电常数(高k)栅介电来增大电容密度和减少栅极漏电流,高k材料因其大的介电常数,在与Si02具有相同等效栅氧化层厚度(EOT)的情况下,其实际厚度比Si02大的多,从而解决了Si02因接近物理厚度极限而产生的量子遂穿效应(Journal of Applied Physics,89 5243,2001)。因此制备新型、高性能高k材料替代Si02成为实现大规模集成电路的首要任务。
[0003]由于TFT器件是薄膜型结构,其栅介电层的介电常数、致密性和厚度对晶体管的电学性能有重要的影响。目前成为研究热点的高k介电材料包括AT0(Advanced Materials,242945,2012) nAI203(Nature,489 128,2012)νΖγ02(Advanced Materials ,23 971,2011)、Hf02(Journal of Materials Chemistry,22 17415,2012)、Mg0(ECS Journal of SolidState Science and Technology ,2 287,2013)和Y203(Applied Physics Letters ,98123503,2011)等。在众多高k介电材料中,MgO凭借其较大的介电常数(?9.8)、较宽的带隙(7.3eV)、较大的导带补偿等特点成为动态随机存储器的首要选择。迄今为止,MgO薄膜的制备均采用真空制备技术,例如分子束外延、化学气相沉积、电子束蒸发、磁控溅射等。这类高真空技术需要依托昂贵的设备且难以实现大面积成膜,制约了低成本电子器件的生产。考虑到将来电子器件发展的新方向一印刷电子器件,利用化学溶液技术制备薄膜将是一个更好的选择,化学溶液技术在超细粉末、薄膜涂层、纤维等材料的制备工艺中受到广泛应用,它具有其独特的优点:其反应中各组分的混合在分子间进行,因而产物的粒径小、均匀性高;反应过程易于控制,可得到一些用其他方法难以得到的产物,另外反应在低温下进行,避免了高温杂相的出现,使得产物的纯度,并且为以后在塑料上制备器件提供有力的条件,能够使柔性材料变为一种可能。目前还未发现有基于溶液法制备氧化镁(MgO)高k介电薄膜及其电子器件的相关报道。在有机前驱体溶液中,金属硝酸盐和有机溶剂(DMF)作为反应源,经过热退火的过程形成氧化物薄膜。采用溶液法替代传统的真空制备技术,不仅提高了薄膜质量,也降低了实验成本。此外,利用溶液技术制备可靠性高、重复性好、低温分解的半导体薄膜正成为工业界和科研界正在深入研究的技术领域。
[0004]目前,采用氧化铟(Ιη203)、氧化物铟锌氧(ΙΖ0)和铟镓锌氧(IGZ0)材料作为薄膜晶体管沟道层的制备和应用技术已有公开文献,美、日、韩等国做了大量研究。Im03凭借其高迀移率、非晶态、高透过率(可见光>80%)成为半导体沟道层材料的有力候选者。基于MgO高k介电层的TFT器件更是无人涉足。
【发明内容】
:
[0005]本发明的目的在于克服现有技术存在的缺点,寻求设计和提供一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法,选用低阻硅作为基底和栅电极,分别采用溶胶-凝胶法、UV光处理和热退火相结合的方式制备超薄MgO(?10nm)栅介电层和高透过率、化学稳定性良好的的Ιη203半导体沟道层,从而制备高性能、低能耗的TFT器件。
[0006]为了实现上述目的,本发明具体包括以下工艺步骤:
[0007](1)、前驱体溶液的制备:将硝酸镁Mg(N03)2.6H20溶于二甲基甲酰胺(DMF)中,在常温下磁力搅拌2-5小时形成澄清透明、浓度为0.01-0.5mol/L的MgO前驱体溶液;将硝酸铟In(N03)3溶于乙二醇甲醚,在室温下搅拌5-24小时形成澄清透明的浓度为0.1-0.5mol/L的Ιη203前驱体溶液;
[0008](2)、Mg0薄膜样品的制备:采用等离子体清洗方法清洗低阻硅衬底表面,在清洗后的低阻硅衬底上采用常规的旋涂技术旋涂步骤(1)配制的MgO前驱体溶液,先在5000转/分下匀胶15-20秒,将旋涂后的低阻硅衬底放到烤胶台上在150°C温度下进行烘焙得到固化后的实验样品;然后将固化后的实验样品UV光处理40?60min后在300-600°C温度下退火1-3小时,实现去除有机物及金属氧化物致密化的过程,得到MgO薄膜样品;
[0009](3)、In203沟道层的制备:在步骤(2)得到的MgO薄膜样品表面利用旋涂技术旋涂步骤(1)制备的Ιη203前驱体溶液,先在400-600转/分下匀胶4_8秒,再在2000-5000转/分下匀胶15-30秒,旋涂次数为1-3次,每次旋涂厚度为5-10nm;将旋涂后的MgO薄膜样品放到120-150°C烤胶台进行固化处理后放入马弗炉中进行200-300°C低温退火处理1-5小时,即制备得到Ιη203沟道层;
[0010](4)、源、漏电极的制备:利用常规的真空热蒸发法和不锈钢掩膜板在Ιη203沟道层上面制备金属源、漏电极,得到基于超薄MgO高k介电层的Ιη203薄膜晶体管。
[0011]本发明的步骤(2)中涉及的等离子体清洗法采用氧气或氩气作为清洗气体,其工作功率为20-60Watt,清洗时间为20-200s,工作气体的通入量为20-50SCCM;
[0012]本发明步骤(4)制备的薄膜晶体管的电极沟道长宽比为1:4-20,热蒸发电流为30-50A;制得的源、漏电极为金属Al、Ti或Ni电极,电极厚度为50-200nm。
[0013]
本发明与现有技术相比,具有以下优点:一是制得的MgO高k栅介电层的物理厚度小于20nm,其同时具有的低漏电流、大电容密度满足微电子集成化对于器件尺寸的需求;MgO薄膜本身具有的高透过率(可见光波段>80%),符合透明电子器件对材料自身的要求;制得的MgO薄膜为非晶态,可实现薄膜大面积、均一制备;二是薄膜晶体管中的MgO介电层和Ιη203半导体沟道层均利用低温溶胶方法制备,制备过程不需要高真空环境,在空气中即可进行,降低生产成本,满足“打印电子器件”的要求。三是采用溶胶凝胶技术制备MgO薄膜及其晶体管器件均为首次报道,填补了该研究领域的空白;其工艺简单,原理可靠,成本低,制备的产品性能好,环境友好,应用前景广阔,为大面积制备高性能的薄膜晶体管提供可行性方案。
【附图说明】
:
[0014]图1为本发明实施例制备的基于MgO高k介电层的Ιη203薄膜晶体管的结构原理示意图。
[0015]图2为本发明实施例制备的超薄MgO高k介电薄膜的漏电流测试曲线图。
[0016]图3为本发明实施例制备的超薄MgO高k介电薄膜的电容测试曲线图。
[0017]图4为本发明实施例制备的基于MgO高k介电层的Ιη203薄膜晶体管的输出特性曲线图,其中栅极偏压VGS = 0-4V。
[0018]图5为本发明实施例制备的基于MgO高k介电层的Ιη203薄膜晶体管的转移特性曲线图,其中源漏电压VDS = 2V。
【具体实施方式】
:
[0019]下面通过具体实施例并结合附图对本发明作进一步说明。
[0020]实施例:
[0021]本实施例中的硝酸镁和硝酸铟粉末均购于Aldrich公司,纯度大于98%;其底栅结构以超薄氧化镁(MgO)为高k介电层,以氧化铟(Ιη203)薄膜为沟道层的薄膜晶体管的制备过程为:
[0022](1)采用溶胶-凝胶的方法制备超薄MgO高k介电薄膜:
[0023]步骤1:选用商业购买的单面抛光低阻硅作为衬底(?0.0015 Ω.cm)和栅电极,低阻硅衬底依次用氢氟酸、丙酮和酒精分别超声波清洗衬底10分钟,用去离子水反复冲洗后再用高纯氮气吹干得到洁净的低阻硅衬底;
[0024]步骤2:称量DMF10mL,将硝酸镁按照0.1M溶于DMF溶液中,混合后在磁力搅拌的作用下室温搅拌2.5小时形成澄清、无色透明的MgO前驱体溶液;
[0025]步骤3:将洁净的低阻硅衬底放入等离子体清洗腔内,待离子体清洗腔的腔室抽取至0.5Pa后通入高纯(99.99% )氧气,控制其功率为30Watt,清洗时间为5min,工作时氧气的通入量为30SCCM;
[0026]步骤4:将步骤2中配制的MgO前驱体溶液旋涂在清洗过的低阻硅衬底上,旋涂次数为2次,旋涂MgO前驱体溶液时匀胶机的参数设置为:5000转/分匀胶20秒;旋涂结束后,将样旋涂有MgO前驱体溶液的低阻硅衬底放到烤胶台上150°C烘焙lOmin得到固化后的MgO薄膜样品,将固化处理后的MgO薄膜样品UV光处理40min后放入马弗炉中退火处理,退火温度为600°C,退火时间150min,得到超薄MgO高k介电薄膜;
[0027](2)配制和旋涂Ιη203前驱体溶液以及制备沟道层:
[0028]步骤1:将硝酸铟溶于乙二醇甲醚中,金属阳离子总浓度为0.1Μ;在该实验中,称量乙二醇甲醚10mL,称取硝酸铟0.30g,混合后在磁力搅拌的作用下室温搅拌5.5小时形成澄清、无色透明的Ιη2θ3水性溶液;
[0029]步骤2:将配制的Ιη203水性溶液旋涂在超薄MgO高k介电薄膜上,旋涂时匀胶机的参数设置为:5000转/分匀胶20秒,旋涂结束后,放在烤焦台150°C烘烤5-6min,然后放入马弗炉中低温退火处理,退火温度为320°C,退火时间1小时制备得到Ιη203沟道层;
[0030](3)采用真空热蒸发法制备源、漏金属电极:
[0031]通过热蒸发的方式,在Ιη203沟道层上用宽长比为1000/250μπι的不锈钢掩膜版制备100nm厚的金属Α1作为源、漏电极,热蒸发电流为40Α,制备得到基于MgO高k介电层的Ιη2θ3薄膜晶体管,如图1所示;
[0032](4)对制备的基于MgO高k介电层的Ιη2θ3薄膜晶体管进行测试;制得的超薄MgO高k介电薄膜的漏电流测试及电容测试曲线分别如图2和图3所示;制得的薄膜晶体管输出特性曲线和转移特性曲线分别如图4和图5所示;,其中图2、图4、图5曲线由吉时利2634B半导体源表测试得到;图3曲线由安捷伦4294A测试得到。
【主权项】
1.一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法,其特征在于具体包括以下工艺步骤: (1)、前驱体溶液的制备:将Mg(N03)2.6H20溶于二甲基甲酰胺中,在常温下磁力搅拌2-5小时形成澄清透明、浓度为0.01-0.5!1101/1的1%0前驱体溶液;将111(勵3)3溶于乙二醇甲醚,在室温下搅拌5-24小时形成澄清透明的浓度为0.1-0.5mol/L的Ιη203前驱体溶液; (2)、MgO薄膜样品的制备:采用等离子体清洗方法清洗低阻硅衬底表面,在清洗后的低阻硅衬底上采用常规的旋涂技术旋涂步骤(1)配制的MgO前驱体溶液,先在5000转/分下匀胶15-20秒,将旋涂后的低阻硅衬底放到烤胶台上在150°C温度下进行烘焙得到固化后的实验样品;然后将固化后的实验样品UV光处理40?60min后在300-600°C温度下退火1-3小时,实现去除有机物及金属氧化物致密化的过程,得到MgO薄膜样品; (3)、Ιη203沟道层的制备:在步骤(2)得到的MgO薄膜样品表面利用旋涂技术旋涂步骤(1)制备的Ιη203前驱体溶液,先在400-600转/分下匀胶4_8秒,再在2000-5000转/分下匀胶15-30秒,旋涂次数为1-3次,每次旋涂厚度为5-10nm;将旋涂后的MgO薄膜样品放到120-150°C烤胶台进行固化处理后放入马弗炉中进行200-300°C低温退火处理1-5小时,即制备得到ΙΠ2θ3沟道层; (4)、源、漏电极的制备:利用常规的真空热蒸发法和不锈钢掩膜板在Ιη203沟道层上面制备金属源、漏电极,得到基于超薄MgO高k介电层的I112O3薄膜晶体管。2.根据权利要求1基于超薄氧化镁高k介电层薄膜晶体管的制备方法,其特征在于所述步骤(2)中涉及的等离子体清洗法采用氧气或氩气作为清洗气体,其工作功率为20-60Watt,清洗时间为20-200s,工作气体的通入量为20-50SCCM。3.根据权利要求1基于超薄氧化镁高k介电层薄膜晶体管的制备方法,其特征在于步骤(4)制备的薄膜晶体管的电极沟道长宽比为1:4-20,热蒸发电流为30-5(^;制得的源、漏电极为金属A1、Ti或Ni电极,电极厚度为50-200nm。
【专利摘要】本发明属于半导体薄膜晶体管制备技术领域,涉及一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法,选用低阻硅作为基底和栅电极,分别采用溶胶-凝胶法、UV光处理和热退火相结合的方式制备超薄MgO栅介电层和高透过率、化学稳定性良好的In2O3半导体沟道层,从而制备高性能、低能耗的TFT器件;其工艺简单,原理可靠,成本低,制备的产品性能好,环境友好,应用前景广阔,为大面积制备高性能的薄膜晶体管提供可行性方案。
【IPC分类】H01L29/24, H01L21/02, H01L21/3205, H01L21/336, H01L21/314
【公开号】CN105489486
【申请号】CN201610031164
【发明人】单福凯, 刘国侠, 姜桂霞, 刘奥, 孟优
【申请人】青岛大学
【公开日】2016年4月13日
【申请日】2016年1月18日