一种高容量负极材料的制备方法
【技术领域】
[0001]本发明属于锂离子电池材料领域,主要涉及一种锂离子电池用高容量负极材料的制备方法。
【背景技术】
[0002]目前商品化的锂离子电池用负极材料以石墨碳为主,碳材料的可逆比容量已经达到了 360mAh/g,并已接近其理论比容量372mAh/g。为了进一步提高锂离子电池的能量密度,新型高比容量负极材料成为相关研究的热点。S1、Sn、A1等与Li形成的合金类材料,其可逆储锂容量远远高于石墨类负极,其中硅和锡由于具有高的理论比容量、较低的嵌脱锂电位和价格低廉等优点,成为锂离子电池研究的重点和热点。
[0003]硅的理论比容量可达4200mAh/g(Li4.4Si),锡的理论比容量可达990 mAh/g但是由于硅、锡在嵌锂时体积变化率高达300%,导致充放电过程中材料粉化,活性材料与集流体之间不能有效接触,电极结构破坏,从而导致循环性能大幅下降。另外,硅的电子电导率和离子电导率均较低,且不能在LiPF6电解液中形成稳定的固体电解质膜。块状Si和Sn循环性能很差,经过5周的循环,容量减小90%,只能达到碳负极容量[1]。这些缺点限制了硅在商业锂离子电池中的应用。
[0004]将S1、Sn与其他物质进行复合是S1、Sn负极改性的重要方法。常见的复合材料有C、活性金属(可以与!^发生电化学反应,如1%、41、48、3]1、211工&等)、非活性金属(不与1^发生电化学反应,如(:0、?6、祖等)和其他非金属物质(1^11^8,、31(:、1^等)。这些物质可以将S1、Sn分散,通过提高材料的力学性能,缓解充放电过程中体积膨胀收缩产生的应力对材料结构以及电极结构的破坏,从而达到提高循环性能的目的。
[0005]最常见的Si基、Sn基复合材料为Si/C、Sn/C复合物。例如石墨在充放电过程中体积变化小,有好的电导率,且能形成稳定的SEI膜,将C材料与S1、Sn复合,期望能提高复合材料的电化学性能。通过将S1、Sn纳米颗粒与石墨球磨处理,然后在表面包覆一层无定型碳,纳米S1、Sn可以分布在石墨表面。但是制备的Si/C、Sn/C纳米复合材料容量和循环稳定性只有少量的提高,这主要是因为在球磨过程中,纳米S1、Sn很难均匀嵌入到石墨中,所以对性能提高作用不大。中间相炭微球负极材料的结构稳定,具有优异的循环性能,但其容量偏低,将S1、Sn与中间相炭微球进行复合可以改善中间相炭微球容量,提高S1、Sn的循环性能。利用直径为10微米的中间相碳微球作为分散剂,与80纳米的纳米硅晶体分别球磨5、10和20小时,制备了Si/C复合物[6]。扫描电镜显示,经过10小时的球磨中间相碳微球仍然能保持球形,然而经过20小时,则变成了更细的粉末。XRD测试显示Si/C复合物包含硅纳米晶,MCMB颗粒尺寸也减小了。经过10小时的球磨,Si/C复合物可逆容量达1066mAh/g,25周充放电循环后容量还可以达到700mAh/g,同时5小时球磨的样品则容量保持率更低,这表明长时间的球磨可以使纳米晶在中间相碳微球结构中更好的分布。但是20小时球磨制备的样品由于中间相碳微球的结构遭到了破坏,具有更大的比表面积,可以形成更多的SEI膜,导致其不可逆容量高,且容量保持率低。采用传统的球磨等方法将中间相炭微球和S1、Sn进行复合,很难将S1、Sn嵌入到中间相炭微球的内部结构中,复合材料的性能难以得到大幅度提高。
【发明内容】
[0006]本发明的技术特征在于将纳米硅、锡、锗、二氧化硅、二氧化锡、一氧化硅、一氧化锡粒子等高容量物质加入到生产中间相炭微球的沥青、焦油原料中,以高容量纳米粒子为核,多环芳香分子在其表面通过高温聚合生成以中间相炭微球为壳的新型核壳结构复合材料,洗涤分离后再通过碳化工艺得到新型高容量负极材料。
[0007]本发明可以将纳米硅、锡、锗、二氧化硅、二氧化锡、一氧化硅、一氧化锡粒子等高容量物质完全包覆在中间相炭微球的中心,有效降低以上高容量物质的体积效应,改善其循环性能,同时避免高容量物质与电解液的接触,减少电解液的分解,从而充分发挥了纳米粒子高容量和中间相炭微球长寿面的特点。
[0008]为实现上述目的,本发明公开了如下的技术内容:一种高容量负极材料的制备方法,其特征在于按如下的步骤进行:
在生产中间相炭微球的原料中,以纳米硅高容量粒子为核,在其表面进行热缩聚生成以中间相炭微球为壳的核-壳结构复合材料:
(1)首先将纳米硅高容量粒子按5-15%(w/w)的比例加入到原料中,在反应釜中200-300°(3高速搅拌,搅拌速度为500?1500rpm,搅拌时间为0.5?2小时,使纳米粒子均匀分散到原料母液中;
(2)然后将温度升温到400-500°C,恒温2小时至12小时,使原料中的多环芳香分子以纳米粒子为核进行缩聚,最终生成粒径为6μηι-50μηι的内核为纳米粒子,外壳为中间相炭微球结构的复合材料;
(3)洗涤分离干燥后,再在800-1200°C进行碳化处理,得到以高容量纳米粒子为核,结构稳定的中间相炭微球为壳的高容量负极材料。其中所采用原料为煤沥青、煤焦油、石油沥青、重油、乙稀焦油的一种或几种的混合物,所述纳米娃高容量粒子指的是:纳米娃、锡、锗、二氧化硅、二氧化锡、一氧化硅、一氧化锡粒子的一种或几种的混合物。
[0009]本发明所述的制备方法,其中原料的加热温度控制在400°C?500°C,加热时间为2小时?12小时。其中复合材料的碳化时间为800°C?1200°C。
[0010]本发明更进一步公开了该新型高容量核-壳结构负极材料在锂离子电池领域的应用,其比容量达到400mAh/g-2400mAh/g。实验结果显示:
(I)加入5%的纳米锡粒子,所得到的核-壳结构的复合材料的可逆比容量达到了400mAh/g:见图 7;
(2 )加入5%的纳米锡粒子和5%的纳米娃粒子,所得到的核-壳结构的复合材料的可逆比容量达到了 1000mAh/g:见图8
(3)加入15%的纳米硅粒子,所得到的核-壳结构的复合材料的可逆比容量达到了2400mAh/g:见图 9。
[0011]本发明更加详细的描述如下:
首先将纳米硅、锡、锗、二氧化硅、二氧化锡、一氧化硅、一氧化锡粒子等高容量物质按5%至15%的比例加入到煤沥青、煤焦油、石油沥青、重油或乙稀焦油原料中,在反应Il中200°(3至300°(3高速搅拌,使纳米粒子均匀分散到原料母液中,然后将温度升温到400°C至500°C,恒温2小时至12小时,使原料中的多环芳香分子以纳米粒子为核进行缩聚,最终生成粒径为6μηι至50μηι的内核为纳米粒子,外壳为中间相炭微球结构的复合材料。洗涤分离干燥后,再在800°C至1200°C进行碳化处理,得到以高容量纳米粒子
为核,结构稳定的中间相炭微球为壳的高容量负极材料。该核-壳结构复合材料有利于其容量的提升和循环性能的改口 ο
[0012]本发明重点考察了加入各种高容量纳米粒子及加入比例对于复合材料结构和电化学性能的影响。通过反复的试验最后确定了具有最佳性能的纳米粒子种类、加入比例、反应温度与反应时间。
[0013]本发明克服了以往采用气相沉积法收率低、难于工业化,采用溶剂法污染大、成本高以及采用球磨法包覆效果差的缺点,可制备出比容量达到400mAh/g至2400mAh/g,并具有优异循环性能的核-壳结构新型负极材料。
[0014]【附图说明】:
图1是本发明的实施例1包覆前的纳米硅的SEM照片;
图2是本发明的实施例1制备的硅-中间相炭微球复合材料的SEM照片;
图3是本发明的实施例2制备的硅-中间相炭微球复合材料的SEM照片;
图4是本发明的实施例3制备的一氧化锡-中间相炭微球复合材料的SEM照片;
图5是本发明的实施例4制备的锡-中间相炭微球复合材料的SEM照片;
图6是本发明的实施例5制备的一氧化硅-中间相炭微球复合材料的SEM照片;
图7是加入5%的纳米锡粒子,所得到的核-壳结构的复合材料的可逆比容量达到了400mAh/g;
图8是加入5%的纳米锡粒子和5%的纳米硅粒子,所得到的核-壳结构的复合材料的可逆比容量达到了 1000mAh/g:
图9是加入15%的纳米硅粒子,所得到的核-壳结构的复合材料的可逆比容量达到了2400mAh/go
[0015]具体实施方法
下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。本发明所用到的试剂、原料均有市售。
[0016]为了与本发明进行对比,实施实例I和实施实例2给出了包覆前纳米硅(图1)、核_壳结构复合材料(图2)以及采用传统的球磨方法所制备的复合材料的SEM照片(图3),实施实例3给出了以纳米硅、一氧化锡为核的复合材料的SEM照片(图4)。实施实例4给出了以纳米锡和二氧化硅为核的复合材料的SEM照片(图5 )。实施实例5给出了以纳米一氧化硅、锡和二氧化锡为核的复合材料的SEM照片(图6)。
[0017]
实施实例I
首先将250克纳米硅粉加入到5公斤石油沥青中,升温到200°C,高速搅拌I小时,然后将温度升到400°C,恒温2小时,洗涤分离干燥后放入到气氛炉内,800°C碳化I小时,得到粒径分布为6μηι的核-壳结构复合材料,纳米娃粉完全被包覆在中间相炭微球中。
[0018]实施实例2
将25克纳米娃粉与100克中间相炭微球加入到500ml球磨罐中,球料比为3:1,在400rpm转速下球磨2小时,得到硅-中间相炭微球复合材料,部分中间相炭微球发生破裂,大部分纳米硅粉附着在中间相炭微球的表面。
[0019]实施实例3
首先将250克纳米娃与250克纳米一氧化锡粉末加入到I公斤煤沥青与2公斤石油沥青和2公斤重油的混合物中,升温到250°C,高速搅拌I小时,然后将温度升到400°C,恒温8小时,洗涤分离干燥后放入到气氛炉内,900°C碳化I小时,得到粒径分布为18μπι的核-壳结构复合材料,纳米二氧化锡粉末完全被包覆在中间相炭微球中。
[0020]实施实例4
首先将300克纳米锡与200克纳米二氧化硅加入到2公斤煤焦油与3公斤的乙烯焦油混合物中,升温到200°C,高速搅拌I小时,然后将温度升到450°C,恒温12小时,洗涤分离干燥后放入到气氛炉内,1000°C碳化I小时,得到粒径分布为22μπι的核-壳结构复合材料,纳米锡颗粒完全被包覆在中间相炭微球中。
[0021]实施实例5
首先将250克纳米一氧化硅、250克纳米锡和250克纳米二氧化锡加入到2.5公斤乙烯焦油和2.5公斤的重油混合物中,升温到250°C,高速搅拌I小时,然后将温度升到500°C,恒温12小时,洗涤分离干燥后放入到气氛炉内,1200°C碳化I小时,得到粒径为50μπι的核-壳结构复合材料,纳米一氧化娃颗粒完全被包覆在中间相炭微球中。
【主权项】
1.一种高容量负极材料的制备方法,其特征在于按如下的步骤进行: (1)首先将纳米硅高容量粒子按5-15%(W/W)的比例加入到原料中,在反应釜中200-300°(3高速搅拌,搅拌速度为500?1500印111,搅拌时间为0.5?2小时; (2)然后将温度升温到400-500°C,恒温2小时至12小时,最终生成粒径为6μπι-50μπι的内核为纳米粒子,外壳为中间相炭微球结构的复合材料; (3)洗涤分离干燥后,再在800-1200°C进行碳化处理,得到以高容量纳米粒子为核,结构稳定的中间相炭微球为壳的高容量负极材料。2.权利要求1所述的制备方法,其中所采用原料为煤沥青、煤焦油、石油沥青、重油、乙稀焦油的一种或几种的混合物,所述纳米娃高容量粒子指的是:纳米娃、锡、锗、二氧化娃、二氧化锡、一氧化硅、一氧化锡粒子的一种或几种的混合物。3.权利要求1所述的制备方法,其中原料的加热温度控制在400°C?500°C,加热时间为2小时?12小时。4.权利要求1所述的制备方法,其中复合材料的碳化时间为800°C?1200°C。5.权利要求1所述高容量负极材料的制备方法在制备循环性能的核-壳结构新型负极材料方面的应用,其比容量达到400mAh/g-2400mAh/g。
【专利摘要】本发明涉及一种高容量负极材料的制备方法,特别是合成锂离子电池高容量核壳结构负极材料的方法。本发明首先在合成中间相炭微球的原料中加入高容量纳米粒子,高速搅拌,然后高温聚合,以高容量纳米粒子为核,在其表面通过多环芳香分子的聚合,生成中间相炭微球,最后通过高温碳化,得到以高容量纳米粒子为核,中间相炭微球为壳的高容量核-壳结构负极材料。本发明与传统的合成工艺相比具有包覆均匀、工艺简单、电化学性能优异等优点。
【IPC分类】H01M4/48, H01M10/0525, H01M4/38, H01M4/62, H01M4/36, B82Y30/00
【公开号】CN105489854
【申请号】CN201510828032
【发明人】张波, 李德军, 郭志杰
【申请人】天津师范大学
【公开日】2016年4月13日
【申请日】2015年11月25日