一种锂硫电池复合正极片及其制备方法

xiaoxiao2021-2-23  120

一种锂硫电池复合正极片及其制备方法
【技术领域】
[0001] 本发明设及一种裡硫电池复合正极片及其制备方法,属于裡硫电池技术领域。
【背景技术】
[0002] 目前,裡离子电池已经发展到了非常成熟的地步,但是随着裡离子电池应用范围 不断扩大,人们对裡离子电池的能量密度提出了越来越高的要求。而目前使用的裡离子电 池正极材料主要有钻酸裡、憐酸铁裡、儘酸裡等,其理论比容量较低,不能满足对裡离子电 池高能量密度的要求。而且,在实际的研究应用中,现有的正极材料的实际比容量已经接近 于其理论比容量,提升空间非常有限。鉴于此,新型的高比能量密度的正极材料的研发和应 用显得意义重大。
[0003] 单质硫作为裡离子电池正极材料,理论比容量达到1675mAh/g,其比容量是现有的 正极材料的8-10倍,是当前已知的比容量最高的正极材料。而且,硫的来源丰富,价格低廉, 具有较大的优势。W硫作为正极的裡硫电池的工作电压为2.3V,能够满足多种场合的应用 需求。
[0004] 目前,制约裡硫电池大范围应用的主要问题是其循环稳定性差、容量衰减快、充放 电效率低。大量研究表明,造成裡硫电池上述问题的主要原因是硫的放电中间产物溶于电 解液导致电极结构形貌的破坏。在放电的过程中,单质硫被还原生成可溶于电解液的多硫 化物,多硫化物阴离子在电场力驱动下,扩散到负极表面并与裡发生反应,变成低价的可溶 多硫化物,充电过程中,低价多硫化物再扩散到正极表面重新变成高价多硫化物。W上过程 循环往复产生所谓的"穿梭效应",导致活性硫的不可逆容量损失,并直接导致了裡硫电池 的充放电效率降低。随着裡硫电池循环的进行,可溶性多硫化物会最终被还原成导电性极 差且不溶于电解液的Li2S,并逐渐沉积到正极表面,使得硫正极的导电性及电化学反应活 性变差,进而导致其循环稳定性不断恶化。
[0005] 为了在裡硫电池充放电过程中抑制多硫化物在电解液中的溶解,一般采用对正极 表面进行包覆的方式,如在正极表面包覆导电聚合物(聚化咯、聚苯胺、聚嚷吩等),或者采 用具有较强吸附能力的多孔插层(碳纤维布、泡沫儀、碳化的聚合物等)置于隔膜与正极之 间,或者在正极中添加吸附能力较强的添加剂(纳米的氧化铜、二氧化娃等)。运些方法对抑 制多硫化物溶于电解液有一定的效果,但是其过程工艺复杂、成本较高,有的还降低了电极 的导电性及电极反应的电化学活性,对裡硫电池循环稳定性的改善有限。
[0006] 在正极表面包覆碳层的方法成本较低,而且能够减小包覆碳层对电极导电性的影 响。现有技术中一般采用将碳源包覆在正极表面再进行碳化的方式。由于硫在常压下,溫度 高于155°C就会升华,大大降低了碳化的效果。申请公布号为CN104300128A的中国发明专利 (申请公布日为2015年1月21日)公开了一种裡硫电池一体化膜电极结构及其制备方法,其 膜电极包括正极片,所述正极片包括集流体及设置在集流体上的硫复合材料层,所述硫复 合材料层为含硫10-95%的硫复合物、导电剂、粘结剂的混合物,其中硫复合物、导电剂、粘 结剂的质量比为1:0-1:0.01-0.5,硫复合材料层的厚度为10-200μπι,该膜电极还包括与硫 复合材料层重叠后热复合在一起的碳材料改性的多孔膜,其碳材料改性的多孔膜为多孔碳 与粘结剂的混合物涂覆而成的多孔膜。但是,该膜电极采用的涂覆法很难控制多孔碳层的 厚度,一般都在50-200μπι左右,降低了导电粒子从硫正极到电解液的传输效率,进而降低了 硫电极的电极反应效率。而且,该膜电极上,多孔碳层是先涂覆在有机多孔膜上,再将涂覆 有多孔碳层的有机多孔膜与硫复合材料层热复合而成,在正极表面引入了阻抗较大的有机 膜,进一步降低了硫电极的电极反应效率。热复合的加热溫度对于易升华的硫来说,很容易 引起其结构变化,降低了硫电极的结构稳定性,很容易导致裡硫电池的循环性能变差。该方 法制备的膜电极上硫复合材料层表面的多孔碳层中存在粘结剂,会降低硫复合正极的电子 导电性和离子导电性,引起较大的极化,导致放电电压平台降低及容量减少。

【发明内容】

[0007] 本发明的目的在于提供一种容量高、循环效率高、循环性能好的裡硫电池复合正 极片。本发明的目的还在于提供一种上述裡硫电池复合正极片的制备方法。
[0008] 为了实现W上目的,本发明的裡硫电池复合正极片的技术方案如下:
[0009] 一种裡硫电池复合正极片,包括正极片,所述正极片是由正极集流体W及覆在正 极集流体上的碳硫复合材料层构成的,所述碳硫复合材料层表面涂覆有多孔碳层,所述多 孔碳层的厚度为0.025-3WI1。
[0010] 本发明的裡硫电池复合正极片通过在正极片表面涂覆厚度为〇.〇25-3μπι的多孔碳 层,借助于多孔碳层的"毛细管效应",可W有效吸附充放电过程中活性硫产生的放电产物, 从而阻止其溶于电解液。通过多孔碳层对放电产物的阻止、固定作用,能够将大部分的可溶 于电解液的多硫化物限制在正极片的导电网络中,从而达到了稳定正极片电极结构的作 用。部分吸附在多孔碳层的导电网络中的多硫化物,在充放电过程,还能够再次参与电化学 反应,减少了活性硫的不可逆容量,提高了硫的利用率。同时,由于大幅度减少了多硫化物 在电解液中的溶解,能够充分抑制因电解液中的可溶多硫化物在循环过程中在正负极之间 穿梭往复产生的"穿梭效应"。裡硫电池正极片表面多孔碳层的存在,一方面稳定了电极结 构,另一方面抑制了裡硫电池特有的"穿梭效应",可W减少裡硫电池循环过程中的不可逆 容量损失,显著提高充放电效率,大幅度提高裡硫电池的循环性能。
[0011] 所述多孔碳层的孔径为0.5~50nm,孔隙率为46.3-81.7 %。该多孔碳层具有多孔 结构和较高表面积,能够产生较强的范德华力并具有强大的吸附作用。
[0012 ]所述碳硫复合材料层包括碳硫复合材料、导电剂、粘结剂。为了提高碳硫复合材料 与多孔碳层的结合强度,硫碳复合材料中碳的含量不易过低,即硫的含量不宜过高,所述碳 硫复合材料中硫的质量百分含量为52.7-64.7%。
[0013] 所述碳硫复合材料为本领域常用的碳硫复合材料,优选为具有丰富介-微结构的 碳材料,如碳纳米管、介-微孔碳、石墨締、挪壳炭、聚合物前驱体炭化的碳,将碳材料中的一 种或几种与硫通过热烙融法、溶液沉积法及真空蒸气沉积法将硫与碳材料均匀复合,得到 碳硫复合材料。
[0014] 本发明的裡硫电池复合正极片的制备方法的技术方案如下:
[0015] 上述的裡硫电池复合正极片的制备方法,包括如下步骤:
[0016] 在真空条件下,向正极片表面涂覆碳材料形成多孔碳层,即得。
[0017] 采用向正极片表面涂覆多孔碳层的方法可w使正极片表面固定一层纯的多孔碳 层,避免引入粘结剂等其他杂质,进而使多孔碳层能够保持较高的孔隙率,便于裡硫电池充 放电过程中产生的多硫化物在进入电解液之前,被多孔碳层吸附,从而固定在多孔碳层的 空隙之中,避免多硫化物溶于电解液,而且保证多硫化物充分靠近硫电极,使其更容易重新 参与电极反应。另外,避免粘结剂等杂质进入多孔碳层,可W有效提高多孔碳层的导电率, 使导电介质更容易在电解液和硫电极之间传输,提高其传输效率,进而提高裡硫电池的充 放电倍率性能。
[0018] 上述真空条件可W避免其他气体杂质对涂覆效果的影响,一般的,所述真空条件 的真空度为0.06~0.095MPa。
[0019] 本发明的裡硫电池复合正极片上的多孔碳层的涂覆方式可W为瓣射方法,W在裡 硫电池正极片表面形成厚度更薄的多孔碳层,进一步提高了多孔碳层的导电效率。
[0020] 上述涂覆可W使用等离子体低溫瓣射、磁控瓣射、非平衡磁控瓣射、偏压瓣射、反 应瓣射及离子束瓣射等方式,为了降低成本,简化工艺过程,避免正极片中活性硫的蒸发, 更好控制正极片表面多孔碳层的参数(比表面积,孔隙率,涂覆厚度等),优选使用低溫等离 子体低溫瓣射法,具体采用包括如下步骤的方法:
[0021] 将正极片置于瓣射仪中,W0.1-12化的氣气为工作气体,碳丝为祀材,向正极片表 面瓣射碳材料形成多孔碳层,瓣射电压为24-40V,电流为20-60Amps,瓣射时间为5-900S,溫 度为 30-70°C。
[0022] 所述多孔碳层的孔径为0.5~50nm,孔隙率为46.3-81.7 %。该多孔碳层具有多孔 结构和较高表面积,能够产生较强的范德华力并具有强大的吸附作用。
[0023 ]所述碳硫复合材料层包括碳硫复合材料、导 电剂、粘结剂。为了提高碳硫复合材料 与多孔碳层的结合强度,硫碳复合材料中碳的含量不易过低,即硫的含量不宜过高,所述碳 硫复合材料中硫的质量百分含量为52.7-64.7%。
[0024] 所述碳硫复合材料为本领域常用的碳硫复合材料,优选为具有丰富介-微结构的 碳材料,如碳纳米管、介-微孔碳、石墨締、挪壳炭、聚合物前驱体炭化的碳,将碳材料中的一 种或几种与硫通过热烙融法、溶液沉积法及真空蒸气沉积法将硫与碳材料均匀复合,得到 碳硫复合材料。
[0025] 正极片可W采用现有技术中的裡硫电池正极片,也可W使用按照如下制备方法制 得的正极片:
[0026] 将碳硫复合材料、导电剂、粘结剂加入有机溶剂中,球磨混匀得正极浆料,将正极 浆料涂覆在正极集流体上,60-105°C下真空干燥,即得;所述碳硫复合材料、导电剂、粘结剂 的质量比为 1:0.1-1:0.125-0.5。
[0027] 正极集流体选用现有技术中常用的正极集流体,如侣锥。
[0028] 上述裡硫电池制备时的导电剂、粘结剂、有机溶剂均可W使用现有技术中的导电 剂、粘结剂、有机溶剂,如所述导电剂为乙烘黑、超导炭黑或科琴黑中的一种,所述粘结剂为 聚偏氣乙締、聚四氣乙締、聚氧化乙締、明胶、簇甲基纤维素-下苯橡胶、聚乙締醇中的一种, 所述有机溶剂为N-甲基化咯烧酬、乙腊、丙酬、水、异丙醇中的一种或者几种的混合物。
[0029] 正极浆料在正极集流体上的涂覆后,干燥后形成的硫碳复合材料层的厚度为35-40皿。
[0030] 本发明的使用上述的裡硫电池复合正极片作为正极的裡硫电池,包括正极和电解 液。还包括负极和隔膜,所述负极为裡片。
[0031] 所述隔膜为现有技术中裡硫电池常用的隔膜,一般的,隔膜选自聚丙締、聚乙締、 聚偏氣乙締、聚丙締与聚乙締复合膜。
[0032] 所述电解液包括电解质盐和溶剂,所述电解质盐为双Ξ氣甲基横酷亚胺裡,所述 溶剂由乙二醇二甲酸和二氧五环按照体积比1:1混合而成,所述电解液中电解质盐的浓度 为l-6mol/L。本发明的裡硫电池复合正极片能够充分抑制多硫化物的"穿梭效应",电解液 可W省去对多硫化物"穿梭效应"的有抑制作用的添加剂硝酸裡。
[0033] 采用本发明的裡硫电池复合正极片制备的裡硫电池150次循环放电后的容量保持 率最高达到87.0%,远远高于对比例的72.8%,裡硫电池的循环效率接近100%,大大提高 了裡硫电池的循环稳定性及充放电效率。
【附图说明】
[0034] 图1为对比例的裡硫电池正极片的结构示意图;
[0035] 图2为本发明的裡硫电池复合正极片的结构示意图;
[0036] 图3为实施例1和对比例的裡硫电池在150次循环后的交流阻抗图谱;
[0037] 图4为实施例1的裡硫电池的循环曲线;
[003引图5为对比例的裡硫电池的循环曲线。
【具体实施方式】
[0039] 下面结合具体实施例对本发明的技术方案进行进一步的说明。
[0040] 实施例1
[0041] 本实施例的裡硫电池复合正极片,包括正极片,所述正极片是由正极集流体W及 涂覆在正极集流体上的碳硫复合材料层构成的,所述正极集流体为侣锥,所述碳硫复合材 料层表面涂覆有多孔碳层,多孔碳层的厚度为〇.〇25μπι,最可几孔径为49nm,孔隙率为 81.7%。所述碳硫复合材料层包括碳硫复合材料、导电剂、粘结剂,所述碳硫复合材料为碳 纳米管/硫复合材料,碳纳米管/硫复合材料中硫的质量百分含量为56.8%,所述导电剂为 乙烘黑,所述粘结剂为聚偏氣乙締(PVDF),碳纳米管/硫复合材料、乙烘黑、PVDF的质量比为 7:2:1。
[0042] 本实施例的裡硫电池复合正极片的制备方法包括如下步骤:
[0043] 1)正极片制备
[0044] 将4.2g碳纳米管/硫复合材料、1.2g乙烘黑、0.6gPVDF加入N-甲基化咯烧酬(约 8mL)中,球磨混匀得正极浆料,将正极浆料均匀涂覆在侣锥上,在60°C下真空干燥,干燥后 正极集流体上的硫碳复合材料层的厚度为35μπι,即得正极片;
[0045] 2)裡硫电池复合正极片制备
[0046] 将步骤1)制得的正极片转入瓣射仪(ISC-400型喷碳低溫瓣射仪)中,真空室真空 度控制为0 . 〇6MPa,充入0 . IPa氣气为工作气体,直径为1.4mm的碳丝为祀材,瓣射电压为 24V,电流为20Amps,向正极片表面瓣射碳材料形成多孔碳层,瓣射时间为5s,控制溫度30 °C,即得裡硫电池复合正极片。
[0047]本实施例的裡硫电池包括正极、负极、隔膜及电解液,正极为上述裡硫电池复合正 极片,隔膜为PP/PE/PP复合膜,电解液包括电解质盐和溶剂,所述电解质盐为双Ξ氣甲基横 酷亚胺裡,所述溶剂由乙二醇二甲酸和二氧五环按照体积比1:1混合而成,所述电解液中电 解质盐的浓度为Imol/L。使用裡片作为负极,与上述正极、隔膜、电解液组装成CR2016型纽 扣电池即得所述裡硫电池。
[004引实施例2
[0049] 本实施例的裡硫电池复合正极片,包括正极片,所述正极片是由正极集流体W及 涂覆在正极集流体上的碳硫复合材料层构成的,所述正极集流体为侣锥,所述碳硫复合材 料层表面涂覆有多孔碳层,多孔碳层的厚度为0.08μπι,最可几孔径为34nm,孔隙率为 73.7%。所述碳硫复合材料层包括碳硫复合材料、导电剂、粘结剂,所述碳硫复合材料为石 墨締/硫复合材料,石墨締/硫复合材料中硫的质量百分含量为64.7%,所述导电剂为超导 炭黑,所述粘结剂为聚四氣乙締,石墨締/硫复合材料、超导炭黑、聚四氣乙締的质量比为 40:4:5。
[0050] 本实施例的裡硫电池复合正极片的制备方法包括如下步骤:
[0051] 1)正极片制备
[0052] 将3.2g石墨締/硫复合材料、0.32g乙烘黑、0.4g聚四氣乙締加入水(约8mU中,球 磨混匀得正极浆料,将正极浆料均匀涂覆在侣锥上,在80°C下真空干燥,干燥后正极集流体 上的硫碳复合材料层的厚度为3祉m,即得正极片;
[0053] 2)裡硫电池复合正极片制备
[0054] 将步骤1)制得的正极片转入瓣射仪中,真空室真空度控制为0.07MPa,充入0.3Pa 氣气为工作气体,直径为1.4mm的碳丝为祀材,瓣射电压为26V,电流为25Amps,向正极片表 面瓣射碳材料形成多孔碳层,瓣射时间为40s,控制溫度为50°C,即得裡硫电池复合正极片。
[0055] 本实施例的裡硫电池包括正极、隔膜及电解液,正极为上述裡硫电池复合正极片, 隔膜为PP/PE/PP复合膜,电解液包括电解质盐和溶剂,所述电解质盐为双Ξ氣甲基横酷亚 胺裡,所述溶剂由乙二醇二甲酸和二氧五环、按照体积比1:1混合而成,所述电解液中电解 质盐的浓度为3mol/L。使用裡片作为负极,与上述正极、隔膜、电解液组装成CR2016型纽扣 电池即得所述裡硫电池。
[0056] 实施例3
[0057] 本实施例的裡硫电池复合正极片,包括正极片,所述正极片是由正极集流体W及 涂覆在正极集流体上的碳硫复合材料层构成的,所述正极集流体为侣锥,所述碳硫复合材 料层表面涂覆有多孔碳层,多孔碳层的厚度为0.18μπι,最可几孔径为0.5nm,孔隙率为 46.3%。所述碳硫复合材料层包括碳硫复合材料、导电剂、粘结剂,所述碳硫复合材料为介-微孔碳/硫复合材料,介-微孔碳/硫复合材料中硫的质量百分含量为62.9%,所述导电剂为 科琴黑,所述粘结剂为簇甲基纤维素(CMC)及下苯橡胶(SBR)的混合物,二者质量比为3:2, 介-微孔碳/硫复合材料、科琴黑、粘结剂的质量比为2:2:1。
[0058] 本实施例的裡硫电池复合正极片的制备方法包括如下步骤:
[0059] 1)正极片制备
[0060] 将2.Og介-微孔碳/硫复合材料、2.Og乙烘黑、1.Og的CMC+SBR加入水(约8血)中,球 磨混匀得正极浆料,将正极浆料均匀涂覆在侣锥上,在105°C下真空干燥,干燥后正极集流 体上的硫碳复合材料层的厚度为40μπι,即得正极片;
[0061] 2)裡硫电池复合正极片制备
[0062] 将步骤1)制得的正极片转入瓣射仪中,真空室真空度控制为0.08MPa,充入2Pa氣 气为工作气体,直径为1.4mm的碳丝为祀材,瓣射电压为30V,电流为30Amps,向正极片表面 瓣射碳材料形成多孔碳层,瓣射时间为2min,控制溫度为70°C,即得裡硫电池复合正极片。
[0063] 本实施例的裡硫电池包括正极、隔膜及电解液,正极为上述裡硫电池复合正极片, 隔膜为PP/PE/PP复合膜,电解液包括电解质盐和溶剂,所述电解质盐为双Ξ氣甲基横酷亚 胺裡,所述溶剂由乙二醇二甲酸和二氧五环按照体积比1:1混合而成,所述电解液中电解质 盐的浓度为6mol/L。使用裡片作为负极,与上述正极、隔膜、电解液组装成CR2016型纽扣电 池即得所述裡硫电池。
[0064] 实施例4
[0065] 本实施例的裡硫电池复合正极片,包括正极片,所述正极片是由正极集流体W及 涂覆在正极集流体上的碳硫复合材料层构成的,所述正极集流体为侣锥,所述碳硫复合材 料层表面涂覆有多孔碳层,多孔碳层的厚度为〇.5μπι,最可几孔径为12nm,孔隙率为61.4%。 所述碳硫复合材料层包括碳硫复合材料、导电剂、粘结剂,所述碳硫复合材料为挪壳炭/硫 复合材料,挪壳炭/硫复合材料中硫的质量百分含量为52.7 %,所述导电剂为乙烘黑,所述 粘结剂为聚氧化乙締,挪壳炭/硫复合材料、乙烘黑、聚氧化乙締的质量比为8:1:1。
[0066] 本实施例的裡硫电池复合正极片的制备方法包括如下步骤:
[0067] 1)正极片制备
[006引将4.8g挪壳炭/硫复合材料、0.6拓烘黑、0.6g聚氧化乙締加入水与异丙醇的混合 液中,混合液的体积约为12mL,水与异丙醇的体积比为3:1,球磨混匀得正极浆料,将正极浆 料均匀涂覆在侣锥上,在90°C下真空干燥,干燥后正极集流体上的硫碳复合材料层的厚度 为3祉m,即得正极片;
[0069] 2)裡硫电池复合正极片制备
[0070] 将步骤1)制得的正极片转入瓣射仪中,真空室真空度控制为〇.〇9MPa,充入12化的 氣气为工作气体,直径为1.4mm的碳丝为革时才,瓣射电压为32V,电流为40Amps,向正极片表 面瓣射碳材料形成多孔碳层,瓣射时间为5min,控制溫度为70°C,即得裡硫电池复合正极 片。
[0071] 本实施例的裡硫电池包括正极、隔膜及电解液,正极为上述裡硫电池复合正极片, 隔膜为PP/PE/PP复合膜,电解液包括电解质盐和溶剂,所述电解质盐为双Ξ氣甲基横酷亚 胺裡,所述溶剂由乙二醇二甲酸和二氧五环按照体积比为1:1混合而成,所述电解液中电解 质盐的浓度为Imol/L。使用裡片作为负极,与上述正极、隔膜、电解液组装成CR2016型纽扣 电池即得所述裡硫电池。
[0072] 实施例5
[0073] 本实施例的裡硫电池复合正极片,包括正极片,所述正极片是由正极集流体W及 涂覆在正极集流体上的碳硫复合材料层构成的,所述正极集流体为侣锥,所述碳硫复合材 料层表面涂覆有多孔碳层,多孔碳层的厚度为2μπι,最可几孔径为37nm,孔隙率为58.4%。所 述碳硫复合材料层包括碳硫复合材料、导电剂、粘结剂,所述碳硫复合材料为碳纳米管/介-微孔碳/硫复合材料,碳纳米管/介-微孔碳/硫复合材料中硫的质量百分含量为62.4%,碳 纳米管与介-微孔碳的质量比为1:2,所述导电剂为乙烘黑,所述粘结剂为明胶,碳纳米管/ 介-微孔碳/硫复合材料、乙烘黑、明胶的质量比为7:3:1。
[0074]本实施例的裡硫电池复合正极片的制备方法包括如下步骤:
[00对 1)正极片制备
[0076] 将4.2g碳纳米管/介-微孔碳/硫复合材料、1.始乙烘黑、0.6g明胶加入水及丙酬的 混合液中,混合液的体积约为14mL,水与丙酬的体积比为4:1,球磨混匀得正极浆料,将正极 浆料均匀涂覆在侣锥上,在80°C下真空干燥,干燥后正极集流体上的硫碳复合材料层的厚 度为3祉m,即得正极片;
[0077] 2)裡硫电池复合正极片制备
[0078] 将步骤1)制得的正极片转入瓣射仪中,真空室真空度控制为0.095MPa,充入7Pa的 氣气为工作气体,直径为1.4mm的碳丝为革时才,瓣射电压为36V,电流为50Amps,向正极片表 面瓣射碳材料形成多孔碳层,瓣射时间为lOmin,控制溫度为50°C,即得裡硫电池复合正极 片。
[0079] 本实施例的裡硫电池包括正极、隔膜及电解液,正极为上述裡硫电池复合正极片, 隔膜为PP/PE/PP复合膜,电解液包括电解质盐和溶剂,所述电解质盐为双Ξ氣甲基横酷亚 胺裡,所述溶剂由乙二醇二甲酸和二氧五环按照体积比为1:1混合而成,所述电解液中电解 质盐的浓度为2mol/L。使用裡片作为负极,与上述正极、隔膜、电解液组装成CR2016型纽扣 电池即得所述裡硫电池。
[0080] 实施例6
[0081] 本实施例的裡硫电池复合正极片,包括正极片,所述正极片是由正极集流体W及 涂覆在正极集流体上的碳硫复合材料层构成的,所述正极集流体为侣锥,所述碳硫复合材 料层表面涂覆有多孔碳层,多孔碳层的厚度为3μπι,最可几孔径为41nm,孔隙率为58.3%。所 述碳硫复合材料层包括碳硫复合材料、导电剂、粘结剂,所述碳硫复合材料为碳纳米管/挪 壳炭/硫复合材料,碳纳米管/挪壳炭/硫复合材料中硫的质量百分含量为60.3%,碳纳米管 与挪壳炭的质量比为2:3,所述导电剂为乙烘黑,所述粘结剂为聚乙締醇,碳纳米管/挪壳 炭/硫复合材料、乙烘黑、聚乙締醇的质量比为7:3:2。
[0082] 本实施例的裡硫电池复合正极片的制备方法包括如下步骤:
[0083] 1)正极片制备
[0084] 将3.5g碳纳米管/挪壳炭/硫复合材料、1.5g乙烘黑、1. Og聚乙締醇加入水与乙腊 的混合液中,混合液的体积约为llmL,其中水与乙腊的体积比为3:1,球磨混匀得正极浆料, 将正极浆料均匀涂覆在侣锥上,在60°C下真空干燥,干燥后正极集流体上的硫碳复合材料 层的厚度为3祉m,即得正极片;
[0085] 2)裡硫电池复合正极片制备
[0086] 将步骤1)制得的正极片转入瓣射仪中,真空室真空度控制为O.lMPa,充入5化的氣 气为工作气体,直径为1.4mm的碳丝为祀材,瓣射电压为40V,电流为eOAmps,向正极片表面 瓣射碳材料形成多孔碳层,瓣射时间为15min,控制溫度为60°C,即得裡硫电池复合正极片。
[0087] 本实施例的裡硫电池包括正极、隔膜及电解液,正极为上述裡硫电池复合正极片, 隔膜为PP/PE/PP复合膜,电解液包括电解质盐和溶剂,所述电解质盐为双Ξ氣甲基横酷亚 胺裡,所述溶剂由乙二醇二甲酸和二氧五环按照体积比1:1混合而成,所述电解液中电解质 盐的浓度为Imol/L。使用裡片作为负极,与上述正极、隔膜、电解液组装成CR2016型纽扣电 池即得所述裡硫电池。
[0088] 实施例7
[0089] 本实施例与实施例1的区别在于,所述正极片为现有技术中的正极片,如申请公开 号为CN104300128A的中国发明专利中的正极片。将热烙融法制备的硫-介孔碳复合材料,导 电石墨,聚四氣乙締 W8:1:1的质量比球磨混合均匀后分散于水中,进行揽拌得到正极浆 料,把浆料均匀刮涂在侣锥集流体上,80°C真空干燥后得到正极片。采用实施例1的方法及 工艺参数,在正极片上沉积多孔碳包覆层。
[0090] 实施例8
[0091] 本实施例与实施例1的区别在于,所述裡硫电池复合正极片制备时,使用磁控瓣射 法向正极片表面瓣射喷涂多孔碳层,具体步骤如下:将步骤1)制得的正极片转入磁控瓣射 仪(型号JCP-200)控制真空室真空度为0.095MPa,真空室中通入约6Pa的氣气作工作气体, W直径为1.4mm的碳丝为阴极祀,瓣射电压为13.56MHz的射频电压,向正极片表面瓣射碳材 料形成多孔碳层,瓣射时间为lOmin,控制溫度70°C,即得裡硫电池复合正极片。
[0092] 对比例
[0093] 对比例的裡硫电池正极片,由正极集流体W及涂覆在正极集流体上的碳硫复合材 料层构成的,所述正极集流体为侣锥,所述碳硫复合材料层包括碳硫复合材料、导电剂、粘 结剂,所述碳硫复合材料为碳纳米管/硫复合材料,碳纳米管/硫复合材料中硫的质量百分 含量为56.8%,所述导电剂为乙烘黑,所述粘结剂为聚偏氣乙締(PVDF),碳纳米管/硫复合 材料、乙烘黑、PVDF的质量比为7:2:1。
[0094] 对比例的裡硫电池正极片的制备方法包括如下步骤:
[009引将4.2g碳纳米管/硫复合材料、1.2g乙烘黑、0.6gPVDF加入N-甲基化咯烧酬(约 8mL)中,球磨混匀得正极浆料,将正极浆料均匀涂覆在侣锥上,涂覆厚度控制为35μπι,在60 °C下真空干燥,即得裡硫电池正极片;
[0096] 对比例的裡硫电池包括正极、隔膜及电解液,正极为上述裡硫电池正极片,隔膜为 PP/PE/PP复合膜,电解液包括电解质盐和溶剂,所述电解质盐为双Ξ氣甲基横酷亚胺裡,所 述溶剂由乙二醇二甲酸和二氧五环按照体积比为1:1混合而成,所述电解液中电解质盐的 浓度为Imol/L。使用裡作为负极,与上述正极、隔膜、电解液组装成CR2016型纽扣电池即得 所述裡硫电池。
[0097] 实验例
[009引将实施例1-8及对比例制得的裡硫电池按照如下步骤进行电化学性能测试:
[0099] 1似0.2C恒流充电,上限电压为2.8V;
[0100] 2)W〇.2C恒流放电,下限电压为1.5V;
[0101] 3)重复步骤1)和2),循环150次。
[0102] 测试结果如表1所示。实施例1和对比例的循环曲线分别如图4和图5所示。
[0103] 将实施例1和对比例的裡硫电池进行150次循环后,使用上海辰华化i660e型电化 学工作站测试其交流阻抗,结果如图3所示。
[0104] 表1
[0105]
[0106] 注:a.表1中循环效率为每一个循环中,放电容量与充电容量之比;
[0107] b.表中比容量均基于正极中活性物质硫的量进行计算。
[0108] 由表1可知,相比对比例,本发明制备的裡硫电池150次循环放电后的容量保持率 最高达到87.0%,远远高于对比例的72.8%,各实施例的裡硫电池在150次循环放电后的容 量保持率相比于对比例提高了 5~15 %。所有实施例的裡硫电池的循环效率均接近100 %, 而对比例的只有81%。本发明制备的裡硫电池复合正极片提高了裡硫电池的循环稳定性及 充放电效率。
[0109] 正极片表面不喷涂多孔碳层的裡硫电池正极片的结构图如图1所示,其中活性硫 颗粒2被固定在侣锥集流体1上,在活性硫颗粒之间有导电剂形成的网络3。本发明的裡硫电 池复合正极片的结构如图2所示,其中活性硫颗粒2被固定在侣锥集流体1上,在活性硫颗粒 之间有导电基体形成的网络3,在侣锥集流体、活性硫颗粒和导电网络形成的正极片表面固 定有一层多孔碳层4。本发明的裡硫电池复合正极片通过在正极片表面喷涂纳米级到微米 级的多孔碳层,借助于多孔碳层的"毛细管效应",可W有效吸附充放电过程中活性硫产生 的放电产物,从而阻止其溶于电解液。通过多孔碳层对放电产物的阻止、固定作用,能够将 大部分的可溶于电解液的多硫化物限制在正极片的导电网络中,从而达到了稳定正极片的 电极结构作用。部分吸附在多孔碳层的导电网络中的多硫化物,在充放电过程,还能够再次 参与电化学反应,减少了活性硫的不可逆容量,提高了硫的利用率。同时,由于大幅度减少 了多硫化物在电解液中的溶解,能够充分抑制因电解液中的可溶多硫化物在循环过程中在 正负极之间穿梭往复产生的"穿梭效应"。裡硫电池正极片表面多孔碳层的存在,一方面稳 定了电极结构,另一方面抑制了裡硫电池特有的"穿梭效应",可W减少裡硫电池循环过程 中的不可逆容量损失,显著提高充放电效率,大幅度提高裡硫电池的循环性能。
[0110] 图3为经过150次循环后,实施例1与对比例中的裡硫电池的交流阻抗谱,从图中可 W看出,0.2C倍率150次充放电循环后,包覆有多孔碳层的裡硫电池(实施例1)较对比例的 电荷转移阻抗小了43.7%。较小的电荷转移阻,可W使包覆有多孔碳层的正极片在电化学 反应过程中有较高的电化学活性,显著改善裡硫电池的充放电倍率性能及循环稳定性。多 孔碳层的存在能够显著降低电荷转移阻抗的原因为:一方面,多孔碳层存在阻止了多硫化 物从电极中的溶出,将电化学反应限制在正极片的导电网络中,从而避免了放电过程中的 高价多硫化物溶于电解液,也避免了不溶于电解液的硫化裡覆盖在电极表面,导致电极的 离子及电子导电性急剧减小的问题;另一方面,少量溶出的多硫化物吸附在多孔碳层的导 电网络中,在循环过程吸附的多硫化物可W重复利用,避免了充放电过程中,硫因失去电子 或离子导电性成为"孤岛",不能参与电化学反应而成为"死硫"。综述分析可知,多孔碳层的 存在,改善了电解液与正极片的界面结构,增加了硫电极的电子及离子导电性,提高了活性 硫的电化学反应活性。
[0111] 实施例1和对比例制备的裡硫电池的充放电循环性能及充放电效率对比曲线如图 4和图5所示。从图4可W看出,实施例1制备的裡硫电池,充电曲线与放电曲线是重叠的,运 说明充放电的可逆性好,循环效率高。在0.2C恒流放电时,初始放电比容量高达1300.1 mAh/ g,在室溫下150次循环之后电池放电比容量为1078.2mAh/g,容量保持率高达82.9 %,循环 过程中充放电效率接近100 %,每次平均比容量衰减仅为1.48mAh/g。结果表明,本发明在正 极片表面喷涂纳米级到微米级的多孔碳层,能够抑制多硫化物"穿梭效应",稳定硫电极结 构,提高硫电极的电化学反应活性,显著改善硫电极的循环稳定性及充放电循环效率。
[0112] 从图5可W看出,对比例同样放电倍率下,充电曲线与放电曲线是分离的,运说明 充放电的可逆性较差,循环效率不高。对比例初始放电比容量为1124. ImAh/g,在室溫下150 次循环后,电池放电比容量为819.2mAh/g,容量保持率仅有72.8 %,循环稳定性较差,充放 电效率约为81%,每次平均比容量衰减率达到2. ImAh/g。产生运种现象的原因可能是,对比 例正极片表面没有喷涂多孔碳层,充放电过程中,正极片中的硫逐渐变成可溶的多硫化物 进入电解液,电解液中的可溶多硫化物循环过程中在正负极之间往复穿梭,产生严重的"穿 梭效应",导致充电比容量明显高于放电比容量,最终导致循环效率低下;同时,电解液中的 多硫化物在循环过程中,产生的导电性差、不溶于电解液、不能参与电化学反应的"死硫"导 致电极结构被破坏,使电极的导电性变差,最终导致电极的循环稳定性不断恶化。
【主权项】
1. 一种锂硫电池复合正极片,包括正极片,所述正极片是由正极集流体以及覆在正极 集流体上的碳硫复合材料层构成的,其特征在于,所述碳硫复合材料层表面覆有多孔碳层, 所述多孔碳层的厚度为0. 〇25-3μπι。2. 如权利要求1所述的锂硫电池复合正极片,其特征在于,所述多孔碳层的孔径为0.5 ~50nm,孔隙率为 46.3-81.7%。3. 如权利要求1所述的锂硫电池复合正极片的制备方法,其特征在于,包括如下步骤: 在真空条件下,向正极片表面涂覆碳材料,形成多孔碳层,即得。4. 如权利要求3所述的锂硫电池复合正极片的制备方法,其特征在于,所述涂覆为溅射 涂覆,包括如下步骤: 以氩气为工作气体,碳丝为靶材,向正极片表面溅射碳材料形成多孔碳层,溅射电压为 24-40V,电流为20-60Amps,溅射时间为5-900s。5. 如权利要求3所述的锂硫电池复合正极片的制备方法,其特征在于,所述正极片采用 如下方法制得: 将碳硫复合材料、导电剂、粘结剂加入有机溶剂中,混匀得正极浆料,将正极浆料涂覆 在正极集流体上,60-105°C下真空干燥,在正极集流体表面形成碳硫复合材料层,即得; 所述碳硫复合材料、导电剂、粘结剂的质量比为1: 〇. 1 -1: 〇. 12 5-0.5。6. 如权利要求5所述的锂硫电池复合正极片的制备方法,其特征在于,所述硫碳复合材 料层的厚度为35-40μπι。
【专利摘要】本发明涉及一种锂硫电池复合正极片及其制备方法,属于锂硫电池技术领域。该锂硫电池复合正极片,包括正极片,所述正极片是由正极集流体以及覆在正极集流体上的碳硫复合材料层构成的,所述碳硫复合材料层表面覆有多孔碳层,所述多孔碳层的厚度为0.025-3μm。采用本发明的复合正极片制备的锂硫电池150次循环放电后的容量保持率最高达到87.0%,循环效率接近100%,大大提高了锂硫电池的循环稳定性及充放电效率。
【IPC分类】H01M10/052, H01M4/133, H01M4/38, H01M4/1393, H01M4/583
【公开号】CN105489892
【申请号】CN201610018750
【发明人】杨书廷, 田栓宝, 李继刚, 岳红云, 董红玉, 尹艳红
【申请人】河南师范大学, 河南锂动电源有限公司
【公开日】2016年4月13日
【申请日】2016年1月8日

最新回复(0)