风电接入电力系统小干扰概率稳定分析的方法及系统的制作方法
【技术领域】
[0001] 本发明设及电气领域,特别设及一种风电接入电力系统小干扰概率稳定分析的方 法及系统。
【背景技术】
[0002] 由于风电出力的随机变化,系统运行点也随机波动。传统的确定性小干扰稳定分 析方法可理解为是分析平衡点的稳定性,即对一个确定运行点进行分析,运种方法难W对 含大规模风电电力系统小干扰稳定性进行准确地分析。为了能够更准确分析风电接入电力 系统小干扰稳定问题的特性,对电力系统小干扰稳定进行概率性分析是很有必要的。
[0003] 目前研究含风电电力系统不确定性问题的概率分析方法主要有蒙特卡罗(Monte 化rlo)法、W快速傅立叶变换法和累积量法为代表的解析法W及W点估计法为代表的近似 法Ξ大类。解析法和近似法需要十分复杂的数学推导与计算。Monte化rlo方法需要大量抽 样,计算量大,但其简单易行,能够模拟各种复杂情况。
[0004] 当前,基于Monte Carlo的风电电力系统小干扰稳定概率分析方法都是针对小系 统搭建模型编程实现的,其实现方法没有利用成熟的适合大系统的稳定分析程序,即BPA程 序,难W应用到实际大系统。而已有的大型电力系统稳定分析程序BPA不具备处理风电出力 的随机性,因而难W实现含风电的大型电力系统小干扰概率稳定分析方法。
[0005] 因此,如何实现基于BPA的风电接入电力系统小干扰概率稳定分析的方法,是本领 域技术人员需要解决的技术问题。
【发明内容】
[0006] 本发明的目的是提供一种风电接入电力系统小干扰概率稳定分析的方法及系统, 可W对含风电的实际电力系统进行小干扰概率分析来全面分析风电接入对实际系统小干 扰稳定性影响。
[0007] 为解决上述技术问题,本发明提供一种风电接入电力系统小干扰概率稳定分析的 方法,包括:
[000引生成各个预定风电场对应的随机风速样本,在各所述随机风速样本的情况下计算 所述预定风电场各自对应的随机出力样本序列;其中,各预定风电场对应的随机风速样本 的数量相同;
[0009] 读取接入预定风电场的电力系统的原始潮流数据文件,并根据所述原始潮流数据 文件确定电力系统中预定风电场的原始总出力及常规机组的原始总出力;
[0010] 按照各个预定风电场的随机出力样本序列,修改接入预定风电场的电力系统的各 个预定风电场的原始出力及各常规机组的原始出力,得到接入预定风电场的电力系统的新 的潮流数据文件;其中,接入预定风电场的电力系统的新的潮流数据文件的数量与随机出 力样本序列的出力样本数相同;
[0011] 调用BPA小干扰稳定分析程序对由各个随机出力样本下的新的潮流数据文件更新 后的每个随机出力样本下的电力系统进行确定性的小干扰稳定性分析,得到分析结果;
[0012] 统计所述分析结果,确定接入预定风电场的电力系统的小干扰稳定概率指标。
[0013] 其中,所述生成各个预定风电场对应的随机风速样本,在各所述随机风速样本的 情况下计算所述预定风电场各自对应的随机出力样本序列,包括:
[0014] 通过mat lab中的We化ull分布样本生成工具箱,生成各个预定风电场的随机风速 样本;
[0015] 根据各个预定风电场的随机风速样本,利用风场出力与风速的关系式,计算得到 所述预定风电场各自对应的随机出力样本序列。
[0016] 其中,所述读取接入预定风电场的电力系统的原始潮流数据文件,并根据所述原 始潮流数据文件确定电力系统中预定风电场的原始总出力及常规机组的原始总出力,包 括:
[0017] 利用matlab中的fscanf文件读取函数W字符串的形式将接入预定风电场的电力 系统的BPA原始潮流文件读入matlab中并赋值给matlab中的字符串变量中;
[001引通过对所述mat lab中的字符串变量的捜索,获取各个预定风电场的风场的出力值 的字符,将风场的出力值的字符转换为数字,并相加得到电力系统中预定风电场的风场原 始总出力;
[0019] 获取所述matlab中的字符串变量中的常规机组的出力值的字符,将常规机组的出 力值的字符转换为数字,并相加得到电力系统中的常规机组原始总出力。
[0020] 其中,所述按照各个预定风电场的随机出力样本序列,修改接入预定风电场的电 力系统的各个预定风电场的原始出力及各常规机组的原始出力,得到接入预定风电场的电 力系统的新的潮流数据文件,包括:
[0021] 依次将各个预定风电场的随机出力样本序列中的各个出力样本的数值转换成字 符串;
[0022] 将各个出力样本的数值对应字符串填入所述matlab中的字符串变量中描述出力 值的字符位置来修改所述matlab中的字符串变量中的各个风场原始出力;
[0023] 计算得到每个随机风速样本下电力系统中预定风电场总出力;
[0024] 根据所述原始潮流文件中的预定风电场的原始总出力及常规机组的原始总出力, 及每个随机风速样本下电力系统中预定风电场总出力,计算得到每个随机风速样本下的电 力系统的潮流文件中的发电有功修改因子;
[0025] 将每个随机风速样本下的电力系统的发电有功修改因子填入所述matlab中的字 符串变量中常规机组PZ卡中,修改所述matlab中的字符串变量的常规机组总出力,得到每 个随机风速样本下的新的mat lab中的字符串变量;
[0026] 将得到的每个随机风速样本下的新的matlab中的字符串变量转换成文件,得到每 个随机风速样本下电力系统的新的潮流数据文件。
[0027] 其中,所述统计所述分析结果,确定接入预定风电场的电力系统的小干扰稳定概 率指标,包括:
[0028] 根据分析结果,统计每个随机风速样本中接入预定风电场的电力系统的特征值的 实部最大值;
[0029] 根据每个随机风速样本中接入预定风电场的电力系统的特征值的实部最大值,利 用Lyapunov稳定判据,得到小干扰稳定概率。
[0030] 本发明提供一种风电接入电力系统小干扰概率稳定分析的系统,包括:
[0031] 样本获取模块,用于生成各个预定风电场对应的随机风速样本,在各所述随机风 速样本的情况下计算所述预定风电场各自对应的随机出力样本序列;其中,各预定风电场 对应的随机风速样本的数量相同;
[0032] 总出力获取模块,用于读取接入预定风电场的电力系统的原始潮流数据文件,并 根据所述原始潮流数据文件确定电力系统中预定风电场的原始总出力及常规机组的原始 总出力;
[0033] 潮流数据文件模块,用于按照各个预定风电场的随机出力样本序列,修改接入预 定风电场的电力系统的各个预定风电场的原始出力及各常规机组的原始出力,得到接入预 定风电场的电力系统的新的潮流数据文件;其中,接入预定风电场的电力系统的新的潮流 数据文件的数量与随机出力样本序列的出力样本数相同;
[0034] BPA模块,用于调用BPA小干扰稳定分析程序对由各个随机出力样本下的新的潮流 数据文件更新后的每个随机出力样本下的电力系统进行确定性的小干扰稳定性分析,得到 分析结果;
[0035] 概率模块,用于统计所述分析结果,确定接入预定风电场的电力系统的小干扰稳 定概率指标。
[0036] 其中,所述样本获取模块包括:
[0037] 风速样本单元,用于通过matlab中的We化ul 1分布样本生成工具箱,生成各个预定 风电场的随机风速样本;
[0038] 出力样本单元,用于根据各个预定风电场的随机风速样本,利用风场出力与风速 的关系式,计算得到所述预定风电场各自对应的随机出力样本序列。
[0039] 其中,所述总出力获取模块包括:
[0040] 读取单元,用于利用matlab中的fscanf文件读取函数W字符串的形式将接入预定 风电场的电力系统的BPA原始潮流文件读入mat lab中并赋值给mat lab中的字符串变量中;
[0041] 风场总出力单元,用于通过对所述matlab中的字符串变量的捜索,获取各个预定 风电场的风场的出力值的字符,将风场的出力值的字符转换为数字,并相加得到电力系统 中预定风电场的风场原始总出力;
[0042] 机组总出力单元,用于获取所述matlab中的字符串变量中的常规机组的出力值的 字符,将常规机组的出力值的字符转换为数字,并相加得到电力系统中的常规机组原始总 出力。
[0043] 其中,所述潮流数据文件模块包括:
[0044] 风场出力转换单元,用于依次将各个预定风电场的随机出力样本序列中的各个出 力样本的数值转换成字符串;
[0045] 风场出力修改单元,用于将各个出力样本的数值对应字符串填入所述matlab中的 字符串变量中描述出力值的字符位置来修改所述matlab中的字符串变量中的各个风场原 始出力;
[0046] 风场总出力单元,用于计算得到每个随机风速样本下电力系统中预定风电场总出 力;
[0047] 因子获取单元,用于根据所述原始潮流文件中的预定风电场的原始总出力及常规 机组的原始总出力,及每个随机风速样本下电力系统中预定风电场总出力,计算得到每个 随机风速样本下
的电力系统的潮流文件中的发电有功修改因子;
[0048] 机组出力修改单元,用于将每个随机风速样本下的电力系统的发电有功修改因子 填入所述mat lab中的字符串变量中常规机组PZ卡中,修改所述mat lab中的字符串变量的常 规机组总出力,得到每个随机风速样本下的新的matlab中的字符串变量;
[0049] 潮流数据文件单元,用于将得到的每个随机风速样本下的新的matlab中的字符串 变量转换成文件,得到每个随机风速样本下电力系统的新的潮流数据文件。
[0050] 其中,所述概率模块包括:
[0051] 计算单元,用于根据分析结果,统计每个随机风速样本中接入预定风电场的电力 系统的特征值的实部最大值;
[0052] 概率单元,用于根据每个随机风速样本中接入预定风电场的电力系统的特征值的 实部最大值,利用Lyapunov稳定判据,得到小干扰稳定概率。
[0053] 本发明所提供的风电接入电力系统小干扰概率稳定分析的方法,包括:生成各个 预定风电场对应的随机风速样本,在各所述随机风速样本的情况下计算所述预定风电场各 自对应的随机出力样本序列;其中,各预定风电场对应的随机风速样本的数量相同;读取接 入预定风电场的电力系统的原始潮流数据文件,并根据所述原始潮流数据文件确定电力系 统中预定风电场的原始总出力及常规机组的原始总出力;按照各个预定风电场的随机出力 样本序列,修改接入预定风电场的电力系统的各个预定风电场的原始出力及各常规机组的 原始出力,得到接入预定风电场的电力系统的新的潮流数据文件;其中,接入预定风电场的 电力系统的新的潮流数据文件的数量与随机出力样本序列的出力样本数相同;调用BPA小 干扰稳定分析程序对由各个随机出力样本下的新的潮流数据文件更新后的每个随机出力 样本下的电力系统进行确定性的小干扰稳定性分析,得到分析结果;统计所述分析结果,确 定接入预定风电场的电力系统的小干扰稳定概率指标;
[0054] 该方法针对大规模风电接入实际电力系统的稳定性分析需要,对于随机波动的风 电出力,采用Monte Carlo方法,WBPA小干扰稳定分析程序为内核的风电接入电力系统小 干扰概率稳定分析系统。该分析系统能够计及风功率随机波动,从而对接入风电的实际大 型电力系统进行小干扰概率分析。该方法可W对含风电的实际电力系统进行小干扰概率分 析来全面分析风电接入对实际系统小干扰稳定性影响。
【附图说明】
[0055] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可W根据 提供的附图获得其他的附图。
[0056] 图1为本发明实施例所提供的风电接入电力系统小干扰概率稳定分析的方法的流 程图;
[0057] 图2为本发明实施例所提供的风场出力与风速的关系式对应的示意图;
[0化引图3为本发明实施例所提供的BPA中PZ卡格式示意图;
[0059] 图4为本发明实施例所提供的风电接入电力系统小干扰概率稳定分析的系统的结 构框图;
[0060] 图5为本发明实施例所提供的1000次仿真中全部特征值最大实部和最小阻尼比的 概率分布。
【具体实施方式】
[0061] 本发明的核屯、是提供一种风电接入电力系统小干扰概率稳定分析的方法及系统, 可W对含风电的实际电力系统进行小干扰概率分析来全面分析风电接入对实际系统小干 扰稳定性影响。
[0062] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例 中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是 本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0063] 请参考图1,图1为本发明实施例所提供的风电接入电力系统小干扰概率稳定分析 的方法的流程图;该方法可W包括:
[0064] slOO、生成各个预定风电场对应的随机风速样本,在各所述随机风速样本的情况 下计算所述预定风电场各自对应的随机出力样本序列;其中,各预定风电场对应的随机风 速样本的数量相同;
[0065] 其中,运里要确定随机风速样本的个数化。
[0066] 各个预定风场的数量是由测试的电力系统的实际情况确定的,例如该电力系统中 有3个风场,则运里的预定风电场的数量是3;运里的随机风速样本的数量是由用户确定的, 用户可W根据对风电接入电力系统小干扰概率稳定分析的准确性的要求,进行设定随机风 速样本。
[0067] 例如运里的随机风速样本中随机风速的个数为1000;则运里需要说明的是,各个 预定风电场都有其对应的随机风速样本,但是各预定风电场对应的随机风速样本的数量相 同,例如有3个预定风电场,随机风速样本中样本的数量为1000,则每个预定风电场都有 1000个随机风速样本,且每个预定风电场对应的随机风速样本中随机风速的数值可W是不 同的,因为是随机获取的;只需要保证随机风速样本中样本的数量是相同的(例如1000);随 机风速样本的个数也可W理解为随机风速的场景数量,对应到上述例子中可W运样理解 1000个随机风速样本即有1000个应用场景;在每个应用场景下Ξ个预定风电场都获取了一 个随机风速值,可W认为一个应用场景下形成一个随机风速样本,每个随机风速样本对应 一组随机风速,运里面一组随机风速就是各个预定风电场在该应用场景下的随机风速值组 成的,如一个应用场景下的一组随机风速样本有3个随机风速分别对应3个风电场;最终就 是有1000个场景,每个预定风电场都会有1000个随机风速值。
[0068] 运里的随机出力样本序列与随机风速样本是对应的,每个随机风速都会对应有一 个随机出力样本,按照上述例子就是有1000个随机风速,就会对应运1000个随机风速产生 1000个随机出力样本,形成一个随机出力样本序列。随机风速与随机出力样本的数量的对 应关系都是一一对应的关系。将步骤100对应到上述例子中就可W得到一个1000*3的矩阵, 每个场景(每个随机风速样本)下即一组随机风速下有3个风速值,而该组随机风速产生对 应的一组风场随机出力,即每个预定风电场对应产生一个随机出力,共计Ξ个。
[0069] 运里并不对随机风速样本中的随机风速的生成方法进行限定。即可W利用matlab 工具箱生成各个风电场的随机风速样本,进而得到各风场随机出力样本序列。每个样本中 的随机出力的个数由待分析系统内的风场数量决定。
[0070] 实现BPA小干扰稳定分析程序与matlab间的数据交互是关键。BPA的小干扰稳定分 析程序是一个封装好的程序,可W将它看作一个黑盒子。该分析程序共有3个输入文件即潮 流数据文件、稳定文件和控制文件,其中潮流文件给出了系统发电机出力、网络参数等数 据。而对于只考虑风电随机出力情况,即在W风电机组出力作为随机变量时,每次抽样样本 只有包括同步发电机和风电机在内的各个机组的实际出力是不同的。因此实现Monte Carlo法的概率分析,只需每次改变潮流数据文件即可。稳定文件和控制文件可W保持不 变。
[0071] sllO、读取接入预定风电场的电力系统的原始潮流数据文件,并根据所述原始潮 流数据文件确定电力系统中预定风电场的原始总出力及常规机组的原始总出力;
[0072] 其中,读取待分析电力系统的BPA原始潮流数据文件并命名为化igFile,进而分别 确定电力系统中风电场的原始总出力和常规机组的原始总出力。
[0073] 根据电力系统的原始潮流数据文件,确定电力系统中预定风电场的原始总出力及 常规机组的原始总出力;具体过程可选的:
[0074] 利用matlab中的fscanf文件读取函数W字符串的形式将接入预定风电场的电力 系统的BPA原始潮流文件读入matlab中并赋值给matlab中的字符串变量中;
[0075] 其中,利用matlab中的fscanf文件读取函数W字符串的形式将接入风电系统的 BPA原始潮流文件读入mat lab中并赋值给Or igFi le。
[0076] 通过对所述mat lab中的字符串变量的捜索,获取各个预定风电场的风场的出力值 的字符,将风场的出力值的字符转换为数字,并相加得到电力系统中预定风电场的风场原 始总出力;
[0077] 获取所述matlab中的字符串变量中的常规机组的出力值的字符,将常规机组的出 力值的字符转换为数字,并相加得到电力系统中的常规机组原始总出力。
[0078] 其中,通过对化igFile的捜索,得到表示实例中各风场出力值的字符的位置从而 获得运些字符,将运些表示风场出力的字符转换为数字,并相加得到风场原始总出力 Pw_nrig,并按照同样方法统计其中常规机组总出力化。
[0079] S120、按照各个预定风电场的随机出力样本序列,修改接入预定风电场的电力系 统的各个预定风电场的原始出力及各常规机组的原始出力,得到接入预定风电场的电力系 统的新的潮流数据文件;其中,接入预定风电场的电力系统的新的潮流数据文件的数量与 随机出力样本序列的出力样本数相同;
[0080
] 其中,根据各风场随机出力样本序列,依次修改化igFile中的各风场和常规机组 出力生成新的潮流数据文件,利用matlab调用BPA小干扰稳定分析程序进行确定性的小干 扰稳定性分析并将分析结果读入mat lab进行记录,直至完成所有样本的分析,共计化次。
[0081] 即在每一个应用场景下即每一个随机风速样本下,对应得到电力系统中各个预定 风电场的对应的随机出力样本,在每一组随机出力样本中,根据每一组随机出力样本中每 个随机出力样本修改预定风电场的原始总出力W及常规机组的原始总出力,得到一个在该 组随机出力样本下即在该组随机风速样本下也即在该应用场景下的新的新的潮流数据文 件,最后得到的新的潮流数据文件的数量与随机出力样本序列的出力样本数相同即与随机 风速样本的个数相同,引用上述例子就是有1000个新的潮流数据文件。
[0082] S130、调用BPA小干扰稳定分析程序对由各个随机出力样本下的新的潮流数据文 件更新后的每个随机出力样本下的电力系统进行确定性的小干扰稳定性分析,得到分析结 果;
[0083] 其中,步骤130可W是利用matlab调用BPA小干扰稳定分析程序进行确定性的小干 扰稳定性分析并将分析结果读入matlab进行记录。
[0084] 具体调用过程可W是:
[00化]利用111日1:1日13中的373161]1函数依次调用6口4中的口;1!']11:.6义6、1?6日(113口41330.6又6、 I3paToLl:p.exe、Ll:pVc60_ForEigenValue.exe和EigenCal.exe完成调用BPA小干扰稳定分析 程序进行一次确定性的小干扰稳定性分析。然后将每次得到的文本结果中的系统模式信息 读入matlab,留作后续分析。
[0086] 运个调用过程是对每一个生成的新的潮流文件都会进行,即当有1000个随机出力 样本则对应产生1000个新的潮流文件,运里就会调用BPA小干扰稳定分析程序分别对由 1000个新的潮流文件更新后的每个随机出力样本下的电力系统进行确定性的小干扰稳定 性分析,得到分析结果。
[0087] 对应到3个风电场,随机风速为1000个时,运里就是有1000个随机风速场景,每个 场景下会产生一个新的潮流文件,对由每个场景下新的潮流文件更新后的每个随机出力样 本下的电力系统进行确定性的小干扰稳定性分析,得到分析结果;因为要确定系统的小干 扰概率稳定性,因此将每个风速场景下即一组随机风速下,对应得到的分析结果,作为对该 风速场景下系统的小干扰概率稳定性分析的依据;即最后形成化组分析结果。
[0088] S140、统计所述分析结果,确定接入预定风电场的电力系统的小干扰稳定概率指 标。
[0089] 其中,对得到的系统模式信息进行处理,统计出小干扰概率稳定指标。例如,可W 采用的小干扰概率稳定指标为小干扰稳定概率时,可选的,计算过程如下:
[0090] 根据分析结果,统计每个随机风速样本中接入预定风电场的电力系统的特征值的 实部最大值;
[0091] 根据每个随机风速样本中接入预定风电场的电力系统的特征值的实部最大值,利 用Lyapunov稳定判据,得到小干扰稳定概率。
[0092] 其中,1)系统重要模式的特征值实部、虚部和阻尼比的均值W及它们的概率分布 情况。运些模式主要是那些反映发电机转子之间振荡频率在0.1~2.0Hz之间的低频振荡模 式,故称为机电振荡模式。
[0093] 2)小干扰稳定概率(Probability of Small Si即al Stability,PSSS)即当小干 扰概率稳定指标为小干扰稳定概率值时,
[0094] 根据Lyapunov稳定判据,当A的特征值实部全小于0时,系统在该运行点是小干扰 稳定的,否则系统就是小干扰失稳的。因此,WA的特征值实部最大值Amax小于0为稳定依据, 则系统小干扰稳定概率Psss可定义为:
[0095]
[0096] 其中,Nls为Amax小于0的样本数,Ns为总样本数。
[0097] 基于上述技术方案,本发明实施例提供的一种风电接入电力系统小干扰概率稳定 分析的方法,针对大规模风电接入实际电力系统的稳定性分析需要,对于随机波动的风电 出力,采用Monte Carlo方法,WBPA小干扰稳定分析程序为内核的风电接入电力系统小干 扰概率稳定分析系统。该分析系统能够计及风功率随机波动,从而对接入风电的实际大型 电力系统进行小干扰概率分析。该方法可W对含风电的实际电力系统进行小干扰概率分析 来全面分析风电接入对实际系统小干扰稳定性影响。
[0098] 该方法所提到的Monte化rlo方法为是一种利用重复的统计实验来求解实际问题 的方法。该方法不需要进行近似,因此精度很高,能更准确掲示风电出力随机波动下的系统 稳定情况,运也是Monte Carlo方法成为验证其它方法有效性的原因。更主要的是,它与系 统规模无关,运使得将概率分析应用到实际大型电力系统的分析中成为一种可能。
[0099] 基于上述技术方案,可选的,所述生成各个预定风电场对应的随机风速样本,在各 所述随机风速样本的情况下计算所述预定风电场各自对应的随机出力样本序列,可W包 括:
[0100] 通过mat lab中的We化ull分布样本生成工具箱,生成各个预定风电场的随机风速 样本;
[0101] 其中,具体过程可W如下:
[0102] 风电出力的随机性主要来自风速的不确定,本发明可W采用两参数的Weibull分 布描述风速V的概率分布特性,其概率密度函数为:
[0103]
[0104] 其中,C为尺度参数,它表征了平均风速的大小;k为形状参数,它能够反映风速分 布的特点,对应着We化ull分布的形状。利用(2)可W得到风速的随机样本。在本发明中可W 通过matlab中的We化ull分布样本生成工具箱生成各个风场的随机风速样本的。实例分析 中。可^取7.2,4可^取2.9。
[0105] 根据各个预定风电场的随机风速样本,利用风场出力与风速的关系式,计算得到 所述预定风电场各自对应的随机出力样本序列。
[0106] 其中,具体过程可W如下:
[0107] 为了得到风场的随机出力样本,还需利用风场出力P与风速V之间的相互关系。工 程实际中,风机并网的最小出力限制和对其施加的控制措施使得风场出力与风速之间存在 图2中给出的近似关系,其中,Vd、Vr和V。。分别为风机的切入风速、额定风速和切出风速,Pr 为风电机组的额定有功出力。ai为风机并网的最小出力占额定出力的比例系数,理论上〇< ai<l 〇
[0108] 根据图2,可得风电出力与风速的数学关系近似为:
[0109]
[0110] 其中,曰2 = 1-曰1。利用式(3)即可将风速样本转换成风电的随机出力样本。本实例中 Vci可 W 取3m/s,Vr可 W 取1 Om/s,Vco可 W 取25m/s,ai可 W 取0.13,Pr可 W 取 1.0。
[0111] 基于上述技术方案,可选的,所述按照各个预定风电场的随机出力样本序列,修改 接入预定风电场的电力系统的各个预定风电场的原始出力及各常规机组的原始出力,得到 接入预定风电场的电力系统的新的潮流数据文件,可W包括:
[0112] 依次将各个预定风电场的随机出力样本序列中的各个出力样本的数值转换成字 符串;
[0113] 将各个出力样本的数值对应字符串填入所述matlab中的字符串变量中描述出力 值的字符位置来修改所述matlab中的字符串变量中的各个风场原始出力;
[0114] 计算得到每个随机风速样本下电力系统中预定风电场总出力;
[0115] 其中,上述具体过程如下:
[0116] 将随机出力样本序列中第η个随机风速样本中的各风电场出力数值转换成字符 串,再将运些字符串填入化i评ile中描述各风电场实际出力的字符位置来修改化igFile中 的各风场出力。最后,计算该次样本中风电场总出力Pws。
[0117] 根据所述原始潮流文件中的预定风电场的原始总出力及常规机组的原始总出力, 及每个随机风速样本下电力系统中预定风电场总出力,计算得到每个随机风速样本下的电 力系统的潮流文件中的发电有功修改因子;
[0118] 将每个随机风速样本下的电力系统的发电有功修改因子填入所述matlab中的字 符串变量中常规机组PZ卡中,修改所述matlab中的字符串变量的常规机组总出力,得到每 个随机风速样本下的新的mat lab中的字符串变量;
[0119] 将得到的每个随机风速样本下的新的matlab中的字符串变量转换成文件,得到每 个随机风速样本下电力系统的新的潮流数据文件。
[0120] 其中,实际系统中风电出力的变化通常由该区域内的火电机组等常规机组来平 衡。由于BPA潮流文件中通常都将电源按其类型做归类处理,运为每次自动改变处核电之外 的常规电源出力保证系统潮流平衡带来了方便。BPA中的CHANGES控制语句和PZ卡(发电出 力负荷百分数修改卡)可W实现对同一类型的电源按比例调节其有功和无功出力。图3给出 了 PZ卡的填写方式和各数据意义。PZ为修改卡标记,C1电源类型,1.0负荷有功修改因子, 1.0负荷无功
修改因子,1.0发电有功修改因子,1.0发电无功修改因子。利用公式(3)得到发 电有功修改因子k3,最后将k3填入化igFile中的常规机组PZ卡里就得到修改后的潮流文件 NewFile。
[01 別]k3=l-(PwZ-Pw_orig)/化 (4)
[0122] 其中,风电场总出力Ι\?,风场原始总出力Pw_Drig,常规机组总出力Pc。
[0123] 运个过程可W循环进行即按照随机出力样本序列中随机出力样本的顺序依次进 行上述过程,计算得到随机出力样本对应的新的潮流数据文件。也可W并行处理运些数据。 提高处理速度。
[0124] 基于上述技术方案,本发明实施例提供的一种风电接入电力系统小干扰概率稳定 分析的方法,针对大规模风电接入实际电力系统的稳定性分析需要,对于随机波动的风电 出力,采用Monte Carlo方法,WBPA小干扰稳定分析程序为内核的风电接入电力系统小干 扰概率稳定分析系统。该分析系统能够计及风功率随机波动,从而对接入风电的实际大型 电力系统进行小干扰概率分析。该方法可W对含风电的实际电力系统进行小干扰概率分析 来全面分析风电接入对实际系统小干扰稳定性影响。
[0125] 本发明实施例提供了风电接入电力系统小干扰概率稳定分析的方法,可W对含风 电的实际电力系统进行小干扰概率分析来全面分析风电接入对实际系统小干扰稳定性影 响。
[0126] 下面对本发明实施例提供的风电接入电力系统小干扰概率稳定分析的系统进行 介绍,下文描述的风电接入电力系统小干扰概率稳定分析的系统与上文描述的风电接入电 力系统小干扰概率稳定分析的方法可相互对应参照。
[0127] 请参考图4,图4为本发明实施例所提供的风电接入电力系统小干扰概率稳定分析 的系统的结构框图;该系统可W包括:
[0128] 样本获取模块100,用于生成各个预定风电场对应的随机风速样本,在各所述随机 风速样本的情况下计算所述预定风电场各自对应的随机出力样本序列;其中,各预定风电 场对应的随机风速样本的数量相同;
[0129] 总出力获取模块200,用于读取接入预定风电场的电力系统的原始潮流数据文件, 并根据所述原始潮流数据文件确定电力系统中预定风电场的原始总出力及常规机组的原 始总出力;
[0130] 潮流数据文件模块300,用于按照各个预定风电场的随机出力样本序列,修改接入 预定风电场的电力系统的各个预定风电场的原始出力及各常规机组的原始出力,得到接入 预定风电场的电力系统的新的潮流数据文件;其中,接入预定风电场的电力系统的新的潮 流数据文件的数量与随机出力样本序列的出力样本数相同;
[0131] BPA模块400,用于调用BPA小干扰稳定分析程序对由各个随机出力样本下的新的 潮流数据文件更新后的每个随机出力样本下的电力系统进行确定性的小干扰稳定性分析, 得到分析结果;
[0132] 概率模块500,用于统计所述分析结果,确定接入预定风电场的电力系统的小干扰 稳定概率指标。
[0133] 可选的,所述样本获取模块100包括:
[0134] 风速样本单元,用于通过matlab中的We化ul 1分布样本生成工具箱,生成各个预定 风电场的随机风速样本;
[0135] 出力样本单元,用于根据各个预定风电场的随机风速样本,利用风场出力与风速 的关系式,计算得到所述预定风电场各自对应的随机出力样本序列。
[0136] 可选的,所述总出力获取模块200包括:
[0137] 读取单元,用于利用matlab中的fscanf文件读取函数W字符串的形式将接入预定 风电场的电力系统的BPA原始潮流文件读入mat lab中并赋值给mat lab中的字符串变量中;
[0138] 风场总出力单元,用于通过对所述matlab中的字符串变量的捜索,获取各个预定 风电场的风场的出力值的字符,将风场的出力值的字符转换为数字,并相加得到电力系统 中预定风电场的风场原始总出力;
[0139] 机组总出力单元,用于获取所述matlab中的字符串变量中的常规机组的出力值的 字符,将常规机组的出力值的字符转换为数字,并相加得到电力系统中的常规机组原始总 出力。
[0140] 可选的,所述潮流数据文件模块300包括:
[0141] 风场出力转换单元,用于依次将各个预定风电场的随机出力样本序列中的各个出 力样本的数值转换成字符串;
[0142] 风场出力修改单元,用于将各个出力样本的数值对应字符串填入所述matlab中的 字符串变量中描述出力值的字符位置来修改所述matlab中的字符串变量中的各个风场原 始出力;
[0143] 风场总出力单元,用于计算得到每个随机风速样本下电力系统中预定风电场总出 力;
[0144] 因子获取单元,用于根据所述原始潮流文件中的预定风电场的原始总出力及常规 机组的原始总出力,及每个随机风速样本下电力系统中预定风电场总出力,计算得到每个 随机风速样本下的电力系统的潮流文件中的发电有功修改因子;
[0145] 机组出力修改单元,用于将每个随机风速样本下的电力系统的发电有功修改因子 填入所述mat lab中的字符串变量中常规机组PZ卡中,修改所述mat lab中的字符串变量的常 规机组总出力,得到每个随机风速样本下的新的matlab中的字符串变量;
[0146] 潮流数据文件单元,用于将得到的每个随机风速样本下的新的matlab中的字符串 变量转换成文件,得到每个随机风速样本下电力系统的新的潮流数据文件。
[0147] 可选的,所述概率模块500包括:
[0148] 计算单元,用于根据分析结果,统计每个随机风速样本中接入预定风电场的电力 系统的特征值的实部最大值;
[0149] 概率单元,用于根据每个随机风速样本中接入预定风电场的电力系统的特征值的 实部最大值,利用Lyapunov稳定判据,得到小干扰稳定概率。
[0150] 本系统针对概率分析方法不能应用到实际大型电力系统小干扰稳定性分析中的 现实问题,提出了基于BPA的风电接入电力系统小干扰概率稳定分析方法。利用接入风电的 3机9节点系统进行了实例验证,结果表明该方法能够实现预期目标,可W对含风电的实际 电力系统进行小干扰概率分析来全面分析风电接入对实际系统小干扰稳定性影响。
[0151] 具体3机9节点系统接入风电的实例过程如下:接入风电的3机9节点系统实例(下 面简称实例),每个样本中的元素个数为1个,而化取1000。
[0152] 利用前述各步分析得到如下结果,表1给出了风电接入前系统的机电振荡模式(它 是根据振荡模式的机电回路相关比P选择出来的,P〉〉l为机电模式,P<1为非机电模式),原 系统有2个机电模式,即模式1和模式2。
[0153] 表1风电接入前系统的机电振荡模式
[0154]
[01W]选用单机容量为3.6MW的双馈风电机组接入3机9节点系统中的母线6,研究接入 50.4MW(渗透率为13.8% )双馈风场对系统的小干扰稳定性的影响。对上述系统做小干扰概 率稳定分析,调用BPA做1000次计算模拟风电出力的随机波动,得到该渗透率下系统机电模 式和靠近虚轴的新增振荡模式的参数均值,如表2所示。
[0156]表2风电渗透率为13.8 %时系统振荡模式均值
[0157]
[015引通过表2可W得到:
[0159] 1)双馈型风场接入后系统的机电振荡模式仍为2个,并未增加与发电机功角强相 关的振荡模式。
[0160] 2)双馈风场接入后,原有机电模式的阻尼比均值变小,风电接入对系统小干扰稳 定性有负面影响。
[0161] 3)双馈型风场接入系统会出现新的振荡模式,新出现的模式中存在很靠近虚轴的 模式3,意味着增加了系统不稳定的风险。
[0162] 图5给出的是1000次仿真中全部特征值最大实部和最小阻尼比的概率分布情况。 从图中可W看出:系统特征值的最大实部都小于0,在1000次仿真中没有出现失稳的情况, 系统小干扰稳定概率指标Psss都为1。说明尽管风电接入后使系统失稳风险增大了,但系统 仍有较好的小干扰稳定性。
[0163] 说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实 施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而 言,由于其与实施例公开的方法相对应,所W描述的比较简单,相关之处参见方法部分说明 即可。
[0164] 专业人员还可W进一步意识到,结合本文中所公开的实施例描述的各示例的单元 及算法步骤,能够W电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和 软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。运些 功能究竟W硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业 技术人员可W对每个特定的应用来使用不同方法来实现所描述的功能,但是运种实现不应 认为超出本发明的范围。
[0165] 结合本文中所公开的实施例描述的方法或算法的步骤可W直接用硬件、处理器执 行的软件模块,或者二者的结合来实施。软件模块可W置于随机存储器(RAM)、内存、只读存 储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存
器、硬盘、可移动磁盘、CD-ROM、或技术 领域内所公知的任意其它形式的存储介质中。
[0166] W上对本发明所提供的风电接入电力系统小干扰概率稳定分析的方法及系统进 行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,W上实施 例的说明只是用于帮助理解本发明的方法及其核屯、思想。应当指出,对于本技术领域的普 通技术人员来说,在不脱离本发明原理的前提下,还可W对本发明进行若干改进和修饰,运 些改进和修饰也落入本发明权利要求的保护范围内。
【主权项】
1. 一种风电接入电力系统小干扰概率稳定分析的方法,其特征在于,包括: 生成各个预定风电场对应的随机风速样本,在各所述随机风速样本的情况下计算所述 预定风电场各自对应的随机出力样本序列;其中,各预定风电场对应的随机风速样本的数 量相同; 读取接入预定风电场的电力系统的原始潮流数据文件,并根据所述原始潮流数据文件 确定电力系统中预定风电场的原始总出力及常规机组的原始总出力; 按照各个预定风电场的随机出力样本序列,修改接入预定风电场的电力系统的各个预 定风电场的原始出力及各常规机组的原始出力,得到接入预定风电场的电力系统的新的潮 流数据文件;其中,接入预定风电场的电力系统的新的潮流数据文件的数量与随机出力样 本序列的出力样本数相同; 调用BPA小干扰稳定分析程序对由各个随机出力样本下的新的潮流数据文件更新后的 每个随机出力样本下的电力系统进行确定性的小干扰稳定性分析,得到分析结果; 统计所述分析结果,确定接入预定风电场的电力系统的小干扰稳定概率指标。2. 如权利要求1所述的方法,其特征在于,所述生成各个预定风电场对应的随机风速样 本,在各所述随机风速样本的情况下计算所述预定风电场各自对应的随机出力样本序列, 包括: 通过matlab中的Weibull分布样本生成工具箱,生成各个预定风电场的随机风速样本; 根据各个预定风电场的随机风速样本,利用风场出力与风速的关系式,计算得到所述 预定风电场各自对应的随机出力样本序列。3. 如权利要求1所述的方法,其特征在于,所述读取接入预定风电场的电力系统的原始 潮流数据文件,并根据所述原始潮流数据文件确定电力系统中预定风电场的原始总出力及 常规机组的原始总出力,包括: 利用mat1ab中的fscanf文件读取函数以字符串的形式将接入预定风电场的电力系统 的BPA原始潮流文件读入matlab中并赋值给matlab中的字符串变量中; 通过对所述matlab中的字符串变量的搜索,获取各个预定风电场的风场的出力值的字 符,将风场的出力值的字符转换为数字,并相加得到电力系统中预定风电场的风场原始总 出力; 获取所述matlab中的字符串变量中的常规机组的出力值的字符,将常规机组的出力值 的字符转换为数字,并相加得到电力系统中的常规机组原始总出力。4. 如权利要求3所述的方法,其特征在于,所述按照各个预定风电场的随机出力样本序 列,修改接入预定风电场的电力系统的各个预定风电场的原始出力及各常规机组的原始出 力,得到接入预定风电场的电力系统的新的潮流数据文件,包括: 依次将各个预定风电场的随机出力样本序列中的各个出力样本的数值转换成字符串; 将各个出力样本的数值对应字符串填入所述matlab中的字符串变量中描述出力值的 字符位置来修改所述matlab中的字符串变量中的各个风场原始出力; 计算得到每个随机风速样本下电力系统中预定风电场总出力; 根据所述原始潮流文件中的预定风电场的原始总出力及常规机组的原始总出力,及每 个随机风速样本下电力系统中预定风电场总出力,计算得到每个随机风速样本下的电力系 统的潮流文件中的发电有功修改因子; 将每个随机风速样本下的电力系统的发电有功修改因子填入所述matlab中的字符串 变量中常规机组PZ卡中,修改所述mat1ab中的字符串变量的常规机组总出力,得到每个随 机风速样本下的新的matlab中的字符串变量; 将得到的每个随机风速样本下的新的matlab中的字符串变量转换成文件,得到每个随 机风速样本下电力系统的新的潮流数据文件。5. 如权利要求1所述的方法,其特征在于,所述统计所述分析结果,确定接入预定风电 场的电力系统的小干扰稳定概率指标,包括: 根据分析结果,统计每个随机风速样本中接入预定风电场的电力系统的特征值的实部 最大值; 根据每个随机风速样本中接入预定风电场的电力系统的特征值的实部最大值,利用Lyapunov稳定判据,得到小干扰稳定概率。6. -种风电接入电力系统小干扰概率稳定分析的系统,其特征在于,包括: 样本获取模块,用于生成各个预定风电场对应的随机风速样本,在各所述随机风速样 本的情况下计算所述预定风电场各自对应的随机出力样本序列;其中,各预定风电场对应 的随机风速样本的数量相同; 总出力获取模块,用于读取接入预定风电场的电力系统的原始潮流数据文件,并根据 所述原始潮流数据文件确定电力系统中预定风电场的原始总出力及常规机组的原始总出 力; 潮流数据文件模块,用于按照各个预定风电场的随机出力样本序列,修改接入预定风 电场的电力系统的各个预定风电场的原始出力及各常规机组的原始出力,得到接入预定风 电场的电力系统的新的潮流数据文件;其中,接入预定风电场的电力系统的新的潮流数据 文件的数量与随机出力样本序列的出力样本数相同; BPA模块,用于调用BPA小干扰稳定分析程序对由各个随机出力样本下的新的潮流数据 文件更新后的每个随机出力样本下的电力系统进行确定性的小干扰稳定性分析,得到分析 结果; 概率模块,用于统计所述分析结果,确定接入预定风电场的电力系统的小干扰稳定概 率指标。7. 如权利要求6所述的系统,其特征在于,所述样本获取模块包括: 风速样本单元,用于通过matlab中的Weibull分布样本生成工具箱,生成各个预定风电 场的随机风速样本; 出力样本单元,用于根据各个预定风电场的随机风速样本,利用风场出力与风速的关 系式,计算得到所述预定风电场各自对应的随机出力样本序列。8. 如权利要求6所述的系统,其特征在于,所述总出力获取模块包括: 读取单元,用于利用matlab中的fscanf文件读取函数以字符串的形式将接入预定风电 场的电力系统的BPA原始潮流文件读入matlab中并赋值给matlab中的字符串变量中; 风场总出力单元,用于通过对所述matlab中的字符串变量的搜索,获取各个预定风电 场的风场的出力值的字符,将风场的出力值的字符转换为数字,并相加得到电力系统中预 定风电场的风场原始总出力; 机组总出力单元,用于获取所述mat1ab中的字符串变量中的常规机组的出力值的字 符,将常规机组的出力值的字符转换为数字,并相加得到电力系统中的常规机组原始总出 力。9. 如权利要求8所述的系统,其特征在于,所述潮流数据文件模块包括: 风场出力转换单元,用于依次将各个预定风电场的随机出力样本序列中的各个出力样 本的数值转换成字符串; 风场出力修改单元,用于将各个出力样本的数值对应字符串填入所述matlab中的字符 串变量中描述出力值的字符位置来修改所述matlab中的字符串变量中的各个风场原始出 力; 风场总出力单元,用于计算得到每个随机风速样本下电力系统中预定风电场总出力; 因子获取单元,用于根据所述原始潮流文件中的预定风电场的原始总出力及常规机组 的原始总出力,及每个随机风速样本下电力系统中预定风电场总出力,计算得到每个随机 风速样本下的电力系统的潮流文件中的发电有功修改因子; 机组出力修改单元,用于将每个随机风速样本下的电力系统的发电有功修改因子填入 所述matlab中的字符串变量中常规机组PZ卡中,修改所述matlab中的字符串变量的常规机 组总出力,得到每个随机风速样本下的新的matlab中的字符串变量; 潮流数据文件单元,用于将得到的每个随机风速样本下的新的matlab中的字符串变量 转换成文件,得到每个随机风速样本下电力系统的新的潮流数据文件。10. 如权利要求6所述的系统,其特征在于,所述概率模块包括: 计算单元,用于根据分析结果,统计每个随机风速样本中接入预定风电场的电力系统 的特征值的实部最大值; 概率单元,用于根据每个随机风速样本中接入预定风电场的电力系统的特征值的实部 最大值,利用Lyapunov稳定判据,得到小干扰稳定概率。
【专利摘要】本发明公开了风电接入电力系统小干扰概率稳定分析的方法及系统:生成各个预定风电场对应的随机风速样本,计算所述预定风电场各自对应的随机出力样本序列;读取接入预定风电场的电力系统的原始潮流数据文件,确定电力系统中预定风电场的原始总出力及常规机组的原始总出力;按照各个预定风电场的随机出力样本序列,修改各个预定风电场的原始出力及各常规机组的原始出力,新的潮流数据文件;调用BPA小干扰稳定分析程序对由新的潮流数据文件更新后的电力系统进行确定性的小干扰稳定性分析;统计所述分析结果,确定电力系统的小干扰稳定概率指标;对含风电的电力系统进行小干扰概率分析全面分析风电接入对系统小干扰稳定性影响。
【IPC分类】H02J3/00, H02J3/38
【公开号】CN105490263
【申请号】CN201510824724
【发明人】苏展, 徐谦, 周明, 孙黎滢, 李静宇, 杨升峰, 李庚银
【申请人】国家电网公司, 国网浙江省电力公司经济技术研究院, 华北电力大学
【公开日】2016年4月13日
【申请日】2015年11月24日