一种载波频偏估计方法和系统的制作方法

xiaoxiao2021-2-23  185

一种载波频偏估计方法和系统的制作方法
【技术领域】
[0001] 本发明设及通信技术领域,具体的设及一种载波频偏估计方法和系统。
【背景技术】
[0002] 载波同步是通信系统中的重点技术之一,尤其对于0FDM((lrthogonal Frequent Division Multiplexing,正交频分多路复用技术)体制的通信网络,载波同步技术是整个 通信系统能否正常运行、各终端是否能够正常交互的关键所在。
[0003] 在单用户系统中只存在一个载波频率偏移,接收端可W直接通过分析接收信号的 连续相移对其进行估计。例如在时域上分析一个符号末尾处的信号相对于循环前缀的相 移,或在频域上分析相邻符号之间导频点上接收信号的相移。
[0004] 然而在MU-MIMO(Multi-User Multiple-I吨ut Multiple-Output,多用户多入多 出技术)0FDM上行链路中,接收端需要同步多个用户各自不同的载波频偏。为了补偿多个用 户各自的载波频偏,接收端首先需要根据信道信息来分离各用户信号,再分别对各自的载 波频偏进行补偿。因此MU-MIM0 OFDM上行链路中的补偿无在频域上的信道估计和载波频偏 跟踪会一直受到载波间干扰的影响。

【发明内容】

[000引有鉴于此,本发明提供了一种载波频偏估计方法和系统,W解决现有技术中接收 端首先需要根据信道信息来分离各用户信号,再分别对各自的载波频偏进行补偿。因此MU-MIM0 OFDM上行链路中的补偿无在频域上的信道估计和载波频偏跟踪会一直受到载波间干 扰的影响问题,其技术方案如下:
[0006] -种载波频偏估计方法,应用于上行链路多用户多入多出正交频分多路复用技术 MU-MIM0 0抑Μ系统,所述系统包括接收端W及无线台站,所述接收端包括Nr个接收天线,所 述无线台站包括N个发射机,N为大于等于1的正整数,Nr为大于等于N的正整数,所述载波频 偏估计方法包括:
[0007] 第i发射机依据与其对应的下行链路的载波频偏估计对待发送的第i OFDM信号进 行载波频偏预矫正,所述第i 0抑Μ信号中承载有导频子载波,i为大于等于1小于等于N的正 整数,N个所述发射机待发送的N个OFDM信号中承载的导频子载波相同;
[0008] 接收端依据实际接收到的所述N个OFDM信号中的导频子载波W及所述N个所述发 射机待发送的OFDM信号中原始的导频子载波估计出N个OFDM信号的公共残留载波频偏ξ = (1'1)-11^,其中(=阳1(則^,其中狂=6"*,1(为大于等于1小于等于加勺正整数,其中,所 述估计公共残留载波频偏ξ = (Μ'ΜΓ?Μν的方法包括:
[0009] 确定第q个发射机对应的接收导频)',,=巧,其中Xq = diag(Xq,i, Xq,2,K,Xq,N)为来自N路发射机的第q个导频图案的联合导频信号矩阵,Hq是所述第q个导频 图案的联合信道,nq为第q个导频图案的噪声,q为大于等于1小于等于Q的正整数;
[0010] 对所有Q个导频图案的公共相位误差进行联合估计,所述Q个导频图案的输入输出 关系为y = M.p+n,其中,= [乂记L诚]是全部接收导频图案,时;訂,旬是与全部导 频图案对应的噪声,M=[化ιΧι)τ,化2X2)t,K化qXq)t]t是包含了信道响应和导频信号的联合 矩阵,Q为大于等于1的正整数;
[0011] 确定出公共残留载波频偏C = (M'MriM'y。
[0012] 其中,所述第i发射机依据与其对应的下行链路的载波频偏估计对待发送的第i 0抑Μ信号进行载波频偏预矫正包括:
[0013] 所述第i发射机估计相对于所述接收端的载波频偏δ;
[0014] 确定出所述载波频偏δ与所述第i个OFDM信号的连续时间信号的关系为
其中,xi[n]是所述第i个OFDM信号的第η个时域样 本,Κ是FFT的点数,L是(FDM信号的长度,Ts是采样时间,η为大于等于1小于等于L的正整数, L,K均为大于等于1的正整数;
[0015] 依据
确定出所述第i个OFDM信号的第k个子载波 受载波频偏影响得到的所述接收端接收到的信号
[0016] 依据所述
对所述待发送的OFDM信号 进行载波频偏预矫正。
[0017] 其中,还包括;
[0018] 所述接收端依据所述公共残留载波频偏ξ = (1'1)-11'7对接收的信号
进行补偿,得到最终补偿的信号Yi,kC。
[0019] -种应用于上行链路多用户多入多出正交频分多路复用技术MU-MIM0 OFDM系统, 所述系统包括接收端W及无线台站,所述接收端包括Nr个接收天线,所述无线台站包括N个 发射机,N为大于等于1的正整数,Nr为大于等于N的正整数;
[0020] 所述发射机包括预矫正模块,所述预矫正模块用于依据与其对应的下行链路的载 波频偏估计对待发送的第i 0抑Μ信号进行载波频偏预矫正,所述第i (FDM信号中承载有导 频子载波,i为大于等于1小于等于N的正整数,N个所述发射机待发送的N个OFDM信号中承载 的导频子载波相同;
[0021] 所述接收端包括估计模块,所述估计模块用于依据实际接收到的所述N个OFDM信 号中的导频子载波W及所述N个所述发射机待发送的OFDM信号中原始的导频子载波估计出 N个(FDM信号的公共残留载波频偏写=(1'1厂^^,其中(=指1(如\其中篡=6^'6^,1(为大 于等于1小于等于N的正整数,其中,所述估计模块包括:
[002引第一确定单元,用于确定第9路接收导频六=馬^'€ + ',*,^9,其中乂。= (11曰邑 (Xq,l,Xq,2,K,Xq,N)为来自N路发射机的第q个导频图案的联合导频信号矩阵,Hq是所述第q个 导频图案的联合信道,nq为第q个导频图案的噪声,q为大于等于1小于等于Q的正整数;
[0023] 联合估计单元,用于对所有Q个导频图案的公共相位误差进行联合估计,所述Q个 导频图案的输入输出关系为y = M . p+n,其中,
是全部接收导频图案,
是与全部导频图案对应的噪声,M=[化ιΧι)τ,化2拉)τ,Κ化qXq)t]t是包含了信 道响应和导频信号的联合矩阵,Q为大于等于1的正整数;
[0024] 第二确定单元,用于确定出公共残留载波频偏C = (M'MriM'y。
[0025] 其中,其特征在于,所述预矫正模块包括:
[0026] 载波频偏估计单元,用于所述第i发射机估计相对于所述接收端的载波频偏δ ;
[0027] 第Ξ确定单元,用于确定出所述载波频偏δ与所述第i个OFDM信号的连续时间信号 的关系为
其中,xi[n]是所述第i个OFDM信号的第η 个时域样本,Κ是FFT的点数,L是OFDM信号的长度,Ts是采样时间,η为大于等于1小于等于L 的正整数,L,Κ均为大于等于1的正整数;
[002引第四确定单元,用于依据
确定出,所述第i 个OFDM信号的第k个子载波受载波频偏影响得到的所述接收端接收到的信号Yi,k,
[0029] 预矫正单元,用于依据所述
对所述待 发送的(FDM信号进行载波频偏预矫正。
[0030] 其中,所述接收端还包括:
[0031] 补偿模块,用于依据所述公共残留载波频偏ξ=(M'MΓlM'y对接收的信号
进行补偿,得到最终补偿的信号Yi,kC。
[0032] 上述技术方案具有如下有益效果:
[0033] 对于来自不同发射机的多个上行链路发射的情况,由于存在多路载波频偏,一个 载波频偏对应一个发射机,在运种情况下很难在接收端对载波频偏进行估计和校正。原因 就在于接收端的复合时域信号是一个关于载波频偏的高度非线性函数。因此,为了降低复 杂度,本发明实施例提供的载波频偏估计方法在发送OFDM信号前对载波频偏进行校正,目 的是在接收端唯一需要校正的偏差是一个公共残留载波频偏。运样接收端可W对接收到的 N个OFDM信号进行统一的公共残留载波频偏补偿即可,与现有技术相比,不需要根据信道信 息来分离各用户信号,再分别对各自的载波频偏进行补偿,因此不存在信道估计和载波频 偏跟踪会一直受到载波间干扰的影响的现象。
【附图说明】
[0034] 图1为本发明实施例提供的一种载波频偏估计方法的一种实现方式的方法流程示 意图;
[0035] 图2为本发明实施例提供的一种载波频偏估计方法中的第i发射机依据与其对应 的下行链路的载波频偏估计对待发送的第i OFDM信号进行载波频偏预矫正的一种实现方 式的方法流程示意图;
[0036] 图3为本发明实施例提 供的一种MU-MIM0中上行链路中的发射机与接收端的系统 框图;
[0037] 图4为本发明实施例提供的一种应用于上行链路多用户多入多出正交频分多路复 用技术MU-MIM0 0抑Μ系统的结构示意图;
[0038] 图5为本发明实施例提供的一种应用于上行链路多用户多入多出正交频分多路复 用技术MU-MIM0 0抑Μ系统中的预矫正模块的一种实现方式的结构示意图。
【具体实施方式】
[0039] 为了引用和清楚起见,下文中使用的技术名词的说明、简写或缩写总结如下:
[0040] (FDM:0;rthogonal Frequen巧 Division Multiplexing,正交频分多路复用技术; [0041 ] MU-MIMO:Multi-User Multiple-I吨ut Multiple-Output,多用户多入多出技术;
[0042] FFTihst Fourier Transformation,快速傅氏变换;
[0043] QAM:如a化a1:ure Ampli1:ude Modulation,正交振幅调制;
[0044] Error Correction,前向纠错。
[0045] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完 整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例,都属于本发明保护的范围。
[0046] 本发明可W满足MU-MIM0 OFDM系统中载波同步的要求,克服现有技术的不足,提 供应用于上行链路MU-MIM0 0抑Μ系统的载波频偏估计方法。对于802.11中传统的单发射机 单接收机传输情况,载波频偏通常采用训练样本进行估计随后在接收端进行校正。对于下 行链路MU-MIM0的情况,由于无线台站存在多路接收机,每一路接收机会分别进行频偏估计 和校正。然而,对于上行链路MU-MIM0的情况,很难在接收端对载波频偏进行估计和校正。原 因就在于接收端的复合时域信号是一个关于载波频偏的高度非线性函数。因此,为了降低 复杂度,有必要在发送OFDM信号前对载波频偏进行预校正,目的是在接收端唯一需要校正 的偏差是一个公共残留载波频偏。本发明给出了上行链路MU-MIM0体制下载波频率同步的 详尽步骤描述,结合载波频偏预估计与公共残留载波频偏估计算法实现对于载波频偏的跟 踪和校正,W达到载波同步的目的。
[0047] 本发明的发明思想包括:首先依据发射机对应的下行链路载波频偏估计对发射机 的上行链路载波频偏预校正,其次在接收端的对公共残留载波频偏进行误差估计。
[0048] 请参阅图1,为本发明实施例提供的一种载波频偏估计方法的一种实现方式的方 法流程示意图,该方法应用于上行链路多用户多入多出正交频分多路复用技术MU-MIM0 OFDM系统,所述系统包括接收端W及无线台站,所述接收端包括Nr个接收天线,所述无线台 站包括N个发射机,N为大于等于1的正整数,Nr为大于等于N的正整数,所述载波频偏估计方 法包括:
[0049] 步骤S101:第i发射机依据与其对应的下行链路的载波频偏估计对待发送的第i 0抑Μ信号进行载波频偏预矫正。
[0050] 本发明实施例中有Ν个发射机,第i发射机对应的待发送信号为第i OFDM信号。
[0051] 所述第i OFDM信号中承载有导频子载波,i为大于等于1小于等于N的正整数,N个 所述发射机待发送的N个OFDM信号中承载的导频子载波相同。
[0052] 在上行链路MU-MIM0体制下,由于存在多个发射机即多路数据源,每一路发射机发 送的数据源会产生不同的残留载波频偏,因而跟踪残留载波频偏和相位噪声的过程是非常 困难的。为了解决运一问题,本发明实施例巧妙的利用了存在于每一个(FDM信号中已知的 导频子载波。
[0053] 步骤S102:接收端依据实际接收到的所述N个(FDM信号中的导频子载波W及所述N 个所述发射机待发送的OFDM信号中原始的导频子载波估计出N个OFDM信号的公共残留载波 频偏 C = (M'M)-iM'y。
[0054] 其4
《为大于等于1小于等于N的正整数,其中,所述估 计公共残留载波频偏ξ = (M ' ΜΓΙΜ ' y的方法包括:
[0055] 步骤S1021:确定第q个发射机对应的接收导频
痒中Xq = diag(Xq,l,Xq,2,K,Xq,N)为来自N路发射机的第q个导频图案的联合导频信号矩阵。
[0056] Hq是所述第q个导频图案的联合信道,nq为第q个导频图案的噪声,q为大于等于1小 于等于Q的正整数。
[0057] 步骤S1022:对所有Q个导频图案的公共相位误差进行联合估计,所述Q个导频图案 的输入输出关系可W表示如下:y=M · p+n。
[0058] 其中:
量与全部导频图案对 应的噪声,M=[化ιΧι)τ,化2X2)t,K化qXq)t]t是包含了信道响应和导频信号的联合矩阵,Q为 大于等于1的正整数。
[0059] 对于独立相位估计,接收端的接收天线数Nr需要大于或等于发射机数。另一方面, 对于联合相位估计,需要Q · Nr大于或者等于发射机数。因此,在使用相同数目的导频序列 的前提下,对于相同的公共残留载波频偏,联合相位误差估计方法会带来更好的效果。
[0060] 步骤S1023:确定出公共残留载波频偏C = (M'M)-iM'y。
[0061] 对于来自不同发射机的多个上行链路发射的情况,由于存在多路载波频偏,一个 载波频偏对应一个发射机,在运种情况下很难在接收端对载波频偏进行估计和校正。原因 就在于接收端的复合时域信号是一个关于载波频偏的高度非线性函数。因此,为了降低复 杂度,本发明实施例提供的载波频偏估计方法在发送OFDM信号前对载波频偏进行校正,目 的是在接收端唯一需要校正的偏差是一个公共残留载波频偏。运样接收端可W对接收到的 N个OFDM信号进行统一的公共残留载波频偏补偿即可,与现有技术相比,不需要根据信道信 息来分离各用户信号,再分别对各自的载波频偏进行补偿,因此不存在信道估计和载波频 偏跟踪会一直受到载波间干扰的影响的现象。
[0062] 请参阅图2,为本发明实施例提供的一种载波频偏估计方法中的第i发射机依据与 其对应的下行链路的载波频偏估计对待发送的第i OFDM信号进行载波频偏预矫正的一种 实现方式的方法流程示意图,该方法包括:
[0063] 步骤S201:所述第i发射机估计相对于所述接收端的载波频偏δ。
[0064] 发射机隶属于无线台站,无线台站还具有接收机,接收机接收信号的信道和发射 机发送信号的信道是一样的,因此可W利用802.11接收机处理下行链路数据、控制或配置 帖时已经完成的载波频偏对上行链路进行估计。
[0065] 步骤S202:确定出所述载波频偏δ与所述第i个(FDM信号的连续时间信号的关系:
[0066] 其中,xi[n]是所述第i个(FDM信号的第η个时域样本,K是FFT的点数,L是(FDM信号 的长度,Ts是采样时间,η为大于等于1小于等于L的正整数,L,K均为大于等于1的正整数。
[0067]
可W为第i个OFDM信号的连续时间信号受 到一个连续相位的影响而旋转的关系式。
[006引可W令φ=3?δ . (2i + l).化+L)/K,注意到由载波频偏引起的相位旋转Φ独立于 子载波参数,但会从一个OFDM信号变化到下一个。
[0069] 步骤S202可W使用短训练样本实现粗频偏估计。
[0070] 步骤S203:依据
确定出所述第i个OFDM信号 的第k个子载波受载波频偏影响得到的所述接收端接收到的信号Y 1 , k,
[0071] 步骤S204:依据所述
巧所述待发送的 0抑Μ信号进行载波频偏预矫正。
[0072] 在多个载波频偏被独立地估计出来后,每一个无线台站会在发射端对载波频偏进 行预校正,载波频偏预校正通常位于逆FFT变换之后,也就是在时域完成。
[0073] 第i发射机可W将待发送的第i OFDM信号依次进行FEC编码、调制、iFFT、循环前 缀、载波频偏预矫正、功率控制、加窗、采样率变换、DAC、功率放大、定时提前后在发射出去。
[0074] 第i发射机在对第i OFDM信号进行载波频偏估计后的公共残留载波频偏是接收信 噪比的函数,因为初始频偏在可W被短训练样本和长训练样本校正的范围内,所W公共残 留载波频偏可W近似看作是零均值、方差同信噪比成反比的高斯分布模型。
[0075] 在上 述任一方法实施例中,还可W包括;所述接收端依据公共残留载波频偏ξ = (M'MriM'y对接收的信号
进行补偿,得到最终 补偿的信号Yl,k写。
[0076] 为了本领域技术人员更加理解本发明实施例,本发明实施例提供了一种信道估计 的方法。请参阅图3,为本发明实施例提供的一种MU-MIM0中上行链路中的发射机与接收端 的系统框图。
[0077]图3中显示了 4个发射机,分别为发射机401至发射机304,发射机401包括第ICFDM 信号模块3011、第一基带处理模块3012、第一射频链路模块3013;发射机302包括第20FDM信 号模块3021、第二基带处理模块3022、第二射频链路模块3023;发射机303包括第3(FDM信号 模块3031、第Ξ基带处理模块3032、第Ξ射频链路模块3033;发射机401包括第40FDM信号模 块3041、第四基带处理模块3042、第四射频链路模块3043。图3中还示出了分别与第一射频 链路模块3013、第二射频链路模块3023、第Ξ射频链路模块3033、第四射频链路模块3043的 发送天线。
[0078] 接收端312包括至少4个接收天线,图3中只显示了4个接收天线,分别为接收天线 305至接收天线308;每一接收端都对应W射频链路,与接收天线305对应的是第五射频链路 309;与接收天线306对应的是第六射频链路310;与接收天线307对应的是第屯射频链路 311;与接收天线308对应的是第八射频链路312。接收端312会将接收到的信号通过处理模 块313进行处理。
[0079] 发送端是N个发射机,接收端具备Nr个接收天线,其中Nr应该大于或者等于N(图3中 仅示出了4个发射机和4个接收天线)。由于每一个发射机均采用OFDM调制,设XI,功来自第i 个无线站台的第k个子载波的QAM发送符号,同时定义发送符号向量为xk=[xi,k,x2,k,···, XN,k]T。设hi,k为来自第i个发射机的第k个子载波的长度为Nr的频域无线信道响应向量,同时 定义联合信道矩阵化=比l,k,h2,k,K,hN,k],大小为NrXN。第k个子载波的接收信号向量可W 表示为yk=HkXk+nk。上式中,yk是NrX 1的接收信号向量,nk是NrX 1的零均值加性高斯白噪声 向量。
[0080] 假设功率控制、定时提前W及采样率变换模块都已实现,因此剩余主要考虑的问 题是信道估计误差和载波频偏误差。
[0081] 当多个发射机同时向同一个接收端发送数据时,每一个子载波的接收信号包含了 同时来自于所有发射机的数据。为了将运些发送信号区分开来,需要对所有的发射机做精 确的信道估计。在802.11协议中,信道估计是通过在分组前导中插入长训练样本实现的。通 过测量接收到的长训练样本,接收机能够根据每一个频率成分在不同的发送接收对之间对 无线信号进行估计。
[0082] 类似于802. lln/ac中正交长训练样本被用来做单用户ΜΙΜΟ情况下的信道估计,正 交长训练样本也可W被用于上行链路多用户ΜΙΜΟ的情况。下面给出了针对4个同步无线台 站的正交矩阵Ρ:
[0083]
[0084] 其中Ρ矩阵的每一行代表不同的无线台站,每一列代表时域上不同的长序列样本 符号。根据上述矩阵,在训练周期内第一个无线台站发送LTF,-LTF,LTF,LTF,在相同的训练 周期内,第2个无线台站发送1;1。,1;1。,-1;1。,1;1。,依次类推。信道估计可^采用同单用户 ΜΙΜΟ相同的方式完成。设训练周期内第k个子载波的接收符号为:
[008引 & = HkP · sk+Nk
[0086] 其中,Sk是第k个子载波的长训练样本符号,通常取1或者-1,P代表正交映射矩阵, 化是第k个子载波上待估计的联合信道矩阵。该信道被估计为如下形式:
[0087]
[0088] 对于802.11中传统的单发射机单接收机传输情况,载波频偏通常采用训练样本进 行估计随后在接收端进行校正。对于下行链路MU-MIM0的情况,由于存在多路接收机,每一 路接收机会分别进行频偏估计和校正。然而,对于上行链路ΜΙΜΟ的情况,来自多路发射端的 载波频偏必须在接收端进行估计和校正。
[0089] 上述本发明公开的实施例中详细描述了方法,对于本发明的方法可采用多种形式 的装置实现,因此本发明还公开了多种装置,下面给出具体的实施例进行详细说明。
[0090] 请参阅图4,为本发明实施例提供的一种应用于上行链路多用户多入多出正交频 分多路复用技术MU-MIM0 OFDM系统的结构示意图,所述系统包括接收端W及无线台站,所 述接收端包括Nr个接收天线,所述无线台站包括N个发射机,N为大于等于1的正整数,Nr为大 于等于N的正整数。
[0091] 所述发射机401包括预矫正模块4011,所述预矫正模块4011用于依据与其对应的 下行链路的载波频偏估计对待发送的第i 0抑Μ信号进行载波频偏预矫正。
[0092] 所述第i OFDM信号中承载有导频子载波,i为大于等于1小于等于Ν的正整数,Ν个 所述发射机待发送的N个OFDM信号中承载的导频子载波相同。
[0093] 所述接收端402包括估计模块4021,所述估计模块用于依据实际接收到的所述N个 OFDM信号中的导频子载波W及所述N个所述发射机待发送的OFDM信号中原始的导频子载波 估计出N个OFDM信号的公共残留载波频偏ξ=(M'MΓlM'y,其中C=[ξlKξN]τ,其中狂=e^'f&, K为大于等于1小于等于N的正整数,其中,所述估计模块4021包括:
[0094] 第一确定单元40211,用于确定第q路接收导频
其中Xq = diag(Xq,l,Xq,2,K,Xq,N)为来自N路发射机的第q个导频图案的联合导频信号矩阵,Hq是所述 第q个导频图案的联合信道,nq为第q个导频图案的噪声,q为大于等于1小于等于Q的正整 数;
[0095] 联合估计单元40212,用于对所有Q个导频图案的公共相位误差进行联合估计,所 述Q个导频图案的输入输出关系可W表示如下:y=M,p+n,其中,y = ijf_r_a 乂]是全部接 收导频图案,W = ["/"非语]是与全部导频图案对应的噪声,Μ =[化iXi) T,化巧2 ) T,K化qXq ) T ^是包含了信道响应和导频信号的联合矩阵,Q为大于等于1的正整数;
[0096] 第二确定单元40213,用于确定出公共残留载波频偏ξ = (Μ'ΜΓ?Μ^。
[0097] 对于来自不同发射机的多个上行链路发射的情况,由于存在多路载波频偏,一个 载波频偏对应一个发射机,在运种情况下很难在接收端对载波频偏进行估计和校正。原因 就在于接收端的复合时域信号是一个关于载波频偏的高度非线性函数。因此,为了降低复 杂度,本发明实施例提供的载波频偏估计方法在发送OFDM信号前对载波频偏进行校正,目 的是在接收端唯一需要校正的偏差是一个公共残留载波频偏。运样接收端可W对接收到的 N个OFDM信号进行统一的公共残留载波频偏补偿即可,与现有技术相比,不需要根据信道信 息来分离各用户信号,再分别对各自的载波频偏进行补偿,因此不存在信道估计和载波频 偏跟踪会一直受到载波间干扰的影响的现象。
[0098] 请参阅图5,为本发明实施例提供的一种应用于上行链路多用户多入多出正交频 分多路复用技术MU-MIM0 (FDM系统中的预矫正模块的一种实现方式的结构示意图,预矫正 模块包括:
[0099] 载波频偏估计单元501,用于所述第i发射机估计相对于所述接收端的载波频偏δ。
[0100] 发射机隶属于无线台站,无线台站还具有接收机,接收机接收信号的信道和发射 机发送信号的信道是一样的,因此可W利用802.11接收机处理下行链路数据、控制或配置 帖时已经完成的载波频偏对上行链路进行估计。第Ξ确定单元502,用于确定出所述载波频 偏S与所述第i个OFDM信号的连续时间信号的关系为
[0101] 其中,xi[n]是所述第i个(FDM信号的第η个时域样本,K是FFT的点数,L是(FDM信号 的长度,Ts是采样时间,η为大于等于1小于等于L的正整数,L,K均为大于等于1的正整数。
[0102] 可W令Φ=πδ . (2i + l).化+LVK,注意到由载波频偏引起的相位旋转Φ独立于 子载波参数,但会从一个OFDM信号变化到下一个。
[0103] 第Ξ确定单元502可W使用短训练样本实现粗频偏估计。
[0104] 第四确定单元503,用于依据
确定出,所述 第i个OFDM信号的第k个子载波受载波频偏影响得到的所述接收端接收到的信号Yi,k,
[010引预矫正单元504,用于依据所述< br>对所 述待发送的0抑Μ信号进行载波频偏预矫正。
[0106] 在多个载波频偏被独立地估计出来后,每一个无线台站会在发射端对载波频偏进 行预校正,载波频偏预校正通常位于逆FFT变换之后,也就是在时域完成。
[0107] 第i发射机可W将待发送的第i OFDM信号依次进行FEC编码、调制、iFFT、循环前 缀、载波频偏预矫正、功率控制、加窗、采样率变换、DAC、功率放大、定时提前后在发射出去。
[0108] 第i发射机在对第i 0抑Μ信号进行载波频偏估计后的公共残留载波频偏是接收信 噪比的函数,因为初始频偏在可W被短训练样本和长训练样本校正的范围内,所W公共残 留载波频偏可W近似看作是零均值、方差同信噪比成反比的高斯分布模型。
[0109] 在上述任一系统实施例中,接收端还可W包括:补偿模块,用于依据公共残留载波 频偏1=(1'1)-^^对接收的信号进行补偿, 得到最终补偿的信号Yi,kC。
[0110] 本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他 实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
[0111] 还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个 实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示运些实体或操作之间 存在任何运种实际的关系或者顺序。而且,术语"包括"、"包含"或者其任何其他变体意在涵 盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要 素,而且还包括没有明确列出的其他要素,或者是还包括为运种过程、方法、物品或者设备 所固有的要素。在没有更多限制的情况下,由语句"包括一个……"限定的要素,并不排除在 包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
[0112]对所提供的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。 对运些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的 一般原理可W在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明 将不会被限制于本文所示的运些实施例,而是要符合与本文所提供的原理和新颖特点相一 致的最宽的范围。
【主权项】
1. 一种载波频偏估计方法,应用于上行链路多用户多入多出正交频分多路复用技术 MU-MMO OFDM系统,其特征在于,所述系统包括接收端以及无线台站,所述接收端包括Nr个 接收天线,所述无线台站包括N个发射机,N为大于等于1的正整数,N r为大于等于N的正整 数,所述载波频偏估计方法包括: 第i发射机依据与其对应的下行链路的载波频偏估计对待发送的第i OFDM信号进行载 波频偏预矫正,所述第i OFDM信号中承载有导频子载波,i为大于等于1小于等于N的正整 数,N个所述发射机待发送的N个OFDM信号中承载的导频子载波相同; 接收端依据实际接收到的所述N个OFDM信号中的导频子载波以及所述N个所述发射机 待发送的OFDM信号中原始的导频子载波估计出N个OFDM信号的公共残留载波频偏ξ = (Μ' Mr^'y,其中ζζΚΑξΝΓ,其中^ =βΛ,Κ为大于等于1小于等于N的正整数,其中,所述估 计公共残留载波频偏I = (Ml)^Ty的方法包括: 确定第q个发射机对应的接收导频,.其中Xq = diag(Xq,l,Xq,2,K, xq,N)为来自N路发射机的第q个导频图案的联合导频信号矩阵,Hq是所述第q个导频图案的 联合信道,nq为第q个导频图案的噪声,q为大于等于1小于等于Q的正整数; 对所有Q个导频图案的公共相位误差进行联合估计,所述Q个导频图案的输入输出关系 为γ=Μ·ρ+η,其中,是全部接收导频图案,是与全部导频图 案对应的噪声,M= [ (H1X1)' (H2X2)t,K(HqXq)t]t是包含了信道响应和导频信号的联合矩阵, Q为大于等于1的正整数; 确定出公共残留载波频偏ξ = (M Ir1M ' y。2. 根据权利要求1所述载波频偏估计方法,其特征在于,所述第i发射机依据与其对应 的下行链路的载波频偏估计对待发送的第i OFDM信号进行载波频偏预矫正包括: 所述第i发射机估计相对于所述接收端的载波频偏S; 确定出所述载波频偏S与所述第i个OFDM信号的连续时间信号的关系为其中,Xl[n]是所述第i个OFDM信号的第η个时域样 本,K是FFT的点数,L是OFDM信号的长度,Ts是采样时间,η为大于等于1小于等于L的正整数, UK均为大于等于1的正整数; 依据确定出所述第i个OFDM信号的第k个子载波受 载波频偏影响得到的所述接收端接收到的信号依据所述对所述待发送的OFDM信号进行 载波频偏预矫正。3. 根据权利要求2所述载波频偏估计方法,其特征在于,还包括: 所述接收端依据所述公共残留载波频偏ξ = ( M ' M K 1 M ' y对接收的信号进行补偿,得到最终补偿的信号^,4。4. 一种应用于上行链路多用户多入多出正交频分多路复用技术MU-MMO OFDM系统,其 特征在于,所述系统包括接收端以及无线台站,所述接收端包括Nr个接收天线,所述无线台 站包括N个发射机,N为大于等于1的正整数,N r为大于等于N的正整数; 所述发射机包括预矫正模块,所述预矫正模块用于依据与其对应的下行链路的载波频 偏估计对待发送的第i OFDM信号进行载波频偏预矫正,所述第i OFDM信号中承载有导频子 载波,i为大于等于1小于等于N的正整数,N个所述发射机待发送的N个OFDM信号中承载的导 频子载波相同; 所述接收端包括估计模块,所述估计模块用于依据实际接收到的所述N个OFDM信号中 的导频子载波以及所述N个所述发射机待发送的OFDM信号中原始的导频子载波估计出N个 OFDM信号的公共残留载波频偏ξ = (Μ'Μ)-Vy,其中ζζ^ΚξΝΓ,其中,K为大于等 于1小于等于N的正整数,其中,所述估计模块包括: 第一确定单元,用于确定第q路接收导频|.其中乂。= (1138(1(1,1, xq,2,K,Xq,N)为来自N路发射机的第q个导频图案的联合导频信号矩阵,H q是所述第q个导频 图案的联合信道,nq为第q个导频图案的噪声,q为大于等于1小于等于Q的正整数; 联合估计单元,用于对所有Q个导频图案的公共相位误差进行联合估计,所述Q个导频 图案的输入输出关系为y = M · p + n,其中,是全部接收导频图案,是与全部导频图案对应的噪声,是包含了信 道响应和导频信号的联合矩阵,Q为大于等于1的正整数; 第二确定单元,用于确定出公共残留载波频偏ξ = (M Ir1M ' y。5. 根据权力要去4所述应用于上行链路多用户多入多出正交频分多路复用技术MU-M頂0 OFDM系统,其特征在于,所述预矫正模块包括: 载波频偏估计单元,用于所述第i发射机估计相对于所述接收端的载波频偏S; 第三确定单元,用于确定出所述载波频偏S与所述第i个OFDM信号的连续时间信号的关 系为其中,xi[ η]是所述第i个OFDM信号的第η个时 域样本,K是FFT的点数,L是OFDM信号的长度,Ts是采样时间,η为大于等于1小于等于L的正 整数,L,Κ均为大于等于1的正整数; 第四确定单元,用于依据确定出,所述第i个 OFDM信号的第k个子载波受载波频偏影响得到的所述接收端接收到的信号¥1>1{,预矫正单元,用于依据所述吋所述待发送 的OFDM信号进行载波频偏预矫正。6.根据权利要求5所述应用于上行链路多用户多入多出正交频分多路复用技术MU-M頂0 OFDM系统,其特征在于,所述接收端还包括: 补偿模块,用于依据所述公共残留载波频偏ξ = (M'MK1ITy对接收的信号进行补偿,得到最终补偿的信号Y1,4。
【专利摘要】本发明实施例提供了一种载波频偏估计方法和系统,对于来自不同发射机的多个上行链路发射的情况,由于存在多路载波频偏,一个载波频偏对应一个发射机,在这种情况下很难在接收端对载波频偏进行估计和校正。原因就在于接收端的复合时域信号是一个关于载波频偏的高度非线性函数。因此,为了降低复杂度,采用本发明实施例提供的方法和系统,可以在发送OFDM信号前对载波频偏进行校正,目的是在接收端唯一需要校正的偏差是一个公共残留载波频偏。这样接收端可以对接收到的N个OFDM信号进行统一的公共残留载波频偏补偿即可,与现有技术相比,不存在信道估计和载波频偏跟踪会一直受到载波间干扰的影响的现象。
【IPC分类】H04L27/26, H04L27/00
【公开号】CN105490980
【申请号】CN201510919217
【发明人】王育刚, 杨旭阳, 杨博, 刘江春, 赵诚, 储旭
【申请人】航天恒星科技有限公司
【公开日】2016年4月13日
【申请日】2015年12月11日

最新回复(0)