发电控制装置及发电控制方法

xiaoxiao2021-2-21  137

发电控制装置及发电控制方法
【技术领域】
[0001]本发明涉及混合动力车辆的发电控制装置以及发电控制方法。
【背景技术】
[0002]串联方式的HEV(Hybrid Electrical Vehicle:混合动力电动汽车)具有电动机、发电机和内燃机,凭借电动机的动力来行驶。内燃机用于发电,由发电机利用内燃机的动力发出的电力被充入到蓄电器或被提供给电动机。另外,将内燃机和发电机统称为“辅助动力部(APU:Auxiliary Power Unit)”。
[0003]串联方式的HEV进行“EV行驶”或“串联行驶”。在EV行驶模式中,HEV凭借通过来自蓄电器的电源供应进行驱动的电动机的驱动力来行驶。此时内燃机没有被驱动。而在串联行驶模式中,HEV凭借通过来自蓄电器和APU双方的电力的供应或仅来自APU的电力的供应等进行驱动的电动机的驱动力来行驶。此时,内燃机为了使发电机发电而被驱动。
[0004]另外,可外接充电式HEV(PHEV)进行⑶(Charge Depleting:电量消耗)模式下的行驶或者CS(Charge Sustaining:电量保持)模式下的行驶。在⑶模式中,电动机主要仅凭借来自通过车辆外部的商用电源等而被充电的蓄电器的供应电力进行驱动,蓄电器的剩余容量(S0C:State of Charge:充电状态)随着电动机的驱动等而下降。而在CS模式中,主要将通过内燃机的驱动而从发电机得到的发电电力用于电动机的驱动以及/或者蓄电器的充电,将蓄电器的S0C维持为大致固定。另外,即使是在CD模式中,内燃机也能够按照根据车速和油门踏板开度等导出的需求输出及蓄电器的S0C等来被驱动。另外,即使是在CS模式中,也能够按照需求输出及蓄电器的S0C等停止内燃机的驱动。
[0005]图19是示出随着PHEV的行驶等而消耗的能量、蓄电器的S0C、发电机的发电电力及车速各自的历时变化的一例的曲线图。另外,图19的消耗能量的曲线所示出的不带影线的长方柱表示基于来自蓄电器的供应电力的能量,带影线的长方柱表示基于来自APU的供应电力的能量。消耗能量的负值的部分表示将来自APU的供应电力充入到蓄电器中的量。
[0006]在图19所示的例子中,在开始行驶时选择CD模式,电动机仅凭借来自被充电至足够程度的蓄电器的供应电力进行驱动,由此PHEV行驶。然后,随着PHEV的行驶等而消耗能量,蓄电器的S0C下降。在蓄电器的S0C下降至阈值th时被切换为CS模式,内燃机起动。然后,因PHEV的行驶等而由电动机消耗能量,即使是蓄电器的SOCK阈值th还低时,蓄电器也能够利用通过内燃机的驱动而从发电机得到的发电电力来充电。其结果是,蓄电器的S0C被维持为大致固定。这样,在蓄电器的S0C高于阈值th时主要选择CD模式,在蓄电器的S0C低于阈值时主要选择CS模式。
[0007]现有技术文献
[0008]专利文献
[0009]专利文献1:日本特开2005 — 295617号公报
[0010]专利文献2:日本特开2001 — 238304号公报[0011 ] 专利文献3:国际公开第2012/090688号
[0012]专利文献4:国际公开第2012/090689号

【发明内容】

[0013]发明要解决的问题
[0014]对于以上说明的串联方式的PHEV,与其它方式的混合动力车辆一样,要求提高对于驾驶员而言的车辆的舒适性的评价基准即NV(Noise Vibrat1n:噪声振动)性能。如果不驱动内燃机,则容易实现NV性能的提高。但是,在该PHEV中,在蓄电器的S0C下降、来自蓄电器的供应电力不足以使电动机输出与需求输出相应的驱动力的情况下,为了由APU向电动机提供辅助电力而驱动内燃机。从NV性能的观点考虑,为了提供辅助电力而被驱动的内燃机优选以低速旋转来被驱动,但是在所需要的辅助电力较大时,以高速旋转来被驱动。其结果是,NV性能下降。
[0015]例如,在如图19所示选择了CS模式时那样,当PHEV在蓄电器的S0C下降的状态下进行连续爬坡行驶的情况下,对电动机长时间要求较高的驱动力。此时,对APU要求为了电动机输出该较高的驱动力而需要的辅助电力,因而内燃机长时间地以高速旋转来被驱动。其结果是,NV性能下降。并且,在此时要求较高的辅助电力时,内燃机不得不在效率不好的运转点进行运转,有可能使得APU的效率下降。
[0016]为了确保以上说明的内燃机的长时间的高速旋转驱动所需要的能量,如图20所示,也可以将从CD模式切换为CS模式的蓄电器的S0C的阈值th设定得较高。在这种情况下,蓄电器的S0C始终被维持在较高的状态,因而对电动机提供充足的电力。但是,在对电动机不要求较高的驱动力的状态下车辆到达目的地,其结果是,为了将蓄电器的S0C维持在较高的状态而进行的内燃机的驱动所造成的C02排放量增加。
[0017]这样,为了将来有可能产生的内燃机的长时间的高速旋转驱动而需要的蓄电器的能量保存量(蓄电器所需要的缓存量)和NV性能的提高是相反关系。但是,在对电动机长时间地要求较高的驱动力时,无论行驶路径是何种状态,都期望是NV性能不下降的PEHV。
[0018]本发明的目的在于,提供即可确保混合动力车辆行驶所需要的能量、又能实现NV性能或者发电效率的发电控制装置及发电控制方法。
[0019]用于解决问题的手段
[0020]为了解决上述问题而达到该目的,权利要求1中记载的发明的发电控制装置是混合动力车辆的发电控制装置,该混合动力车辆具有:能够充电的蓄电器(例如实施方式中的蓄电器101),其对作为上述混合动力车辆的驱动源的电动机提供电力;发电部(例如实施方式中的APU 121 ),其具有内燃机(例如实施方式中的内燃机109)和通过该内燃机的运转来发电的发电机(例如实施方式中的发电机111),将发出的电力提供给上述电动机或上述蓄电器;以及上述电动机(例如实施方式中的电动机107),其凭借来自上述蓄电器及上述发电部中的至少一方的电力供应来进行驱动,该发电控制装置的特征在于具有:行驶状态评价部(例如实施方式中的行驶状态评价部151),其从上述电动机的能量消耗、上述混合动力车辆的NV性能以及上述发电部的发电效率的各个观点,来评价上述混合动力车辆的行驶状态;以及发电动作判定部(例如实施方式中的APU动作判定部153),其根据从上述行驶状态评价部得到的任意一个以上的观点的评价参数,判定是否需要上述发电部的动作。
[0021]另外,权利要求2中记载的发明的发电控制装置的特征在于,在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的NV性能的观点来评价的NV评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第1阈值时,上述发电动作判定部允许上述发电部的动作。
[0022]另外,权利要求3中记载的发明的发电控制装置的特征在于,上述蓄电器的实际可用容量越小,上述第1阈值就越小。
[0023]另外,权利要求4中记载的发明的发电控制装置的特征在于,上述发电控制装置具有:充电目标导出部(例如实施方式中的目标S0C设定部155),其导出为了让上述电动机输出各个评价参数所表示的能量或者输出而需要的上述蓄电器的充电状态中最高的充电状态;以及动作控制部(例如实施方式中的动作控制部159),其控制上述内燃机的运转,使得上述蓄电器接近由上述充电目标导出部导出的充电状态。
[0024]另外,权利要求5中记载的发明的发电控制装置的特征在于,上述充电目标导出部朝向上述最高的充电状态分阶段地设定上述蓄电器的目标充电状态,直到上述蓄电器的充电状态达到上述最高的充电状态,上述动作控制部控制上述内燃机的运转,使得上述蓄电器成为上述目标充电状态。
[0025]另外,权利要求6中记载的发明的发电控制装置的特征在于,上述充电目标导出部设定上述目标充电状态的时间间隔根据上述动作控制部进行的控制的经过时间而不同。
[0026]另外,权利要求7中记载的发明的发电控制装置的特征在于,上述充电目标导出部设定上述目标充电状态的时间间隔根据上述动作控制部进行控制时的上述混合动力车辆的行驶距离而不同。
[0027]另外,权利要求8中记载的发明的发电控制装置的特征在于,上述充电目标导出部设定上述目标充电状态的时间间隔根据上述动作控制部进行控制时的上述蓄电器的实际的充电状态与上述最高的充电状态之差而不同。
[0028]另外,权利要求9中记载的发明的发电控制装置的特征在于,上述发电控制装置具有效率下降区域使用判定部(例如实施方式中的效率下降区域使用判定部261),在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的NV性能的观点来评价的NV评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值时,或者在上述蓄电器的实际可用容量小于规定的值时,上述效率下降区域使用判定部允许上述发电部在效率随着上述发电部的输出提高而下降的效率下降区域中的动作。
[0029]另外,权利要求10中记载的发明的发电控制装置的特征在于,上述蓄电器的实际可用容量越小,上述第2阈值就越小。
[0030]另外,权利要求11中记载的发明的发电控制装置的特征在于,上述效率下降区域使用判定部在规定的期间允许上述发电部在上述效率下降区域中的动作。
[0031]另外,权利要求12中记载的发明的发电控制装置的特征在于,上述规定的期间被设定成:各个评价参数与上述第2阈值之差越大,上述规定的期间就越长,上述蓄电器的上述实际可用容量越小,上述规定的期间就越长,上述效率下降区域使用判定部将和各个评价参数与上述第2阈值之差对应的3个期间、以及与上述实际可用容量对应的期间中最长的期间,设定为上述规定的期间。
[0032]另外,权利要求13中记载的发明的发电控制装置是混合动力车辆的发电控制装置,该混合动力车辆具有:能够充电的蓄电器(例如实施方式中的蓄电器301),其对作为上述混合动力车辆的驱动源的电动机提供电力;发电部(例如实施方式中的APU 321),其具有内燃机(例如实施方式中的内燃机309)和通过该内燃机的运转来发电的发电机(例如实施方式中的发电机311),将发出的电力提供给上述电动机或上述蓄电器;以及上述电动机(例如实施方式中的电动机307),其凭借来自上述蓄电器及上述发电部中的至少一方的电力供应来进行驱动,该发电控制装置的特征在于具有:行驶状态评价部(例如实施方式中的行驶状态评价部351),其从上述电动机的能量消耗、上述混合动力车辆的NV性能以及上述发电部的发电效率的各个观点来评价上述混合动力车辆的行驶状态;发电动作判定部(例如实施方式中的APU动作判定部353),其根据从上述行驶状态评价部得到的任意一个以上的观点的评价参数,判定是否需要上述发电部的动作;以及发电量决定部(例如实施方式中的发电量决定部357、发电量设定部457),其决定对应于各个评价参数而计算出的单位发电量中最大的单位发电量,作为上述发电部的每单位时间的发电量。
[0033]另外,权利要求14中记载的发明的发电控制装置的特征在于,上述蓄电器的实际可用容量越小,上述发电量决定部就越增加上述决定的单位发电量。
[0034]另外,权利要求15中记载的发明的发电控制装置的特征在于,上述发电控制装置具有充电目标导出部,该充电目标导出部导出为了让上述电动机输出各个评价参数所表示的能量或者输出而需要的上述蓄电器的充电状态中最高的充电状态,上述蓄电器的实际的充电状态相对于上述蓄电器的最高的充电状态越低,上述发电量决定部越增加上述决定的单位发电量。
[0035]另外,权利要求16中记载的发明的发电控制装置的特征在于,上述发电控制装置具有效率下降区域使用判定部(例如实施方式中的效率下降区域使用判定部461),在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的NV性能的观点来评价的NV评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值时,或者在上述蓄电器的实际可用容量小于规定的值时,上述效率下降区域使用判定部允许上述发电部在效率随着上述发电部的输出提高而下降的效率下降区域中的动作,在上述效率下降区域使用判定部允许上述发电部在上述效率下降区域中的动作的情况下,上述发电量决定部以使上述发电部的每单位时间的发电量朝向上述决定的单位发电量分阶段地变化的方式,设定目标单位发电量作为每单位时间的目标发电量。
[0036]另外,权利要求17中记载的发明的发电控制装置的特征在于,从上述电动机的能量消耗的观点来评价的能量消耗评价参数越大,上述发电量决定部就将上述目标单位发电量的变化率设定得越大,从上述混合动力车辆的NV性能的观点来 评价的NV评价参数越大,上述发电量决定部就将上述目标单位发电量的变化率设定得越大,从上述发电部的发电效率的观点来评价的发电效率评价参数越大,上述发电量决定部就将上述目标单位发电量的变化率设定得越大,上述发电量决定部选择这3个变化率中最大的变化率,将该选择出的变化率设定为上述目标单位发电量的变化率。
[0037]另外,权利要求18中记载的发明的发电控制装置的特征在于,上述蓄电器的实际可用容量越小,上述发电量决定部就越增加上述设定的目标单位发电量的变化率。
[0038]另外,权利要求19中记载的发明的发电控制装置的特征在于,上述发电控制装置具有充电目标导出部(例如实施方式中的目标S0C设定部355),该充电目标导出部导出为了让上述电动机输出各个评价参数所表示的能量或者输出而需要的上述蓄电器的充电状态中最高的充电状态,上述蓄电器的实际的充电状态相对于上述充电目标导出部导出的上述蓄电器的最高的充电状态越低,上述发电量决定部就越增加上述设定的目标单位发电量的变化率。
[0039]另外,权利要求20中记载的发明的发电控制装置的特征在于,上述发电控制装置具有动作控制部(例如实施方式中的动作控制部359),该动作控制部控制上述内燃机的运转,使得上述发电部发出由上述发电量决定部决定的单位发电量或者由上述发电量决定部设定的目标单位发电量。
[0040]另外,权利要求21中记载的发明的发电控制方法是混合动力车辆的发电控制方法,该混合动力车辆具有:能够充电的蓄电器,其对作为上述混合动力车辆的驱动源的电动机提供电力;发电部,其具有内燃机和通过该内燃机的运转来发电的发电机,将发出的电力提供给上述电动机或上述蓄电器;以及上述电动机,其凭借来自上述蓄电器及上述发电部中的至少一方的电力供应来进行驱动,该发电控制方法的特征在于包括:行驶状态评价步骤,从上述电动机的能量消耗、上述混合动力车辆的NV性能、上述发电部的发电效率的各个观点,评价上述混合动力车辆的行驶状态;发电动作判定步骤,根据在上述行驶状态评价步骤得到的任意一个以上的观点的评价参数,判定是否需要上述发电部的动作;充电目标导出步骤,导出为了让上述电动机输出各个评价参数所表示的能量或者输出而需要的上述蓄电器的充电状态中最高的充电状态;以及动作控制步骤,控制上述内燃机的运转,使得上述蓄电器接近在上述充电目标导出步骤中导出的充电状态。
[0041]另外,权利要求22中记载的发明的发电控制方法的特征在于,在上述发电动作判定步骤中,在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的NV性能的观点来评价的NV评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第1阈值时,允许上述发电部的动作,上述发电控制方法包括效率下降区域使用判定步骤,在上述能量消耗评价参数、上述NV评价参数以及上述发电效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值时,或者在上述蓄电器的实际可用容量小于规定的值时,允许上述发电部在效率随着上述发电部的输出提高而下降的效率下降区域中的动作。
[0042]另外,权利要求23中记载的发明的发电控制方法的特征在于,上述发电控制方法包括:发电量决定步骤,决定对应于各个评价参数而计算出的单位发电量中最大的单位发电量,作为上述发电部的每单位时间的发电量;以及效率下降区域使用判定步骤,在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的NV性能的观点来评价的NV评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值时,或者在上述蓄电器的实际可用容量小于规定的值时,允许上述发电部在效率随着上述发电部的输出提高而下降的效率下降区域中的动作,在上述发电量决定步骤中,当在上述效率下降区域使用判定步骤中允许上述发电部在上述效率下降区域中的动作的情况下,以使上述发电部的每单位时间的发电量朝向上述决定的单位发电量分阶段地变化的方式,设定目标单位发电量作为每单位时间的目标发电量。
[0043]发明效果
[0044]根据权利要求1?12中记载的发明的发电控制装置以及权利要求21中记载的发明的发电控制方法,既可确保混合动力车辆行驶所需要的能量,又能够实现NV性能或者发电效率。
[0045]根据权利要求3中记载的发明的发电控制装置,蓄电器的实际可用容量越小,越容易允许发电部的动作。
[0046]根据权利要求5?8中记载的发明的发电控制装置,虽然在当前的充电状态与目标充电状态之差较大时,内燃机的运转有可能以高速旋转进行,但是由于分阶段地设定目标充电状态,因而NV性能不会由于内燃机的运转而下降。
[0047]根据权利要求9?12中记载的发明的发电控制装置以及权利要求22中记载的发明的发电控制方法,在需要尽快提高蓄电器的充电状态的情况下,能够优先确保在维持NV性能的状态下混合动力车辆行驶所需要的能量。
[0048]根据权利要求13?20中记载的发明的发电控制装置,既可确保混合动力车辆行驶所需要的能量,又能够实现NV性能或者发电效率。
[0049]根据权利要求16?19中记载的发明的发电控制装置以及权利要求23中记载的发明的发电控制方法,在需要尽快提高蓄电器的充电状态的情况下,能够优先确保在维持NV性能的状态下混合动力车辆行驶所需要的能量。
【附图说明】
[0050]图1是示出串联方式的PHEV的内部结构的框图。
[0051 ]图2是示出第1实施方式的管理EOT 119的内部结构的框图。
[0052]图3是示出车辆开始行驶后的车速、坡度、需求输出、消耗能量及最大消耗能量各自的历时变化的一例的曲线图。
[0053]图4是示出与车速VP对应的APU121的NV允许输出的曲线图。
[0054]图5是示出车辆开始行驶后的车速VP、需求输出及APU121的NV允许输出、蓄电器101进行充电/放电的电力、以及在将APU 121的输出保持为NV允许输出以下的状态下电动机10 7行驶时的蓄电器101的累计输出各自的历时变化的一例的曲线图。
[0055]图6是示出与车速VP对应的APU121的APU效率允许输出的曲线图。
[0056]图7是示出车辆开始行驶后的车速VP、需求输出及APU效率允许输出、蓄电器101进行充电/放电的电力、以及在将APU 121的输出保持为APU效率允许输出以下的状态下电动机10 7行驶时的蓄电器101的累计输出各自的历时变化的一例的曲线图。
[0057]图8是示出第2实施方式的管理EOT219的内部结构的框图。
[0058]图9是示出与内燃机109的动作对应的APU121的输出和效率的关系的曲线图。
[0059 ]图10是表示串联方式的PHEV的内部结构的框图。
[0060]图11是示出第3实施方式的管理EOT319的内部结构的框图。
[0061]图12是示出车辆开始行驶后的车速、坡度、需求输出、消耗能量及最大消耗能量各自的历时变化的一例的曲线图。
[0062]图13是示出与车速VP对应的APU321的NV允许输出的曲线图。
[0063]图14是示出车辆开始行驶后的车速VP、需求输出及APU321的NV允许输出、蓄电器301进行充电/放电的电力、以及在将APU 321的输出保持为NV允许输出以下的状态下电动机307行驶时的蓄电器301的累计输出各自的历时变化的一例的曲线图。
[0064]图15是示出与车速VP对应的APU321的APU效率允许输出的曲线图。
[0065]图16是示出车辆开始行驶后的车速VP、需求输出及APU效率允许输出、蓄电器301进行充电/放电的电力、以及在将APU 321的输出保持为APU效率允许输出以下的状态下电动机307行驶时的蓄电器301的累计输出各自的历时变化的一例的曲线图。
[0066]图17是示出第4实施方式的管理EOT419的内部结构的框图。
[0067]图18是示出与内燃机309的动作对应的APU321的输出和效率的关系的曲线图。
[0068]图19是示出随着PHEV的行驶等而消耗的能量、蓄电器的S0C、发电机的发电电力、及车速各自的历时变化的一例的曲线图。
[0069]图20是示出随着PHEV的行驶等而消耗的能量、蓄电器的S0C、发电机的发电电力、及车速各自的历时变化的另一例的曲线图。
【具体实施方式】
[0070]下面,参照【附图说明】本发明的实施方式。另外,在以下说明的实施方式中,以串联方式的可外接充电式HEV(Plug_in Hybrid Electrical Vehicle:可外接充电式混合动力电动汽车)为例进行说明。串联方式的PHEV具有电动机和内燃机,利用以能够从外部电源进行充电的蓄电器为电源进行驱动的电动机的动力来行驶。内燃机仅用于发电,凭借内燃机的动力而发出的电力被充入蓄电器或被提供给电动机。
[0071](第!实施方式)
[0072]图1是示出串联方式的PHEV的内部结构的框图。如图1所示,串联方式的PHEV(以下简称“车辆”)具有蓄电器(BATT)lOl、转换器(C0NV)103、第1逆变器(第1INV)105、电动机(Mot)107、内燃机(ENG)109、发电机(GEN)lll、第2逆变器(第2INV)113、齿轮箱(以下简称为“齿轮”)115、车速传感器117、充电器118、管理ECU(MG E⑶)119。并且图1中的虚线箭头表示值数据,实线箭头表示包含指示内容的控制信号。在以下说明中,将内燃机109、发电机111和第2逆变器113总称为“辅助动力部(APU:Auxiliary Power Unit)121”。
[0073]蓄电器101具有串联连接的多个蓄电池,例如提供100?200V的高电压。蓄电池例如是锂离子电池或镍氢电池。转换器103对蓄电器101的直流输出电压进行直流升压或降压。第1逆变器105将直流电压转换为交流电压并将3相电流提供给电动机107。另外,第1逆变器105将电动机107的再生工作时被输入的交流电压转换为直流电压并充入蓄电器101。
[0074]电动机107产生用于车辆行驶的动力。由电动机107产生的扭矩经由齿轮115被传递至驱动轴123。并且,电动机107的转子与齿轮115直接联结。另外,电动机107在再生制动时作为发电机工作,由电动机107发出的电力被充入蓄电器101。内燃机109用于在车辆进行串联行驶时驱动发电机111。内燃机109与发电机111的转子直接联结。并且,内燃机109通过发动机架与车体127直接联结,发动机架具有使用了橡胶或者弹簧等作为缓冲器(damper)的弹性体(未图示)的防震功能。
[0075]发电机111被内燃机109的动力驱动而产生电力。发电机111发出的电力被充入蓄电器101或被提供给电动机107。第2逆变器113将发电机111产生的交流电压转换为直流电压。由第2逆变器113转换的电力被充入蓄电器101或经由第1逆变器105提供给电动机107。
[0076]齿轮115例如为适合于5速的1档的固定齿轮。因此齿轮115将来自电动机107的驱动力转换为基于特定变速比的转速和扭矩,传递给驱动轴123。车速传感器117检测车辆的行驶速度(车速VP)。表示车速传感器117检测出的车速VP的信号被发送给管理EOT 119。
[0077]在充电器118设有能够与外部电源连接的插头125。充电器118将通过插头125从外部电源提供的交流电压转换为直流电压,而且控制基于该直流电压的对蓄电器101的充电。
[0078]管理ECU119取得表示以下内容的信息:车速传感器117检测出的车速VP、与车辆的驾驶员的油门踏板操作对应的油门踏板开度(AP开度)、与车辆的驾驶员的制动踏板操作对应的制动踏力、车辆所行驶的路面的坡度、以及蓄电器101的剩余容量(S0C: State ofCharge:充电状态)。并且,管理EOT 119进行电动机107和APU 121的各控制等。
[0079]下面,对管理ECU119的内部结构及动作进行详细说明。图2是示出第1实施方式的管理ECU 119的内部结构的框图。如图2所示,管理ECU 119具有行驶状态评价部151、APU动作判定部153、目标S0C设定部155、发电量决定部157、动作控制部159。
[0080]行驶状态评价部151根据电动机107的能量消耗、车辆的NV性能、以及基于内燃机109的理论配比(理论空燃比)的APU 121的发电效率(以下简称“APU 121的效率”)的各个观点,评价车辆的行驶状态。如图2所示,行驶状态评价部151具有需求输出计算部171、消耗能量计算部173、能量消耗评价部175、NV允许充电/放电电力计算部 177、NV允许评价部179、APU效率允许充电/放电电力计算部181、APU效率允许评价部183。下面,对行驶状态评价部151具有的各个构成要素进行说明。
[0081 ]需求输出计算部171根据车速VP及AP开度,计算对作为车辆的驱动源的电动机107要求的输出(需求输出)。
[0082]消耗能量计算部173按照规定的控制周期计算在电动机107根据需求输出而仅凭借来自蓄电器101的电力供应进行驱动时,在每单位时间ΛΤ由电动机107消耗的能量(以下简称“消耗能量”)。图3是示出车辆开始行驶后的车速、坡度、需求输出、消耗能量及最大消耗能量各自的历时变化的一例的曲线图。另外,在图3的最下段示出的曲线中,实线表示消耗能量,虚线表示最大消耗能量。
[0083]能量消耗评价部175输出在车辆开始行驶起到目前为止的期间内消耗能量计算部173计算出的消耗能量的最大值,作为从电动机107的能量消耗的观点进行评价的参数(能量消耗评价参数)。能量消耗评价部175输出的能量消耗评价参数被发送给APU动作判定部153。
[0084]NV允许充电/放电电力计算部177计算与APU 121的NV允许输出相对于每单位时间的需求输出的差分(需求输出一NV允许输出)对应的蓄电器101的充电/放电电力,作为“NV允许充电/放电电力”。并且,APU 121的NV允许输出是根据车速VP预先决定的值。图4是示出与车速VP对应的APU 121的NV允许输出的曲线图。由于车速VP越高,道路噪声等就越大,因而如图4所示,车速VP越高,就将APU 121的NV允许输出设定为越高的值。
[0085]在NV允许充电/放电电力计算部177计算出的NV允许充电/放电电力是正的值的情况下,该NV允许充电/放电电力与提供给电动机107的蓄电器101的放电电力相等。在NV允许充电/放电电力是负的值的情况下,该NV允许充电/放电电力与通过电动机107进行再生控制得到的对蓄电器101的充电电力相等。图5是示出车辆开始行驶后的车速VP、需求输出及APU 121的NV允许输出、蓄电器101进行充电/放电的电力、以及在将APU 121的输出保持为NV允许输出以下的状态下电动机10 7行驶时的蓄电器101的累计输出各自的历时变化的一例的曲线图。另外,在图5中从上面起第二个示出的曲线中,实线表示需求输出,虚线表示APU 121的NV允许输出。并且,在图5的最下段示出的曲线中,实线表示蓄电器101的累计输出,虚线表示该累计输出的最大值。
[0086]NV允许评价部179根据从车辆开始行驶到目前为止的NV允许充电/放电电力,计算蓄电器101的累计输出。并且,NV允许评价部179输出计算出的蓄电器101的累计输出的最大值,作为从车辆的NV性能的观点来评价的参数(NV评价参数)。NV允许评价部179输出的NV评价参数被发送给AHJ动作判定部153。
[0087]APU效率允许充电/放电电力计算部181计算与APU效率允许输出相对于每单位时间的需求输出的差分(需求输出一 APU效率允许输出)对应的蓄电器101的充电/放电电力,作为“APU效率允许充电/放电电力”。并且,APU效率允许输出是与APU 121中包含的内燃机109的理论空燃比对应的值。图6是示出与车速VP对应的APU 121的APU效率允许输出的曲线图。
[0088]在APU效率允许充电/放电电力计算部181计算出的APU效率允许充电/放电电力是正的值的情况下,该AHJ效率允许充电/放电电力与提供给电动机107的蓄电器101的放电电力相等。在APU效率允许充电/放电电力是负的值的情况下,该APU效率允许充电/放电电力与通过电动机107进行再生控制得到的对蓄电器101的充电电力相等。图7是示出车辆开始行驶后的车速VP、需求输出及APU效率允许输出、蓄电器101进行充电/放电的电力、以及在将APU 121的输出保持为APU效率允许输出以下的状态下电动机107行驶时的蓄电器101的累计输出各自的历时变化的一例的曲线图。另外,在图7中从上面起第二个示出的曲线中,实线表示需求输出,虚线表示APU效率允许输出。并且,在图7的最下段示出的曲线中,实线表示蓄电器101的累计输出,虚线表示该累计输出的最大值。
[0089]APU效率允许评价部183根据从车辆开始行驶到目前为止的APU效率允许充电/放电电力,计算蓄电器101的累计输出。并且,APU效率允许评价部183输出计算出的蓄电器101的累计输出的最大值,作为从APU 121的内燃机109的理论配比(理论空燃比)的观点来评价的参数(APU效率评价参数)。APU效率允许评价部183输出的APU效率评价参数被发送给APU动作判定部153。
[0090]APU动作判定部153根据从行驶状态评价部151得到的能量消耗评价参数、NV评价参数以及APU效率评价参数中的任意一个以上的评价参数,判定是否需要APU 121的动作。即,APU动作判定部153如果判定为能量消耗评价参数、NV评价参数以及APU效率评价参数中的至少一个参数超过对各个评价参数设定的第1阈值,则允许APU 121的动作APU动作判定部153将表示允许或者禁止APU 121的动作的信息(APU动作可否信息)发送给目标S0C设定部155、发电量决定部157及动作控制部159。
[0091]并且,在APU动作判定部153中使用的各个评价参数的第1阈值是与蓄电器101的实际的S0C(以下称为“实际S0C”)和能够使用蓄电器101的S0C的范围的下限(以下称为“下限S0C”)之间的差分(实际S0C—下限S0C)对应的可变值。在本实施方式中,表示蓄电器101的实际可用容量的所述差分越小,对各个评价参数设定的第1阈值就越小。
[0092]在从APU动作判定部153发送的APU动作可否信息表示允许APU 121的动作的情况下,目标SOC设定部155计算为了让电动机107输出各个评价参数所表示的消耗能量或者蓄电器101的累计输出而需要的蓄电器101的S0C(以下称为“评价S0C”)。即,目标S0C设定部155计算为了让电动机107在单位时间△ T期间输出能量消耗参数所表示的消耗能量的最大值而需要的蓄电器101的S0C(以下称为“能量消耗评价S0C”)。并且,目标S0C设定部155计算为了输出NV评价参数所表示的蓄电器101的累计输出的最大值而需要的蓄电器101的S0C,作为“NV评价S0C”。并且,目标S0C设定部155计算为了输出APU效率允许参数所表示的蓄电器101的累计输出的最大值而需要的蓄电器101的S0C,作为“APU效率评价S0C”。目标S0C设定部155选择这样计算出的3个评价S0C(能量消耗评价S0C、NV评价S0C、APU效率评价S0C)中最高的值的评价S0C。
[0093]目标S0C设定部155朝向选择评价S0C分阶段地设定蓄电器101的目标S0C,直到蓄电器101的实际S0C达到该选择的评价S0C(以下称为“选择评价S0C”)为止。即,使蓄电器101的实际S0C逐渐接近选择评价S0C。目标S0C设定部155根据目标S0C的变化方式设定接近选择评价S0C的接近方式。例如,开始使实际S0C接近选择评价S0C的控制后的经过时间越短,目标S0C设定部155就将实际S0C与目标S0C之差设定得越小,经过时间越长,就将实际S0C与目标S0C之差设定得越大。并且,开始使实际S0C接近选择评价S0C的控制后的行驶距离越短,目标S0C设定部155就将实际S0C与目标S0C之差设定得越小,行驶距离越长,就将实际S0C与目标S0C之差设定得越大。并且,实际S0C与选择评价S0C之差越大,目标S0C设定部155就将实际S0C与目标S0C之差设定得越小,该实际S0C与选择评价S0C之差越小,就将实际S0C与目标S0C之差设定得越大。
[0094]另外,目标S0C设定部155也可以根据选择评价S0C相对于实际S0C高还是低,改变接近选择评价S0C的接近方式。例如,在选择评价S0C高于实际S0C时,目标S0C设定部155将实际S0C与目标S0C之差设定得大,在选择评价S0C低于实际S0C时,将实际S0C与目标S0C之差设定得小。
[0095 ]在从APU动作判定部15 3发送的APU动作可否信息表示允许APU 121的动作的情况下,发电量决定部157决定与各个评价参数对应的APU 121的每单位时间的发电量(以下称为“单位发电量”)。另外,与评价S0C对应的APU 121的单位发电量是指在蓄电器101的S0C不会低于上述说明的选择评价S0C的情况下,本实施方式的车辆凭借来自使用了 APU 121的发电电力的电动机107的驱动力来巡航行驶所需要的每单位时间的发电量。
[0096]在发电量决定部157决定单位发电量时,发电量决定部157计算如下的单位发电量:能量消耗参数所表示的消耗能量的最大值越高,该单位发电量就越大。并且,发电量决定部157计算如下的单位发电量:NV评价参数所表示的蓄电器101的累计输出的最大值越高,该单位发电量就越大。并且,发电量决定部157计算如下的单位发电量:APU效率允许参数所表示的蓄电器101的累计输出的最大值越高,该单位发电量就越大。发电量决定部157选择这样计算出的3个单位发电量中最大的单位发电量。发电量决定部157将该选择的单位发电量决定为基于APU 121的每单位时间的发电量。
[0097]另外,也可以是,蓄电器101的实际S0C与下限S0C之差越小,发电量决定部157就越增加上述决定的单位发电量。即,发电量决定部157对上述决定的单位发电量乘以与实际S0C和下限S0C之差对应的系数。该系数的值为1以上,并且实际S0C与下限S0C之差越小,该系数的值越大。并且,也可以是,选择评价S0C与实际S0C之差(选择评价S0C—实际S0C)越大,发电量决定部157就越增加上述决定的单位发电量。即,发电量决定部157对上述决定的单位发电量乘以与选择评价SOC和实际SOC之差对应的系数。该系数的值为1以上,评价SOC与实际SOC之差越大,该系数的值就越高。
[0098]在从APU动作判定部153发送的APU动作可否信息表示允许APU 121的动作的情况下,动作控制部159控制内燃机109的运转,使得蓄电器101的S0C成为目标S0C,而且使APU121的发电机111发出由发电量决定部157决定的单位发电量。
[0099]如以上说明的那样,在本实施方式中,使用以下参数进行是否允许APU121的动作的判定:基于从电动机107的能量消耗的观点来评价的车辆的行驶状态的参数、基于从车辆的NV性能的观点来评价的车辆的行驶状态的参数、以及基于从APU 121的效率的观点来评价的车辆的行驶状态的参数。在该判定中,如果上述3个评价参数中至少一个评价参数超过第1阈值,则允许APU 121的动作。在APU 121的动作被允许时,将与各个评价参数对应的蓄电器101的评价S0C中最高的值的评价S0C设定为蓄电器101的最终目标S0C。此外,将与各个评价参数对应的APU 121的单位发电量中最高的值的单位发电量决定为基于APU 121的每单位时间的发电量。
[0100]管理ECU 119在允许APU 121的动作时控制APU 121,使得发电机111通过内燃机109的动作发出单位发电量,使蓄电器101的S0C成为目标S0C。目标S0C是全部满足由过去或者当前的车辆的行驶造成的能量消耗、车辆的NV性能及APU121的效率的、蓄电器101的S0C。并且,单位发电量是全部满足由过去或者当前的车辆的行驶造成的能量消耗、车辆的NV性能及APU 121的效率的、基于APU 121的每单位时间的发电量。因此,形成能够预先应对将来的能量消耗的状态,而且不需牺牲车辆的动力性能、NV性能和APU 121的高效率运转性能中的任意一个性能,能够应用于在各种行驶道路上的行驶。
[0101](第2实施方式)
[0102]第2实施方式的车辆与第1实施方式的车辆的不同之处在于管理ECU的内部结构及动作。除此以外,其它与第1实施方式相同,对于与第1实施方式相同或同等的部分的说明将简化或省略。
[0103]图8是示出第2实施方式的管理ECU219的内部结构的框图。在图8中,对与图2所示的第1实施方式的管理ECU 119相同的构成要素标注相同的参照标号。如图8所示,管理ECU219具有发电量设定部257来取代第1实施方式的发电量决定部157,还具有效率下降区域使用判定部261。
[0104]效率下降区域使用判定部261如果判定为从行驶状态评价部151得到的能量消耗评价参数、NV评价参数及APU效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值,则在规定的期间允许内燃机109在后述的效率下降区域内的运转点处的动作。并且,在蓄电器101的实际S0C与下限S0C之间的差分值小于规定的值时,效率下降区域使用判定部261在规定的期间允许内燃机109在 效率下降区域内的运转点处的动作。
[0105]图9是示出与内燃机109的动作对应的APU121的输出和效率之间的关系的曲线图。图9所示的带影线的区域是“效率下降区域”,在该区域中,效率随着APU 121的输出提高而下降。效率下降区域使用判定部261将表示允许或者禁止在效率下降区域中的动作的信息(效率下降区域动作可否信息)发送给发电量设定部257。
[0106]另外,在效率下降区域使用判定部261中使用的各个评价参数的第2阈值是与蓄电器1 ο 1的实际SOC与下限SOC之间的差分(实际SOC —下限SOC)对应的可变值。在本实施方式中,表示蓄电器101的实际可用容量的所述差分越小,对各个评价参数设定的第2阈值就越小。另外,第2阈值大于在第1实施方式中说明的第1阈值。
[0107]并且,将效率下降区域使用判定部261允许在效率下降区域中的运转的期间(上述规定的期间)设定为:各个评价参数与第2阈值之差越大,该期间就越长,蓄电器101的实际S0C与下限S0C之间的差分越小,该期间就越长。效率下降区域使用判定部261将与各个评价参数和第2阈值之差对应的3个期间、以及与蓄电器101的实际S0C和下限S0C之间的差分对应的期间中最长的期间,设定为允许在上述效率下降区域中的运转的规定的期间。
[0108]在从APU动作判定部153发送的APU动作可否信息表示允许APU121的动作的情况下,发电量设定部257与第1实施方式的发电量决定部157同样地决定单位发电量。但是,在从效率下降区域使用判定部261发送的效率下降区域动作可否信息表示允许在效率下降区域中的动作的情况下,发电量设定部257决定较高的单位发电量。在动作控制部159按照该较高的单位发电量急剧提高内燃机109的转速时,车辆的NV性能下降。因此,发电量设定部257以使APU 121的每单位时间的实际发电量朝向上述决定的单位发电量分阶段地变化的方式,设定APU 121的每单位时间的目标发电量(以下称为“目标单位发电量”)。
[0109]能量消耗参数所表示的消耗能量的最大值越大,发电量设定部257就将目标单位发电量的变化率设定得越大。并且,NV评价参数所表示的蓄电器101的累计输出的最大值越大,发电量设定部257就将目标单位发电量的变化率设定得越大。并且,APU效率允许参数所表示的蓄电器101的累计输出的最大值越大,发电量设定部257就将目标单位发电量的变化率设定得越大。发电量设定部257选择这3个变化率中最大的变化率。发电量设定部257将该选择的变化率设定为目标单位发电量的变化率。
[0110]另外,也可以是,蓄电器101的实际S0C与下限S0C之差越小,发电量设定部257越增加上述设定的目标单位发电量的变化率。即,发电量设定部257对上述设定的变化率乘以与实际S0C和下限S0C之差对应的系数。该系数的值为1以上,实际S0C与下限S0C之差越小,该系数的值越大。并且,也可以是,实际S0C相对于评价S0C越低,发电量设定部257越增加上述设定的目标单位发电量的变化率。即,发电量设定部257对上述设定的变化率乘以与评价S0C和实际S0C之差对应的系数。该系数的值为1以上,评价S0C与实际S0C之差越大,该系数的值就越大。
[0111]并且,发电量设定部257在决定单位发电量时,能量消耗参数所表示的消耗能量的最大值越大、NV评价参数所表示的蓄电器101的累计输出的最大值越大、APU效率允许参数所表示的蓄电器101的累计输出的最大值越大,就将单位发电量的上限值设定得越大。发电量设定部257选择这3个上限值中最大的上限值。发电量设定部257设定该选择出的单位发电量的上限值。
[0112]另外,也可以是,实际S0C相对于评价S0C越低,发电量设定部257越增加上述设定的单位发电量的上限值。即,发电量设定部257对上述设定的上限值乘以与评价S0C和实际S0C之差对应的系数。该系数的值为1以上,评价S0C与实际S0C之差越大,该系数的值就越大。并且,也可以是,蓄电器101的实际S0C与下限S0C之差越小,发电量设定部257越增加上述设定的单位发电量的上限值。即,发电量设定部257对上述设定的上限值乘以与实际S0C和下限S0C之差对应的系数。该系数的值为1以上,实际S0C与下限S0C之差越小,该系数的值越大。
[0113]如以上说明的那样,根据本实施方式,当在评价参数非常大时或者蓄电器101的实际可用容量较小时这样需要尽快提高蓄电器101的S0C的情况下,能够一边维持车辆的NV性能一边凭借APU 121的高输出对蓄电器101充电。
[0114](第3实施方式)
[0115]图10是表示串联方式的PHEV的内部结构的框图。如图10所示,串联方式的PHEV(以下简称“车辆”)具有蓄电器(BATT)301、转换器(C0NV)303、第1逆变器(第1INV)305、电动机(Mot)307、内燃机(ENG)309、发电机(GEN)311、第2逆变器(第2INV)313、齿轮箱(以下简称“齿轮”)315、车速传感器317、充电器318、管理ECU(MG ECU)319。并且图10中虚线箭头表示值数据,实线箭头表示包含指示内容的控制信号。在以下说明中,将内燃机309、发电机311和第2逆变器313总称为“辅助动力部(APU:Auxiliary Power Unit)321”。
[0116]蓄电器301具有串联连接的多个蓄电池,例如提供100?200V的高电压。蓄电池例如是锂离子电池或镍氢电池。转换器303对蓄电器301的直流输出电压进行直流升压或降压。第1逆变器305将直流电压转换为交流电压并将3相电流提供给电动机307。另外,第1逆变器305将电动机307的再生工作时被输入的交流电压转换为直流电压并充入到蓄电器301。
[0117]电动机307产生用于车辆行驶的动力。电动机307产生的扭矩经由齿轮315被传递至驱动轴323。并且,电动机307的转子与齿轮315直接联结。另外,电动机307在再生制动时作为发电机工作,电动机307发出的电力被充入蓄电器301。内燃机309用于在车辆进行串联行驶时驱动发电机311。内燃机309与发电机311的转子直接联结。并且,内燃机309通过发动机架与车体327联结,发动机架具有使用了橡胶或者弹簧等作为缓冲器(damper)的弹性体(未图示)的防震功能。
[0118]发电机311被内燃机309的动力驱动而产生电力。发电机311发出的电力被充入至蓄电器301或被提供给电动机307。第2逆变器313将发电机311产生的交流电压转换为直流电压。被第2逆变器313转换的电力被充入到蓄电器301或经由第1逆变器305被提供给电动机307。
[0119]齿轮315例如为适合于5速的1档的固定齿轮。因此齿轮315将来自电动机307的驱动力转换为特定变速比下的转速和扭矩,传递给驱动轴323。车速传感器317检测车辆的行驶速度(车速VP)。表示由车速传感器317检测出的车速VP的信号被发送给管理EOT 319。
[0120]在充电器318设有能够与外部电源连接的插头325。充电器318将通过插头325从外部电源提供的交流电压转换为直流电压,而且控制基于该直流电压的对蓄电器301的充电。
[0121]管理ECU319取得表示以下内容的信息:车速传感器317检测到的车速VP、与车辆的驾驶员的油门踏板操作对应的油门踏板开度(AP开度)、与车辆的驾驶员的制动踏板操作对应的制动踏力、车辆所行驶的路面的坡度、以及蓄电器301的剩余容量(SOC: State ofCharge:充电状态)。并且,管理EOT 319进行电动机307和APU 321的各控制等。
[0122]下面,对管理ECU319的内部结构及动作进行详细说明。图11是示出第3实施方式的管理EOT 319的内部结构的框图。如图11所示,管理EOT 319具有行驶状态评价部351、APU动作判定部353、目标SOC设定部355、发电量决定部357、动作控制部359。
[0123]行驶状态评价部351从电动机307的能量消耗、车辆的NV性能、以及基于内燃机309的理论配比(理论空燃比)的APU 321的发电效率(以下简称“APU 321的效率”)的各个观点,来评价车辆的行驶状态。如图11所示,行驶状态评价部351具有需求输出计算部371、消耗能量计算部373、能量消耗评价部375、NV允许充电/放电电力计算部377、NV允许评价部379、APU效率允许充电/放电电力计算部381、APU效率允许评价部383。下面,对行驶状态评价部351具有的各个构成要素进行说明。
[0124]需求输出计算部371根据车速VP及AP开度,计算对作为车辆的驱动源的电动机307要求的输出(需求输出)。
[0125]消耗能量计算部373按照规定的控制周期计算在电动机307根据需求输出而仅凭借来自蓄电器301的电力供应进行驱动时,在单位时间ΔΤ由电动机307消耗的能量(以下简称“消耗能量”)。图12是示出车辆开始行驶后的车速、坡度、需求输出、消耗能量及最大消耗能量各自的历时变化的一例的曲线图。另外,在图12的最下段示出的曲线中,实线表示消耗能量,虚线表示最大消耗能量。
[0126]能量消耗评价部375输出在从车辆开始行驶到目前的期间由消耗能量计算部373计算出的消耗能量的最大值,作为从电动机307的能量消耗的观点来评价的参数(能量消耗评价参数)。能量消耗评价部375输出的能量消耗评价参数被发送给APU动作判定部353。
[0127]NV允许充电/放电电力计算部377计算与APU 321的NV允许输出相对于每单位时间的需求输出的差分(需求输出一NV允许输出)对应的蓄电器301的充电/放电电力,作为“NV允许充电/放电电力”。并且,APU 321的NV允许输出是根据车速VP预先决定的值。图13是示出与车速VP对应的APU 321的NV允许输出的曲线图。由于车速VP越高,道路噪声等就越大,因而如图13所示,车速VP越高,就将APU 321的NV允许输出设定为越高的值。
[0128]在NV允许充电/放电电力计算部377计算出的NV允许充电/放电电力是正的值的情况下,该NV允许充电/放电电力与提供给电动机307的蓄电器301的放电电力相等。在NV允许充电/放电电力是负的值的情况下,该NV允许充电/放电电力与通过电动机307进行再生控制得到的对蓄电器301的充电电力相等。图14是示出车辆开始行驶后的车速VP、需求输出及APU 321的NV允许输出、蓄电器301进行充电/放电的电力、以及在将APU 321的输出保持为NV允许输出以下的状态下电动机307行驶时的蓄电器301的累计输出各自的历时变化的一例的曲线图。另外,在图14中从上面起第二个示出的曲线中,实线表示需求输出,虚线表示APU 321的NV允许输出。并且,在图14的最下段示出的曲线中,实线表示蓄电器301的累计输出,虚线表示该累计输出的最大值。
[0129]NV允许评价部379根据从车辆开始行驶到目前为止的NV允许充电/放电电力,计算蓄电器301的累计输出。并且,NV允许评价部379输出计算出的蓄电器301的累计输出的最大值,作为从车辆的NV性能的观点来评价的参数(NV评价参数)。NV允许评价部379输出的NV评价参数被发送给AHJ动作判定部353。
[0130]APU效率允许充电/放电电力计算部381计算与APU效率允许输出相对于每单位时间的需求输出的差分(需求输出一 APU效率允许输出)对应的蓄电器301的充电/放电电力,作为“APU效率允许充电/放电电力”。并且,APU效率允许输出是与APU 321中包含的内燃机309的理论空燃比对应的值。图15是示出与车速VP对应的APU 321的APU效率允许输出的曲线图。
[0131]在APU效率允许充电/放电电力计算部381计算出的APU效率允许充电/放电电力是正的值的情况下,该APU效率允许充电/放电电力与提供给电动机307的蓄电器301的放电电力相等。在APU效率允许充电/放电电力是负的值的情况下,该APU效率允许充电/放电电力与通过电动机307进行再生控制得到的对蓄电器301的充电电力相等。图16是示出车辆开始行驶后的车速VP、需求输出及APU效率允许输出、蓄电器301进行充电/放电的电力、以及在将APU 321的输出保持为APU效率允许输出以下的状态下电动机307行驶时的蓄电器301的累计输出各自的历时变化的一例的曲线图。另外,在图16中从上面起第二个示出的曲线中,实线表示需求输出,虚线表示APU效率允许输出。并且,在图16的最下段示出的曲线中,实线表示蓄电器301的累计输出,虚线表示该累计输出的最大值。
[0132]APU效率允许评价部383根据从车辆开始行驶到目前为止的APU效率允许充电/放电电力,计算蓄电器301的累计输出。并且,APU效率允许评价部383输出 计算出的蓄电器301的累计输出的最大值,作为从APU 321的内燃机309的理论配比(理论空燃比)的观点来评价的参数(APU效率评价参数hAPU效率允许评价部383输出的APU效率评价参数被发送给APU动作判定部353。
[0133]APU动作判定部353根据从行驶状态评价部351得到的能量消耗评价参数、NV评价参数以及APU效率评价参数中的任意一个以上的评价参数,判定是否需要APU 321的动作。gp,APU动作判定部353如果判定为能量消耗评价参数、NV评价参数以及APU效率评价参数中的至少一个参数超过对各个评价参数设定的第1阈值,则允许APU 321的动作APU动作判定部353将表示允许或者禁止APU 321的动作的信息(APU动作可否信息)发送给目标S0C设定部355、发电量决定部357及动作控制部359。
[0134]并且,在APU动作判定部353中使用的各个评价参数的第1阈值是与蓄电器301的实际的S0C(以下称为“实际S0C”)和能够使用蓄电器301的S0C的范围的下限(以下称为“下限S0C”)之间的差分(实际S0C —下限S0C)对应的可变值。在本实施方式中,表示蓄电器301的实际可用容量的所述差分越小,对各个评价参数设定的第1阈值越小。
[0135]在从APU动作判定部353发送的APU动作可否信息表示允许APU321的动作的情况下,目标S0C设定部355计算为了让电动机307输出各个评价参数所表示的消耗能量或者蓄电器301的累计输出而需要的蓄电器301的S0C(以下称为“评价S0C”)。即,目标S0C设定部355计算为了让电动机307在单位时间△ T期间输出能量消耗参数所表示的消耗能量的最大值而需要的蓄电器301的S0C,作为“能量消耗评价S0C”。并且,目标S0C设定部355计算为了输出NV评价参数所表示的蓄电器301的累计输出的最大值而需要的蓄电器301的S0C,作为“NV评价S0C"。并且,目标S0C设定部355计算为了输出APU效率允许参数所表示的蓄电器301的累计输出的最大值而需要的蓄电器301的S0C,作为“APU效率评价S0C”。目标S0C设定部355选择这样计算出的3个评价S0C(能量消耗评价S0C、NV评价S0C、APU效率评价S0C)中最大的值的评价S0C。
[0136]目标S0C设定部355朝向选择评价S0C分阶段地设定蓄电器301的目标S0C,直到蓄电器301的实际S0C达到该选择出的评价S0C(以下称为“选择评价S0C”)为止。即,使蓄电器301的实际S0C逐渐接近选择评价S0C。目标S0C设定部355根据目标S0C的变化方式设定接近选择评价S0C的接近方式。例如,开始使实际S0C接近选择评价S0C的控制后的经过时间越短,目标S0C设定部355就将实际S0C与目标S0C之差设定得越小,经过时间越长,就将实际S0C与目标S0C之差设定得越大。并且,开始使实际S0C接近选择评价S0C的控制后的行驶距离越短,目标SOC设定部355就将实际SOC与目标S0C之差设定得越小,行驶距离越长,就将实际S0C与目标S0C之差设定得越大。并且,实际S0C与选择评价S0C之差越大,目标S0C设定部355就将实际S0C与目标S0C之差设定得越小,该实际S0C与选择评价S0C之差越小,就将实际S0C与目标S0C之差设定得越大。
[0137]另外,目标S0C设定部355也可以根据选择评价S0C相对于实际S0C高还是低,改变接近选择评价S0C的接近方式。例如,在选择评价S0C高于实际S0C时,目标S0C设定部355将实际S0C与目标S0C之差设定得大,在选择评价S0C低于实际S0C时,将实际S0C与目标S0C之差设定得小。
[0138]在从APU动作判定部353发送的APU动作可否信息表示允许APU321的动作的情况下,发电量决定部357决定与各个评价参数对应的APU 321的每单位时间的发电量(以下称为“单位发电量”)。另外,与评价S0C对应的APU 321的单位发电量是指在蓄电器301的S0C不会低于上述说明的选择评价S0C的情况下,本实施方式的车辆凭借来自使用了APU 321的发电电力的电动机307的驱动力来进行巡航行驶所需要的每单位时间的发电量。
[0139]在发电量决定部357决定单位发电量时,发电量决定部357计算如下的单位发电量:能量消耗参数所表示的消耗能量的最大值越大,该单位发电量就越大。并且,发电量决定部357计算如下的单位发电量:NV评价参数所表示的蓄电器301的累计输出的最大值越大,该单位发电量就越大。并且,发电量决定部357计算如下的单位发电量:APU效率允许参数所表示的蓄电器301的累计输出的最大值越大,该单位发电量就越大。发电量决定部357选择这样计算出的3个单位发电量中最大的单位发电量。发电量决定部357将该选择出的单位发电量决定为基于APU 321的每单位时间的发电量。
[0140]另外,也可以是,蓄电器301的实际S0C与下限S0C之差越小,发电量决定部357就越增加上述决定的单位发电量。即,发电量决定部357对上述决定的单位发电量乘以与实际S0C和下限S0C之差对应的系数。该系数的值为1以上,实际S0C与下限S0C之差越小,该系数的值就越大。并且,也可以是,选择评价S0C与实际S0C之差(选择评价S0C—实际S0C)越大,发电量决定部357就越增加上述决定的单位发电量。即,发电量决定部357对上述决定的单位发电量乘以与选择评价S0C和实际S0C之差对应的系数。该系数的值为1以上,评价S0C与实际S0C之差越大,该系数的值就越大。
[0141]在从APU动作判定部353发送的APU动作可否信息表示允许APU321的动作的情况下,动作控制部359控制内燃机309的运转,使得蓄电器301的S0C成为目标S0C、而且使APU321的发电机311发出由发电量决定部357决定的单位发电量。
[0142]如以上说明的那样,在本实施方式中,使用以下参数进行是否允许APU321的动作的判定:基于从电动机307的能量消耗的观点来评价的车辆的行驶状态的参数、基于从车辆的NV性能的观点来评价的车辆的行驶状态的参数、以及基于从APU 321的效率的观点来评价的车辆的行驶状态的参数。在该判定中,如果上述3个评价参数中的至少一个评价参数超过第1阈值,则允许APU 321的动作。在APU 321的动作被允许时,将与各个评价参数对应的蓄电器301的评价S0C中最大的值的评价S0C设定为蓄电器301的最终的目标S0C。此外,将与各个评价参数对应的APU 321的单位发电量中最大的值的单位发电量决定为基于APU 321的每单位时间的发电量。
[0143]管理ECU 319在允许APU 321的动作时控制APU 321,使得发电机311通过内燃机309的动作发出单位发电量,使蓄电器301的SOC成为目标SOC。目标SOC是全部满足由过去或者当前的车辆的行驶造成的能量消耗、车辆的NV性能及APU 321的效率的、蓄电器301的S0C。并且,单位发电量是全部满足由过去或者当前的车辆的行驶造成的能量消耗、车辆的NV性能及APU 321的效率的、基于APU 321的每单位时间的发电量。因此,形成能够预先应对将来的能量消耗的状态,而且不需牺牲车辆的动力性能、NV性能和APU 321的高效率运转性能中的任意一项性能,能够应用于在各种行驶道路上的行驶。
[0144](第4实施方式)
[0145]第4实施方式的车辆与第3实施方式的车辆的不同之处在于管理ECU的内部结构及动作。除此以外,其它与第3实施方式相同,对于与第3实施方式相同或同等的部分的说明将简化或省略。
[0146]图17是示出第4实施方式的管理ECU419的内部结构的框图。在图17中,对与图11所示的第3实施方式的管理ECU 419相同的构成要素标注相同的参照标号。如图17所示,管理ECU 419具有发电量设定部457来取代第3实施方式的发电量决定部357,还具有效率下降区域使用判定部461。
[0147]效率下降区域使用判定部461如果判定为从行驶状态评价部351得到的能量消耗评价参数、NV评价参数及APU效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值,则在规定的期间允许内燃机309在后述的效率下降区域内的运转点处的动作。并且,在蓄电器301的实际S0C与下限S0C之间的差分值小于规定的值时,效率下降区域使用判定部461在规定的期间允许内燃机309在后述的效率下降区域内的运转点处的动作。
[0148]图18是示出与内燃机309的动作对应的APU321的输出和效率之间的关系的曲线图。图18所示的带影线的区域是“效率下降区域”,在该区域中效率随着APU 321的输出提高而下降。效率下降区域使用判定部461将表示允许或者禁止在效率下降区域中的动作的信息(效率下降区域动作可否信息)发送给发电量设定部457。
[0149]另外,在效率下降区域使用判定部461中使用的各个评价参数的第2阈值是与蓄电器301的实际S0C与下限S0C之间的差分(实际S0C —下限S0C)对应的可变值。在本实施方式中,表示蓄电器301的实际可用容量的所述差分越小,对各个评价参数设定的第2阈值就越小。另外,第2阈值小于在第3实施方式中说明的第1阈值。
[0150]并且,将效率下降区域使用判定部461允许在效率下降区域中的运转的期间(上述规定的期间)设定为:各个评价参数与第2阈值之差越大,该期间就越长,蓄电器301的实际S0C与下限S0C之间的差分越小,该期间就越长。效率下降区域使用判定部461将与各个评价参数和第2阈值之差对应的3个期间、以及与蓄电器301的实际S0C和下限S0C之间的差分对应的期间中最长的期间,设定为允许在上述效率下降区域中的运转的规定的期间。
[0151]在从APU动作判定部353发送的APU动作可否信息表示允许APU321的动作的情况下,发电量设定部457与第3实施方式的发电量决定部357同样地决定单位发电量。但是,在从效率下降区域使用判定部461发送的效率下降区域动作可否信息表示允许在效率下降区域中的动作的情况下,发电量设定部457决定较高的单位发电量。在动作控制部359按照该较高的单位发电量急剧提高内燃机309的转速时,车辆的NV性能下降。因此,发电量设定部457以使APU 321的每单位时间的实际发电量朝向上述决定的单位发电量分阶段地变化的方式,设定APU 321的每单位时间的目标发电量(以下称为“目标单位发电量”)。
[0152]能量消耗参数所表示的消耗能量的最大值越大,发电量设定部457就将目标单位发电量的变化率设定得越大。并且,NV评价参数所表示的蓄电器301的累计输出的最大值越大,发电量设定部457就将目标单位发电量的变化率设定得越大。并且,APU效率允许参数所表示的蓄电器301的累计输出的最大值越大,发电量设定部457就将目标单位发电量的变化率设定得越大。发电量设定部457选择这3个变化率中最大的变化率。发电量设定部457将该选择出的变化率设定为目标单位发电量的变化率。
[0153]另外,也可以是,蓄电器301的实际S0C与下限S0C之差越小,发电量设定部457越增加上述设定的目标单位发电量的变化率。即,发电量设定部457对上述设定的变化率乘以与实际S0C和下限S0C之差对应的系数。该系数的值为1以上,实际S0C与下限S0C之差越小,该系数的值越大。并且,也可以是,实际S0C相对于评价S0C越低,发电量设定部457越增加上述设定的目标单位发电量的变化率。即,发电量设定部457对上述设定的变化率乘以与评价S0C和实际S0C之差对应的系数。该系数的值为1以上,评价S0C与实际S0C之差越大,该系数的值就越大。
[0154]并且,发电量设定部457在决定单位发电量时,能量消耗参数所表示的消耗能量的最大值越大、NV评价参数所表示的蓄电器301的累计输出的最大值越大、APU效率允许参数所表示的蓄电器301的累计输出的最大值越大,就将单位发电量的上限值设定得越大。发电量设定部457选择这3个上限值中的最大的上限值。发电量设定部457设定该选择的单位发电量的上限值。
[0155]另外,也可以是,实际S0C相对于评价S0C越低,发电量设定部457越增加上述设定的单位发电量的上限值。即,发电量设定部457对上述设定的上限值乘以与评价S0C和实际S0C之差对应的系数。该系数的值为1以上,评价S0C与实际S0C之差越大,该系数的值就越大。并且,也可以是,蓄电器301的实际S0C与下限S0C之差越小,发电量设定部457就越增加上述设定的单位发电量的上限值。即,发电量设定部457对上述设定的上限值乘以与实际S0C和下限S0C之差对应的系数。该系数的值为1以上,实际S0C与下限S0C之差越小,该系数的值就越大。
[0156]如以上说明的那样,根据本实施方式,当在评价参数非常高时或者蓄电器301 的实际可用容量较小时这样需要尽快提高蓄电器301的S0C的情况下,能够维持车辆的NV性能,而且凭借APU 321的高输出对蓄电器101充电。
[0157]以上参照特定的实施方式详细说明了本发明,然而可以在不脱离本发明的精神和范围的情况下施加各种变更和修改,这对于本领域技术人员来说是显而易见的。
[0158]本申请以2013年8月29日在日本申请的日本特许申请(特愿2013-178273)、2013年8月29日在日本申请的日本特许申请(特愿2013-178274)为基础,在本申请作为参考而引入其内容。
[0159]标号说明
[0160]101蓄电器(BATT);103转换器(C0NV); 105第1逆变器(第1INV); 107电动机(Mot); 109内燃机(ENG); 111发电机(GEN); 113第2逆变器(第2INV); 115齿轮箱;117车速传感器;118充电器;119、219管理ECU(MG ECU); 121 APU; 123驱动轴;125插头;151行驶状态评价部;153 APU动作判定部;155目标SOC设定部;157发电量决定部;159动作控制部;171需求输出计算部;173消耗能量计算部;175能量消耗评价部;177 NV允许充电/放电电力计算部;179 NV允许评价部;181 APU效率允许充电/放电电力计算部;183 APU效率允许评价部;257发电量设定部;261效率下降区域使用判定部;301蓄电器(BATT);303转换器(C0NV);305第1逆变器(第1INV) ;307电动机(Mot);309内燃机(ENG);311发电机(GEN);313第2逆变器(第2INV);315齿轮箱;317车速传感器;318充电器;319、419管理ECU(MG ECU);321 APU;323驱动轴;325插头;351行驶状态评价部;353 APU动作判定部;355目标SOC设定部;357发电量决定部;359动作控制部;371需求输出计算部;373消耗能量计算部;375能量消耗评价部;377 NV允许充电/放电电力计算部;379 NV允许评价部;381 APU效率允许充电/放电电力计算部;383 APU效率允许评价部;457发电量设定部;461效率下降区域使用判定部
【主权项】
1.一种混合动力车辆的发电控制装置,该混合动力车辆具有: 能够充电的蓄电器,其对作为上述混合动力车辆的驱动源的电动机提供电力; 发电部,其具有内燃机和通过该内燃机的运转来发电的发电机,将发出的电力提供给上述电动机或上述蓄电器;以及 上述电动机,其凭借来自上述蓄电器及上述发电部中的至少一方的电力供应来进行驱动, 该发电控制装置的特征在于,具有: 行驶状态评价部,其从上述电动机的能量消耗、上述混合动力车辆的噪声振动性能以及上述发电部的发电效率的各个观点来评价上述混合动力车辆的行驶状态;以及 发电动作判定部,其根据从上述行驶状态评价部得到的任意一个以上的观点的评价参数,判定是否需要上述发电部的动作。2.根据权利要求1所述的发电控制装置,其特征在于, 在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的噪声振动性能的观点来评价的噪声振动评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第1阈值时,上述发电动作判定部允许上述发电部的动作。3.根据权利要求2所述的发电控制装置,其特征在于, 上述蓄电器的实际可用容量越小,上述第1阈值就越小。4.根据权利要求1?3中的任意一项所述的发电控制装置,其特征在于,上述发电控制装置具有: 充电目标导出部,其导出为了让上述电动机输出各个评价参数所表示的能量或者输出而需要的上述蓄电器的充电状态中最高的充电状态;以及 动作控制部,其控制上述内燃机的运转,使得上述蓄电器接近由上述充电目标导出部导出的充电状态。5.根据权利要求4所述的发电控制装置,其特征在于, 上述充电目标导出部朝向上述最高的充电状态分阶段地设定上述蓄电器的目标充电状态,直到上述蓄电器的充电状态达到上述最高的充电状态, 上述动作控制部控制上述内燃机的运转,使得上述蓄电器成为上述目标充电状态。6.根据权利要求5所述的发电控制装置,其特征在于, 上述充电目标导出部设定上述目标充电状态的时间间隔根据上述动作控制部进行的控制的经过时间而不同。7.根据权利要求5所述的发电控制装置,其特征在于, 上述充电目标导出部设定上述目标充电状态的时间间隔根据上述动作控制部进行控制时的上述混合动力车辆的行驶距离而不同。8.根据权利要求5所述的发电控制装置,其特征在于, 上述充电目标导出部设定上述目标充电状态的时间间隔根据上述动作控制部进行控制时的上述蓄电器的实际的充电状态与上述最高的充电状态之差而不同。9.根据权利要求2?8中的任意一项所述的发电控制装置,其特征在于, 上述发电控制装置具有效率下降区域使用判定部,在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的噪声振动性能的观点来评价的噪声振动评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值时,或者在上述蓄电器的实际可用容量小于规定的值时,上述效率下降区域使用判定部允许上述发电部在效率随着上述发电部的输出提高而下降的效率下降区域中的动作。10.根据权利要求9所述的发电控制装置,其特征在于, 上述蓄电器的实际可用容量越小,上述第2阈值就越小。11.根据权利要求9或10所述的发电控制装置,其特征在于, 上述效率下降区域使用判定部在规定的期间允许上述发电部在上述效率下降区域中的动作。12.根据权利要求11所述的发电控制装置,其特征在于, 上述规定的期间被设定成:各个评价参数与上述第2阈值之差越大,上述规定的期间就越长,上述蓄电器的上述实际可用容量越小,上述规定的期间就越长, 上述效率下降区域使用判定部将和各个评价参数与上述第2阈值之差对应的3个期间、以及与上述实际可用容量对应的期间中最长的期间,设定为上述规定的期间。13.根据权利要求1所述的发电控制装置,其特征在于, 上述发电控制装置具有发电量决定部,该发电量决定部决定对应于各个评价参数而计算出的单位发电量中最大的单位发电量,作为上述发电部的每单位时间的发电量。14.根据权利要求13所述的发电控制装置,其特征在于, 上述蓄电器的实际可用容量越小,上述发电量决定部就越增加上述决定的单位发电量。15.根据权利要求13所述的发电控制装置,其特征在于, 上述发电控制装置具有充电目标导出部,该充电目标导出部导出为了让上述电动机输出各个评价参数所表示的能量或者输出而需要的上述蓄电器的充电状态中最高的充电状态, 上述蓄电器的实际的充电状态相对于上述充电目标导出部导出的上述蓄电器的最高的充电状态越低,上述发电量决定部就越增加上述决定的单位发电量。16.根据权利要求13?15中的任意一项所述的发电控制装置,其特征在于, 上述发电控制装置具有效率下降区域使用判定部,在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的噪声振动性能的观点来评价的噪声振动评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值时,或者在上述蓄电器的实际可用容量小于规定的值时,该效率下降区域使用判定部允许上述发电部在效率随着上述发电部的输出提高而下降的效率下降区域中的动作, 在上述效率下降区域使用判定部允许上述发电部在上述效率下降区域中的动作的情况下,上述发电量决定部以使上述发电部的每单位时间的发电量朝向上述决定的单位发电量分阶段地变化的方式,设定目标单位发电量作为每单位时间的目标发电量。17.根据权利要求16所述的发电控制装置,其特征在于, 从上述电动机的能量消耗的观点来评价的能量消耗评价参数越大,上述发电量决定部就将上述目标单位发电量的变化率设定得越大,从上述混合动力车辆的噪声振动性能的观点来评价的噪声振动评价参数越大,上述发电量决定部就将上述目标单位发电量的变化率设定得越大,从上述发电部的发电效率的观点来评价的发电效率评价参数越大,上述发电量决定部就将上述目标单位发电量的变化率设定得越大,上述发电量决定部选择这3个变化率中最大的变化率,将该选择出的变化率设定为上述目标单位发电量的变化率。18.根据权利要求17所述的发电控制装置,其特征在于, 上述蓄电器的实际可用容量越小,上述发电量决定部就越增加上述设定的目标单位发电量的变化率。19.根据权利要求17所述的发电控制装置,其特征在于, 上述发电控制装置具有充电目标导出部,该充电目标导出部导出为了让上述电动机输出各个评价参数所表示的能量或者输出而需要的上述蓄电器的充电状态中最高的充电状态, 上述蓄电器的实际的充电状态相对于上述充电目标导出部导出的上述蓄电器的最高的充电状态越低,上述发电量决定部就越增加上述设定的目标单位发电量的变化率。20.根据权利要求13?19中任意一项所述的发电控制装置,其特征在于, 上述发电控制装置具有动作控制部,该动作控制部控制上述内燃机的运转,使得上述发电部发出由上述发电量决定部决定的单位发电量或者由上述发电量决定部设定的目标单位发电量。21.—种混合动力车辆的发电控制方法,该混合动力车辆具有: 能够充电的蓄电器,其对作为上述混合动力车辆的驱动源的电动机提供电力; 发电部,其具有内燃机和通过该内燃机的运转来发电的发电机,将发出的电力提供给上述电动机或上述蓄电器;以及 上述电动机,其凭借来自上述蓄电器及上述发电部中的至少一方的电力供应来进行驱动, 该发电控制方法的特征在于,包括: 行驶状态评价步骤,从上述电动机的能量消耗、上述混合动力车辆的噪声振动性能、上述发电部的发电效率的各个观点,评价上述混合动力车辆的行驶状态; 发电动作判定步骤,根据在上述行驶状态评价步骤中得到的任意一个以上的观点的评价参数,判定是否需要上述发电部的动作; 充电目标导出步骤,导出为了让上述电动机输出各个评价参数所表示的能量或者输出而需要的上述蓄电器的充电状态中最高的充电状态;以及 动作控制步骤,控制上述内燃机的运转,使得上述蓄电器接近在上述充电目标导出步骤中导出的充电状态。22.根据权利要求21所述的发电控制方法,其特征在于, 在上述发电动作判定步骤中,在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的噪声振动性能的观点来评价的噪声振动评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第1阈值时,允许上述发电部的动作, 上述发电控制方法包括效率下降区域使用判定步骤,在上述能量消耗评价参数、上述噪声振动评价参数以及上述发电效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值时,或者在上述蓄电器的实际可用容量小于规定的值时,允许上述发电部在效率随着上述发电部的输出提高而下降的效率下降区域中的动作。23.根据权利要求21所述的发电控制方法,其特征在于,上述发电控制方法包括: 发电量决定步骤,决定对应于各个评价参数而计算出的单位发电量中最大的单位发电量,作为上述发电部的每单位时间的发电量;以及 效率下降区域使用判定步骤,在从上述电动机的能量消耗的观点来评价的能量消耗评价参数、从上述混合动力车辆的噪声振动性能的观点来评价的噪声振动评价参数、以及从上述发电部的发电效率的观点来评价的发电效率评价参数中的至少一个参数超过对各个评价参数设定的第2阈值时,或者在上述蓄电器的实际可用容量小于规定的值时,允许上述发电部在效率随着上述发电部的输出提高而下降的效率下降区域中的动作, 在上述发电量决定步骤中,当在上述效率下降区域使用判定步骤中允许上述发电部在上述效率下降区域中的动作的情况下,以使上述发电部的每单位时间的发电量朝向上述决定的单位发电量分阶段地变化的方式,设定目标单位发电量作为每单位时间的目标发电量。
【专利摘要】一种混合动力车辆的发电控制装置,该混合动力车辆具有:蓄电器;发电部,其具有内燃机和通过该内燃机的运转来发电的发电机,将发电电力提供给电动机或蓄电器;以及电动机,其凭借来自蓄电器及发电部中的至少一方的电力供应来进行驱动,该发电控制装置从电动机的能量消耗、车辆的NV性能以及发电部的发电效率的各个观点,评价车辆的行驶状态,根据任意一个以上的观点的评价参数,判定是否需要发电部的动作。
【IPC分类】B60L11/12, B60W10/08, B60W10/26, B60W10/06, B60K6/46, B60W20/00
【公开号】CN105492281
【申请号】CN201480047062
【发明人】田上裕, 中佐古享
【申请人】本田技研工业株式会社
【公开日】2016年4月13日
【申请日】2014年5月15日
【公告号】CA2922447A1, EP3028912A1, US20160200314, WO2015029507A1

最新回复(0)