粘接膜和半导体装置的制造方法

xiaoxiao2021-2-21  131

粘接膜和半导体装置的制造方法
【技术领域】
[0001] 本发明涉及粘接膜和使用了该粘接膜的半导体装置的制造方法。
【背景技术】
[0002] 安装部件的小型化的需求日渐提高,能够将封装的尺寸变小,能够实现半导体装 置的小型化/轻量化的技术愈发变得重要。
[0003] 作为这样的技术,开发有WLP(晶片级封装)。在WLP中,进行形成于半导体晶片上的 电路的布线、电极形成、树脂密封,之后,进行切割。进一步,近年来,要求高集成化、更多的 外部连接等,作为满足那样的要求的技术,开发了eWLB(Embedded Wafer Level Ball Grid Array) 〇
[0004] 在该封装的制作方法中,采取使用粘接膜将半导体芯片粘附于支撑基板上,并将 该半导体芯片进行密封的方法。
[0005] 然而,关于粘接膜,在密封工序等中,需要将半导体芯片固定于支撑基板,另一方 面,密封后需要与支撑基板一同从半导体芯片去除。这样,对于粘接膜,要求相反的特性。
[0006] 专利文献1公开了,在包含热收缩膜的基材的两个表面形成粘着层,在100°C以下 表现高收缩率的热收缩膜。
[0007] 专利文献2公开了以下方法:在支持膜的单面或两面形成树脂层A,关于支持膜,将 20~200°C时的线性热膨胀系数为3.0X1(T 5/°C以下的半导体用粘接膜贴附于引线框背面 而进行保护,密封后剥下的方法。关于该支持膜,记载了在200°C进行2小时加热时的加热收 缩率为0.15%以下。
[0008] 专利文献3公开了,层叠有收缩性膜层和约束该收缩性膜层的收缩的约束层的层 叠片。记载了收缩性膜层的主收缩方向的热收缩率在70~180°C时为30~90%。
[0009] 专利文献4公开了,使用了在40~180°C的温度范围表现3~90%的热收缩率的热 收缩性膜的切割用表面保护片。并且,记载了使用了该切割用表面保护片的加工方法。对于 用于树脂成型的情况,未进行记载。
[0010] 专利文献5公开了,在包含氨基甲酸酯聚合物和(甲基)丙烯酸系聚合物的复合膜 层的基材的至少一个面,形成了包含发泡剂的热膨胀性粘着层的加热剥离型粘着片。记载 了加热剥离型粘着片在150°C时的热收缩率为97%以上。
[0011] 现有技术文献 [0012]专利文献
[0013] 专利文献1:日本特开2000-319600号公报 [0014] 专利文献2:日本特开2003-17647号公报
[0015] 专利文献3:日本特许2008-155619号公报
[0016] 专利文献4:日本特许2011-204806号公报 [0017] 专利文献5:日本特开2012-167178号公报

【发明内容】

[0018] 发明所要解决的课题
[0019] 然而,专利文献1~5中记载的粘接膜不具备在安装/树脂成型工序时的温度下具 有耐热性和粘接性,在树脂成型后将半导体芯片从支撑体剥离的工序中发挥易剥离性那样 的相反的特性。因此,还没有能够用于要求满足这样的特性的半导体制造工艺,例如eWLB技 术等。
[0020] 本发明是鉴于上述现状而完成的,提供具备上述那样的特性的粘接膜,并且进一 步提供使用了该粘接膜的半导体装置的制造方法。
[0021] 用于解决课题的方法 [0022] 本发明记载如下。
[0023] [ 1 ] -种粘接膜,其层叠有基材层和自剥离性粘接层,
[0024]上述基材层的流动方向的热收缩率(MD方向的热收缩率)、以及与流动方向正交的 方向的热收缩率(TD方向的热收缩率)满足以下条件:
[0025] (1)以150°C加热30分钟后
[0026] 0.4< |MD方向的热收缩率/TD方向的热收缩率| <2.5
[0027] MD方向的热收缩率和TD方向的热收缩率的平均< 2%
[0028] (2)以200°C加热10分钟后
[0029] 0.4< |MD方向的热收缩率/TD方向的热收缩率| <2.5
[0030] MD方向的热收缩率和TD方向的热收缩率的平均2 3%
[0031] [2]如[1]所述的粘接膜,上述自剥离性粘接层的粘接力因热而降低。
[0032] [3]如[1]或[2]所述的粘接膜,在上述基材层的与上述自剥离性粘接层相对的面 的背面上进一步层叠有粘接层。
[0033] [ 4 ]如[1 ]至[3 ]中任一项所述的粘接膜,上述基材层在180°C时的储存弹性模量E ' 为1.0E+6以上2.0E+8以下。
[0034] [5]如[1]至[4]中任一项所述的粘接膜,上述基材层包含聚酯系树脂、聚酰亚胺系 树脂或聚酰胺系树脂。
[0035] [6]-种半导体装置的制造方法,其包括如下工序:
[0036] 在支撑基板上将[1]至[5]中任一项所述的粘接膜以上述自剥离性粘接层处于该 支撑基板侧的方式进行粘附的工序;
[0037] 将半导体芯片搭载于上述粘接膜的上述基材层上的工序;
[0038] 以覆盖上述半导体芯片和上述粘接膜的方式涂布密封材料,在150°C以下的温度 使该密封材料固化,从而形成带有支撑基材的半导体芯片模具的工序;
[0039]加热至超过150°C的温度,使上述自剥离性粘接层的粘接力降低,从上述带有支撑 基材的半导体芯片模具去除上述支撑基板的工序;及
[0040] 将上述粘接膜去除,得到半导体芯片模具的工序。
[0041] 发明效果
[0042]本发明的粘接膜能够根据温度条件发挥相反的特性,即在预定的温度下具有耐热 性和粘接性,并且在与该温度不同的温度下具有易剥离性。
[0043] 因此,对于将本发明的粘接膜用于要求这样的特性的半导体装置的制造方法等的 情况下,在安装工序、树脂成型工序时的温度下,具有耐热性和粘接性,在树脂成型后将半 导体芯片从支撑体剥离的工序中,具有易剥离性,因而能够以简便的方法制造半导体装置。 这样,使用了本发明的粘接膜的半导体装置的制造方法的生产性优异,能够改善成品率。
【附图说明】
[0044] 上述目的以及其他目的、特征和优点可以由下述合适的实施方式和该实施方式随 附的以下附图而进一步明确。
[0045] 图1是表示本实施方式的粘接膜的概略截面图。
[0046] 图2是表示本实施方式的半导体装置的制造方法的概略工序图。
[0047] 图3是表示本实施方式的半导体装置的制造方法的概略工序图。
[0048] 图4是说明实施例中的剥离性评价方法的图。
【具体实施方式】
[0049] 以下,对于本发明的实施方式,适当使用附图进行说明。另外,在全部附图中,对同 样的构成要素带上同样的符号,并适当省略说明。
[0050] 本实施方式的粘接膜10如图1所示层叠有基材层12和自剥离性粘接层14。
[0051] [基材层 12]
[0052]基材层12的流动方向的热收缩率(MD方向的热收缩率)、以及与流动方向正交的方 向的热收缩率(TD方向的热收缩率)满足以下条件。
[0053] (1)以150°C加热30分钟后
[0054] 0.4 方向的热收缩率/TD方向的热收缩率| <2.5
[0055] MD方向的热收缩率和TD方向的热收缩率的平均< 2%
[0056] (2)以200°C加热10分钟后
[0057] 0.4 方向的热收缩率/TD方向的热收缩率| <2.5
[0058] MD方向的热收缩率和TD方向的热收缩率的平均2 3%
[0059]通过以150°C加热30分钟,从而能够判断半导体芯片的密封工序中用作基材层12 的树脂膜的热收缩性。
[0060] 在半导体装置的制造方法中,密封工序中的温度最大为150°c左右,树脂膜的热收 缩在某一程度的加热时间内结束。150°C时的作为基材层的树脂膜的热收缩会由于30分钟 加热而几乎结束。因此,以150°C加热30分钟时的作为基材层12的树脂膜的热收缩率满足上 述(1)的条件,从而能够在半导体芯片的密封工序中,判断为抑制了粘接膜10从支撑基板的 剥离。
[0061] 通过以200°C加热10分钟,从而能够判断将密封的半导体芯片(封装)从支撑基板 剥离的工序中用作基材层12的树脂膜的热收缩性。
[0062] 在半导体装置的制造方法中,密封工序中的温度最大为150°C左右,因此对于本实 施方式,在从支撑基板的剥离工序中在超过150°C的温度加热。与密封工序不同,从支撑基 板的剥离期望以短时间进行。因此,以比密封工序高的温度200°C加热10分钟时的作为基材 层12的树脂膜的热收缩率满足上述(2)的条件,从而在从支撑基板剥离封装时,能够判断为 粘接膜10容易从支撑基板剥离。
[0063] 上述" | MD方向的收缩率/TD方向的收缩率I "表示MD方向的收缩率与TD方向的收缩 率之比的绝对值,通过为0.4以上2.5以下,优选为0.6以上2.5以下,从而MD方向的收缩率与 TD方向的收缩率没有方向依赖性,是各向同性的。
[0064] 通过为各向同性,不易产生由基材层12的收缩率的各向异性引起的应力,因此在 密封工序中,翘曲少,能够抑制密封树脂的漏出和翘曲。此外,在剥离工序中,除了翘曲少, 能够防止封装的损伤以外,剥离也变得容易。
[0065]并且,以150°C加热30分钟后的"MD方向的热收缩率和TD方向的热收缩率的平均" 为2%以下,优选为1.8%以下。由此,在半导体芯片的密封工序中,能够抑制由基材层12的 热收缩引起的自剥离性粘接层14的剥离。
[0066]另一方面,以200°C加热10分钟后的"MD方向的热收缩率和TD方向的热收缩率的平 均"为3%以上,优选为3.5%以上。由此,在从支撑基板剥离封装的工序中,能够促进由基材 层12的热收缩引起的自剥离性粘接层14的剥离。
[0067]此外,如果基材层12热收缩,基材层12的端部的粘接强度降低,则也具有变得容易 剥离的效果。进一步,利用基材层12在热收缩时所产生的应力,也能够促进剥离。
[0068]因此,满足上述条件的基材层12能够在后述的半导体装置的制造方法中,在安装 工序、树脂成型工序时的温度下,不发生收缩,而发挥耐热性和粘接性,并且,在树脂成型后 将半导体芯片从支撑体剥离的工序中能够发生收缩,因此能够发挥易剥离性。本实施方式 的粘接膜10能够适合用作半导体装置制造用粘接膜。
[0069]在本实施方式中,基材层12的180°C时的储存弹性模量E'能够设为1.0E+6以上 2.0E+8以下,优选设为5.0E+6以上2.0E+8以下。
[0070] 如果处于该范围,则具备作为基材的合适的刚性,进一步自剥离性粘接层14能够 从端部剥离,它们的平衡优异。
[0071] 在本实施方式中,基材层12能够由1层或2层以上的多层结构构成。以作为基材层 12整体的热收缩率满足上述条件的方式构成。
[0072] 作为构成基材层12的树脂,能够使用满足上述条件的耐热性高的树脂,能够举出 例如聚酯系树脂、聚酰亚胺系树脂、聚酰胺系树脂等。其中,优选为聚酯系树脂或聚酰胺系 树脂,作为聚酯系树脂,能够使用日本特开2009-172864号公报的0026段~0036段中记载的 聚酯系树脂,作为聚酰胺系树脂,能够使用国际公开2012/117884号小册子中记载的公知的 聚酰胺系树脂。
[0073] 在本实施方式中,尤其优选聚酯系树脂,能够举出聚对苯二甲酸乙二醇酯树脂、聚 萘二甲酸乙二醇酯树脂、无定形聚对苯二甲酸乙二醇酯等。
[0074]基材层12能够以树脂膜的形态使用。
[0075]关于作为基材层12的树脂膜,能够通过在阻碍耐热性高的树脂结晶化的同时将其 进行膜化,从而作为非晶质或低结晶性的膜而得到。例如,能够举出将树脂熔融后进行骤冷 的方法、在超过熔点的温度实施热处理的方法、以不进行取向结晶化的方式进行拉伸的方 法等。也能够通过适当选择主成分以外的共聚成分,利用共聚单体来阻碍结晶化。
[0076] 基材层12的层厚通常选择500μηι以下(例如,1~500μηι),优选为1~300μηι左右,更 优选为5~250μηι左右。用于基材层的树脂膜可以为单层,也可以为多层体。
[0077] [自剥离性粘接层14]
[0078] 在本实施方式中,自剥离性粘接层14所含的粘接剂是由于受热而粘接力降低或丧 失的粘接剂。能够选择15 0 °C以下不剥离,超过15 0 °C的温度时会剥离的材料。例如,优选具 有在半导体装置的制造工序中半导体元件不从支撑板剥离的程度的粘接力。
[0079] 作为自剥离性粘接层14所含的粘接剂,优选为包含气体产生成分的物质、包含热 膨胀性微球的物质、因热导致粘接剂成分发生交联反应而粘接力降低的物质等。
[0080] 例如,作为气体产生成分,适合使用偶氮化合物、叠氮化合物、麦氏酸衍生物等。此 外,也可以使用包含碳酸铵、碳酸氢铵、碳酸氢钠、亚硝酸铵等无机系发泡剂,氯氟烃、肼系 化合物、氨基脲系化合物、三唑系化合物、N-亚硝基系化合物等有机系发泡剂的物质。气体 产生成分可以添加于粘接剂(树脂),也可以与树脂直接结合。
[0081] 作为热膨胀性微球,能够使用使气化而显示热膨胀性的物质内包于外壳形成物质 内的热膨胀性微球。作为因能量引起交联反应而粘接力降低的物质,能够使用含有聚合性 低聚物、通过聚合性低聚物进行聚合交联而粘接力降低的物质等。这些成分能够添加于粘 接剂(树脂)。
[0082] 气体产生的温度、热膨胀性微球发生热膨胀的温度、交联反应的温度只要设计成 超过150°C的温度即可。
[0083] 作为构成粘接剂的树脂,能够举出丙稀酸系树脂、氣基甲酸醋系树脂、有机娃系树 月旨、聚烯烃系树脂等。
[0084] 本实施方式的粘接膜10如图l(ii)所示,在基材层12的与自剥离性粘接层14相对 的面的背面上,可以进一步层叠有粘接层16。
[0085] (粘接层 16)
[0086] 作为构成粘接层16的粘接剂,能够使用以往公知的粘接剂。在将本实施方式的粘 接膜用于晶片承载系统(wafer support system)、陶瓷电容器、半导体装置的制造的情况 下,从再利用支撑基板的观点出发,优选为糊料残留少的粘接剂。尤其,如果使用压敏粘接 剂,则由于粘接工序、剥离工序的操作性优异,进一步糊料残留少,因此能够提高半导体装 置的成品率。
[0087] 作为压敏粘接剂的例子,能够举出将天然橡胶、聚异丁烯橡胶、丁苯橡胶、苯乙烯/ 异戊二烯/苯乙烯嵌段共聚物橡胶、再生橡胶、丁基橡胶、聚异丁烯橡胶、NBR等橡胶系聚合 物用于基体聚合物的橡胶系压敏粘接剂、有机硅系压敏粘接剂、氨基甲酸酯系压敏粘接剂、 丙烯酸系压敏粘接剂等。母剂可以由1种或2种以上成分构成。尤其优选为丙烯酸系压敏粘 接剂。
[0088] 在丙烯酸系压敏粘接剂的制造中,能够适当选择溶液聚合、本体聚合、乳液聚合以 及各种自由基聚合等公知的制造方法。此外,关于得到的粘接性树脂,无规共聚物、嵌段共 聚物、接枝共聚物等均可。
[0089]本实施方式的粘接膜能够用于半导体装置的制造、构件的临时固定等,尤其能够 适合用于e_WLB。
[0090] 以下,对使用了图1 (i)的粘接膜10的半导体装置的制造方法进行说明。
[0091] <半导体装置的制造方法>
[0092] 本实施方式的半导体装置的制造方法具有以下工序。
[0093]工序(a):将粘接膜10以自剥离性粘接层14处于支撑基板20侧的方式粘附于支撑 基板20上(图2(a))。
[0094]工序(b):将半导体芯片22搭载于粘接膜10的基材层12上(图2(b))。
[0095] 工序(c):以覆盖半导体芯片22和粘接膜10的方式形成密封层24,在150°C以下的 温度使密封层24固化,从而形成带有支撑基材的半导体芯片模具(图2(c))。
[0096] 工序(d):加热至超过150°C的温度,使自剥离性粘接层14的粘接力降低,从带有支 撑基材的半导体芯片模具去除支撑基板20(图3(d))。
[0097]工序(e):将粘接膜10去除,得到半导体芯片模具(图3(e))。
[0098]在本实施方式中,也可以进一步具有以下工序。
[0099]工序(f):将布线层26形成于半导体芯片模具的露出面,所述布线层26具备形成于 最外表面的垫片(pad)(未图示)和将露出的半导体芯片22与该垫片进行电连接的布线(未 图示)(图3(f))。
[0100]工序(g):将突起28形成于垫片上(图3(g))。
[0101 ]以下,将工序依次进行说明。
[0102] (工序(a))
[0103] 首先,将粘接膜10以自剥离性粘接层14处于支撑基板20侧的方式粘附于支撑基板 20上(图2(a))。在自剥离性粘接层14面上可以贴附保护膜,能够将该保护膜剥掉,将自剥离 性粘接层14的露出面粘附于支撑基板20表面。
[0104] 作为支撑基板12,能够举出石英基板、玻璃基板等。
[0105] (工序(b))
[0106] 接着,将半导体芯片22搭载于粘附在支撑基板20上的、粘接膜10的基材层12上(图 2(b))〇
[0107] 作为半导体芯片,能够举出例如,IC、LSI、发光二极管、受光元件等。为了赋予与半 导体芯片22的粘接性,基材层12的表面可被实施表面处理。
[0108]予以说明的是,在本实施方式中,示出了将半导体芯片22搭载于基材层12上的形 式,但也能够将半导体芯片22搭载于基材层12上所层叠的粘接层16上。
[0109](工序(c))
[0110]以覆盖半导体芯片22和粘接膜10的方式形成密封层24,在150°C以下的温度使密 封层24固化,从而形成带有支撑基材的半导体芯片模具(图2(c))。
[0111] 用于形成密封层24的密封材料没有特别限制,能够使用将环氧树脂作为主成分、 添加有二氧化硅填充材料等的热固性成型材料等通常使用的材料。
[0112] 作为密封方法,有低压传递方式,但也能够进行利用注射成型、压缩成型、注模等 的密封。用密封层24密封后,在150°C以下的温度进行加热而使其固化,得到半导体芯片22 被密封了的带有支撑基材的半导体芯片模具。
[0113] 粘接膜10的基材层12在以150°C加热30分钟后具有如上所述的热收缩性,在150°C 以下的固化温度,能够抑制自剥离性粘接层14的剥离。
[0114] (工序⑷)
[0115] 将半导体芯片22密封后,加热至超过150°C的温度,使自剥离性粘接层14的粘接力 降低,从带有支撑基材的半导体芯片模具去除支撑基板20(图3(d))。
[0116] 粘接膜10的基 材层12在以200°C加热10分钟后,MD方向的热收缩率和TD方向的热 收缩率的平均为3%以上,因该加热温度导致热收缩变大。因此,由基材层12的热收缩引起 的应力的增加变得显著,能够使自剥离性粘接层14的粘接性降低。
[0117] (工序(e))
[0118] 将支撑基板20去除后,进一步将粘接膜10去除,得到半导体芯片模具(图3(e))。
[0119] 在从粘接膜10将半导体芯片模具剥离的情况下,能够按照基材层12的材质进行适 当选择。可以机械地剥离,也可以使基材层12表面的粘接力降低来剥离。
[0120] 此外,在基材层12上具有未图示的其他粘接层16的情况下,作为粘接层16,根据半 导体芯片22的材料、制造工序的条件,能够使用通常使用的粘接剂,但也可以使用如用于自 剥离性粘接层14的粘接剂那样,因热能导致粘接力降低的自剥离性的粘接剂。在使用自剥 离性的粘接剂的情况下,能够以与用于粘接支撑基板12的面的粘接剂相同强度的热能或更 大的热能来使粘接力降低。
[0121] 从半导体芯片模具将粘接膜10去除的方法能够根据粘接膜10的用于粘接半导体 芯片模具的面的粘接剂而适当选择。可以机械地剥离,也可以使粘接剂的粘接力降低来剥 离。
[0122] (工序(f)和(g))
[0123] 接着,在得到的半导体芯片模具的露出面形成布线层26(图3(f))。
[0124] 布线层26具备形成于最外表面的作为外部连接端子的垫片(未图示)和将露出的 半导体芯片22与该垫片进行电连接的布线(未图示)。布线层26能够通过以往公知的方法形 成,可以为多层结构。
[0125] 然后,在布线层26的垫片上形成突起28,能够得到半导体装置。作为突起28,能够 举出焊料突起、金突起等。关于焊料突起,例如,可以将预先整形了的焊料球配置于作为布 线膜的外部连接端子的垫片上,并通过加热使焊料熔融(回流)来形成。关于金突起,可通过 球焊法、镀覆法、Au球转印法等方法来形成。
[0126] 之后,通过切割来切断成单片。
[0127] 如上那样,通过将本实施方式的粘接膜10用于半导体装置的制造方法,在安装工 序、树脂成型工序时的温度下具有耐热性和粘接性,在树脂成型后将半导体芯片从支撑体 剥离的工序中发挥易剥离性,从而能够以简便的方法制造半导体装置。因此,使用了本实施 方式的粘接膜10的半导体装置的制造方法的生产性优异,能够改善制品的成品率。
[0128] 以上,对本发明的实施方式进行了描述,但这些是本发明的例示,能够采用上述以 外的各种各样的构成。
[0129] 对于本实施方式的粘接膜10,通过在基材层12的表面层叠有自剥离性粘接层14的 形式进行了说明,但在不损害本发明的效果的范围内,在基材层12和自剥离性粘接层14之 间,还可以形成例如凹凸吸收层、冲击吸收层、易粘接层等。此处,凹凸是指5~300μπι程度的 凹凸。
[0130] 对于本实施方式的粘接膜10,示出了在基材层12的表面层叠有粘接层16的形式, 但在不损害本发明的效果的范围内,在基材层12与粘接层16之间,还可以形成例如凹凸吸 收层、冲击吸收层、易粘接层等。
[0131] 实施例
[0132] 以下,通过实施例等对本发明进一步具体地进行说明,但本发明的范围不限于这 些实施例等。
[0133] (自剥离性评价方法)
[0134] 使用包含作为支撑基板20的100mm正方形的方板(SUS304)、作为粘接膜10的制造 例中得到的两面粘接膜、作为半导体芯片22的直径80mm的圆板(带Ni镀覆的铁制)的层叠 体,进行支撑基板20的自剥离性评价。
[0135] 将粘接膜10的自剥离性粘接层14面侧贴附于100mm正方形的方板(SUS304)(支撑 基板20)。然后,将作为半导体芯片22的直径80mm的圆板(带Ni镀覆的铁制)贴附于两面粘接 胶带(粘接膜10)的另一粘接层,从而制成层叠体。将测定用夹具安装于该层叠体,进行支撑 基板20的剥离性评价。予以说明的是,在实施例中,在支撑基板20与粘接膜10的界面的自剥 离性试验中,为了防止在半导体芯片22与粘接膜10的界面发生剥离,使用增强用双面胶带 (制品名:P-223、日东电工公司制)用于测定。
[0136] 将测定用样品设置在加热板(heat block)上,加热预定的时间后,利用拉伸试验 机进行自剥离性评价。
[0137] 如图4所示那样使用夹具固定层叠体,实施实施例中记载的处理后,利用拉伸试验 机将吊钩向上方拉伸,基于下述基准进行自剥离性的评价。拉伸试验机使用带磁铁的L型夹 具,是拉伸强度为50N以上时磁铁掉落的结构。在磁铁掉落的情况下,评价为不剥离。
[0138] 〇:剥离(加热60秒以内)、Λ:剥离(加热180秒以内)、X :不剥离
[0139] (储存弹性模量测定方法)
[0140] 将半导体晶片表面保护用粘着膜的基材膜层部分切断,制作长方形(MD方向: 3〇111111,10方向:1〇1]1111)的试样。使用动态粘弹性测定装置(1?116〇11161:1';[0公司制,型号 :1^八-III ),测定0~300°C的储存弹性模量(机械方向)。测定频率设为1Ηz,应变设为0.01~ 0.3%0
[0141](基材膜的热收缩率的测定方法)
[0142] 将基材膜切断成正方形(MD方向:15cm,TD方向:15cm),用冲压机对基材膜开孔(MD 方向:10cm,TD方向:10cm),制作试样。使用2维测定机((株)三丰制,型号:CRYSTAL* μ V606),测定基材膜所开的孔间隔。测定后,对于试样,将样品静置于预定温度的烘箱内。预 定时间后将该样品从烘箱取出,测定孔间隔。基于下式,对于MD方向、TD方向算出加热前后 的热收缩率(%)。对10块试样进行测定并设为该基材膜的热收缩率。其中,式中的L〇表示加 热前的孔间隔、L表示加热后的孔间隔。
[0143] 热收缩率(%) = 100X(L-Lo)/Lo
[0144] (制造例1)
[0145] 在500mL的4 口烧瓶中装入甲基丙二酸(东京化成工业(株)制)100g和乙酸酐100g。 接着装入98 %硫酸0.5g后,利用滴液漏斗经1小时滴加甲乙酮75g。在室温搅拌24小时后,加 入乙酸乙酯200g和蒸馏水300g,用分液漏斗进行有机层的提取。将得到的有机层用蒸发器 蒸馏除去溶剂,从而得到2-乙基-2,5-二甲基-1,3-二鳴..烷-4,6-二酮75g。测定^NMR (300MHz),结果得到如下峰。δ = 1.04-1.12(m,3H),1.57-1.61(m,3H),1.71(s,1.12H),1.77 (s,1·92H),1·95-2·16(m,2H),3·53-5·65(m,1H)
[0146](制造例2)
[0147] 在500mL的4 口烧瓶中装入制造例1中合成的2-乙基-2,5-二甲基-1,3-二η藝,烷-4, 6-二酮92g和二甲基甲酰胺100g。接着装入碳酸钾95g后,用滴液漏斗经1小时滴加4-氯甲基 苯乙烯97g。在40°C搅拌24小时后,加入乙酸乙酯400g,用吸滤器将生成的固体过滤分离。使 用蒸馏水300mL,用分液漏斗进行2次洗涤后,用蒸发器将溶剂蒸馏除去,从而得到5-(对苯 乙烯基甲基)-2-乙基-2,5-二甲基-1,3-二嗓烷-4,6-二酮132g。测定护匪以300MHz),结果 得到如下峰。S = 0.43(t,8.1Hz,1.6H),0.83(s,1.3H),0.94(t,8.1Hz,1.4H),1.27(q, 8.1Hz,1.2H),1.57(s,1.7H),1.75(s,3H),1.80(q,8.1Hz,0.8H),3.31(s,2H),5.22(d, 12.0Hz,lH),5.70(d,19.5Hz,lH),6.65(dd,12.0,19.5Hz,lH),7.16(d,9.0Hz,2H),7.31(d, 9·0Ηζ,2Η)
[OHS](制造例3)
[0149] 在聚合反应器中装入去离子水150重量份、作为聚合引发剂的4,4'_偶氮二-4-氰 基戊酸(大塚化学(株)制,商品名:ACVA)0.625重量份、丙烯酸-2-乙基己酯62.25重量份、丙 烯酸正丁酯18重量份、甲基丙烯酸甲酯12重量份、甲基丙烯酸-2-羟基乙酯3重量份、甲基丙 烯酸2重量份、丙烯酰胺1重量份、聚四亚甲基二醇二丙烯酸酯[日本油脂(株)制,商品名: ADT-250]1重量份以及向聚氧乙烯壬基苯基醚(氧化乙烯的加成摩尔数的平均值:约20)的 硫酸酯的铵盐的苯环导入了聚合性的1-丙烯基的物质[第一工业制药(株)制,商品名: Aqualon HS_10]0.75重量份,搅拌下在70~72°C实施8小时乳液聚合,得到丙烯酸系树脂乳 液。将其用9重量%氨水进行中和(pH= 7.0 ),制成固体成分42.5重量%的丙烯酸系粘接剂S (丙烯酸系粘接剂S为压敏粘接剂)。
[0150] (制造例4)
[0151] 在500mL的4 口烧瓶中加入制造例2中合成的5-(对苯乙烯基甲基)-2-乙基-2,5-二 甲基-1,3-二續、.烷-4,6-二酮15g、丙烯酸丁酯20g、丙烯酸2-乙基己酯63g、甲基丙烯酸2g和 乙酸乙酯l〇〇g,并在室温混合。进一步,加入2,2'_偶氮二戊腈0.2g,升温至75°C后,持续搅 拌10小时,从而得到分子量30万的丙烯酸系粘接剂A(丙烯酸系粘接剂A为自剥离性粘接 剂)。通过差示扫描量热分析((株)岛津制作所制,DSC-60)测定玻璃化 转变温度,结果为14 〇C。
[0152](制造例5)
[0153] 选取制造例3中得到的丙烯酸系粘接剂S100重量份,进一步加入9重量%氨水而调 整为pH9.5。接着,添加环氧系交联剂[日本触媒化学工业(株)制,商品名:Chemitight Pz-33]0.8重量份而得到粘接剂涂布液。
[0154] 使用涂布器以干燥被膜的厚度成为ΙΟμπι厚的方式将得到的粘接剂涂布液涂布于 表面被脱模处理了的PET膜(脱模膜)上,然后以120°C加热5分钟使涂布液干燥,得到带有压 敏粘接层的PET膜。接着,在作为基材层12的收缩性PET膜(Teflex FT-50,厚度50μπι,帝人杜 邦膜株式会社制)的两面,以压敏粘接层处于收缩性PET膜侧的方式进行贴附。
[0155] 进一步在60°C养护3天,从而制成两面粘接膜1(脱模膜/压敏粘接层/基材膜/压敏 粘接层/脱模膜)。
[0156](制造例6)
[0157]加入制造例4中得到的丙烯酸系粘接剂A 100重量份和环氧化合物(三菱gas化学 (株)制,TETRAD-C) 2重量份、乙酸乙酯50重量份而制成粘接剂涂布液。
[0158] 使用涂布器以干燥被膜的厚度成为ΙΟμπι厚的方式将得到的粘接剂涂布液涂布于 表面被脱模处理了的PET膜(脱模膜)上,然后以120°C加热5分钟使涂布液干燥,得到带有自 剥离性粘接层的PET膜。接着,在作为基材层12的收缩性PET膜(Teflex FT-50,厚度50μπι,帝 人杜邦膜株式会社制)的一个面,以自剥离性粘接层处于收缩性PET膜侧的方式进行贴附。
[0159] 进一步,选取制造例3中得到的丙烯酸系粘接剂S100重量份,进一步加入9重量% 氨水而调整为PH9.5。接着,添加环氧系交联剂[日本触媒化学工业(株)制,商品名: Chemitight Pz-33]0.8重量份而得到粘接剂涂布液。
[0160] 使用涂布器以干燥被膜的厚度成为ΙΟμπι厚的方式将得到的粘接剂涂布液涂布于 表面被脱模处理了的PET膜(脱模膜)上,然后以120°C加热5分钟使涂布液干燥,得到带有压 敏粘接层的PET膜。接着,在收缩性PET膜上的与具备自剥离性粘接层的面相反侧的面上,以 压敏粘接层处于收缩性PET膜侧的方式进行贴附。
[0161] 进一步在60°C养护3天,从而制成两面粘接膜2(脱模膜/自剥离性粘接层/基材膜/ 压敏粘接层/脱模膜)。
[0162] (制造例7)
[0163]将基材膜变更为PET膜(Lumirror,厚度50μηι,东丽株式会社制),除此以外,与制造 例6同样地操作,得到两面粘接膜3(脱模膜/自剥离性粘接层/基材膜/压敏粘接层/脱模 膜)。
[0164] (制造例8)
[0165] 将基材膜变更为PET膜(AD-50,厚度50μπι,帝人杜邦膜株式会社制),除此以外,与 制造例6同样地操作,得到两面粘接膜4(脱模膜/自剥离性粘接层/基材膜/压敏粘接层/脱 模膜)。
[0166](制造例9)
[0167] 将基材膜变更为PET膜(Teijin Tetoron film G2-50,厚度50μπι,帝人杜邦膜株式 会社制),除此以外,与制造例6同样地操作,得到两面粘接膜5(脱模膜/自剥离性粘接层/基 材膜/压敏粘接层/脱模膜)。
[0168] (制造例10)
[0169] 将基材膜变更为PET膜(Emblet S-50,厚度50μπι,尤尼吉可株式会社制),除此以 外,与制造例6同样地操作,得到两面粘接膜6(脱模膜/自剥离性粘接层/基材膜/压敏粘接 层/脱模膜)。
[0170] (实施例1)
[0171 ]从切成直径84mm的圆形的两面粘接膜2将脱模膜剥离,并将自剥离性粘接层侧贴 附于100mm正方形的方板(SUS304)。之后,将直径80mm的圆板(带Ni镀覆的铁制)贴附于两面 粘接膜2的压敏粘接层,从而制成层叠体。
[0172] 如图4所示,将测定用夹具安装于该层叠体,制成测定用样品。
[0173] 如图4所示,用加热板以210°C进行60秒加热,确认了自剥离性粘接层与100mm正方 形的方板粘接了的部分剥离后,用拉伸试验机进行剥离性评价。将评价结果示于表1。
[0174] (实施例2)
[0175] 从切成直径86mm的圆形的两面粘接膜2将脱模膜剥离,并将自剥离性粘接层侧贴 附于100mm正方形的方板(SUS304)。之后,将直径80mm的圆板(带Ni镀覆的铁制)贴附于两面 粘接膜2的压敏粘接层,制成层叠体。
[0176] 如图4所示,将测定用夹具安装于该层叠体,制成测定用样品。
[0177] 如图4所示,用加热板以210°C进行60秒加热,确认了自剥离性粘接层与100mm正方 形的方板粘接了的部分剥离后,用拉伸试验机进行剥离性评价。将评价结果示于表1。
[0178] (实施例3)
[0179] 除了使用两面粘接膜3以外,与实施例1同样地操作,得到测定用样品。如图4所示, 用加热板以210°C进行60秒加热,但自剥离性粘接层与100mm正方形的方板粘接了的部分未 剥离。进一步进行120秒加热(合计180秒加热),确认了自剥离性粘接层与100mm正方形的方 板粘接了的部分剥离。之后,用拉伸试验机进行剥离性评价。将评价结果示于表1。
[0180] (比较例1)
[0181] 从切成直径84mm的圆形的两面粘接膜1将脱模膜剥离,并将一者的压敏粘接层侧 贴附于100mm正方形的方板(SUS304)。之后,将直径80mm的圆板(带Ni镀覆的铁制)贴附于两 面粘接膜1的另一面,制成层叠体。
[0182] 如图4所示,将测定用夹具安装于该层叠体,制成测定用样品。
[0183] 如图4所示,用加热板以210°C进行60秒加热,但压敏粘接层与100mm正方形的方板 粘接了的部分未剥离。进一步进行120秒加热(合计180秒加热),但压敏粘接层与100mm正方 形的方板粘接了的部分仍未剥离。之后,用拉伸试验机进行剥离性评价。将评价结果示于表 1〇
[0184] (比较例2~4)
[0185] 使用两面粘接膜4~6,将自剥离性粘接层贴附于100mm正方形的方板(SUS304),除 此以外,与比较例1同样地操作并评价。将评价结果示于表1。
[0186] [表 1]
[0187]
[0188] 本申请主张基于2013年8月29日提出的日本申请特愿2013-178515号的优先权,并 将其公开的全部内容引用于此。
【主权项】
1. 一种粘接膜,其层叠有基材层和自剥离性粘接层, 所述基材层的流动方向的热收缩率即MD方向的热收缩率、以及与流动方向正交的方向 的热收缩率即TD方向的热收缩率满足以下条件: (1) 以150°C加热30分钟后 0.4<|MD方向的热收缩率/TD方向的热收缩率| <2.5 MD方向的热收缩率和TD方向的热收缩率的平均< 2% (2) 以200°C加热10分钟后 0.4<|MD方向的热收缩率/TD方向的热收缩率| <2.5 MD方向的热收缩率和TD方向的热收缩率的平均2 3%。2. 根据权利要求1所述的粘接膜,所述自剥离性粘接层的粘接力因热而降低。3. 根据权利要求1或2所述的粘接膜,在所述基材层的与所述自剥离性粘接层相对的面 的背面上进一步层叠有粘接层。4. 根据权利要求1至3中任一项所述的粘接膜,所述基材层在180°C时的储存弹性模量 E'为1.0E+6以上2.0E+8以下。5. 根据权利要求1至4中任一项所述的粘接膜,所述基材层包含聚酯系树脂、聚酰亚胺 系树脂或聚酰胺系树脂。6. -种半导体装置的制造方法,其包括如下工序: 在支撑基板上将权利要求1至5中任一项所述的粘接膜以所述自剥离性粘接层处于该 支撑基板侧的方式进行粘附的工序; 将半导体芯片搭载于所述粘接膜的所述基材层上的工序; 以覆盖所述半导体芯片和所述粘接膜的方式涂布密封材料,在150°C以下的温度使该 密封材料固化,从而形成带有支撑基材的半导体芯片模具的工序; 加热至超过150°C的温度,使所述自剥离性粘接层的粘接力降低,从所述带有支撑基材 的半导体芯片模具去除所述支撑基板的工序;及 将所述粘接膜去除,得到半导体芯片模具的工序。
【专利摘要】本发明的粘接膜层叠有基材层和自剥离性粘接层,上述基材层的流动方向的热收缩率(MD方向的热收缩率)、以及与流动方向正交的方向的热收缩率(TD方向的热收缩率)满足以下条件:(1)以150℃加热30分钟后,0.4≤|MD方向的热收缩率/TD方向的热收缩率|≤2.5,MD方向的热收缩率和TD方向的热收缩率的平均≤2%;(2)以200℃加热10分钟后,0.4≤|MD方向的热收缩率/TD方向的热收缩率|≤2.5,MD方向的热收缩率和TD方向的热收缩率的平均≥3%。
【IPC分类】H01L23/31, C09J7/02, H01L23/29, B32B27/00, C09J201/00, H01L21/56
【公开号】CN105492557
【申请号】CN201480047307
【发明人】宇杉真一, 五十岚康二, 森本哲光
【申请人】三井化学东赛璐株式会社
【公开日】2016年4月13日
【申请日】2014年8月21日
【公告号】EP3040390A1, US20160208144, WO2015029871A1

最新回复(0)