获得视网膜祖细胞、视网膜色素上皮细胞和神经视网膜细胞的方法
【专利说明】获得视网膜祖细胞、视网膜色素上皮细胞和神经视网膜细胞 的方法
【背景技术】
[0001] 感光细胞或支持视网膜色素上皮细胞(RPE)的功能受损或功能完全丧失,是导致 视网膜疾病(诸如遗传性视网膜变性和年龄相关性黄斑变性(AMD))中的不可逆失明的主要 原因。青光眼中的视网膜神经节细胞(RGC)死亡也导致视力的不可逆丧失。挽救退变性视网 膜是主要挑战,而且细胞替换是最有希望的方式之一(Pearson et al.,2012;Barber et al.,2013)。使用人类多能干细胞、胚胎干(ES)细胞和诱导多能干(iPS)细胞开启了用于人 类视网膜变性疾病的新途径。人类ES(hES)和iPS(hiPS)细胞可用作进行组织移植的视网膜 细胞(光感受器、RPE和RGC)的无限制来源,其中人类ES(hES)和iPS(hiPS)细胞具有在培养 时无限扩增,同时保持它们的多能状态的能力(参见综述:(3〇1117116丨31.,2010 ;〇31111]^1111-Noor et al ·,2010,Boucherie et al ·,2011)。但是,这一新技术仍然面临很多困难。尤其 是,目前分化程序还不够完善,不足以确保效率和安全性。几篇公开文件指出,hES和hiPS细 胞可通过细胞培养物中的集落进行自发分化(Buchholz et al.,2009;Vaajasaari et al· ,2011 ;Zahabi et al .,2012),或通过不同的漂浮聚集方法(Idelson et al.,2009;Lu et al.,2009;Kokkinaki et al.,2011),相对容易地分化成RPE细胞。越来越多的汇聚数据 证明,hES或hiPS具有在拟胚体形成之后转化成神经视网膜谱系,并且进一步分化成表达光 感受器标记物的细胞的能力(Lamba et al .,2006,2009 ;0sakada et al .,2008,2009 ; Meyer et al.,2009,Mellough et al.,2012)。之前开发的不同方法尽管有真正的进步,但 是仍然存在通常与多能干细胞分化成高特化的细胞类型相关的缺点。用于hES或hiPS细胞 向光感受器定向分化的这些方案需要几个步骤,添加几种分子,而且效率相当低。目前,其 它组试图进一步从hES或hiPS细胞的拟胚体获得视泡样结构的3D结构(Meyer et al., 2011 ;Nakano et al. ,2012)。分化方法使用基质胶(matrigel),来再创建围绕拟胚体的复 杂的细胞外基质(ECM),从而允许神经上皮的自形成,并且或快或慢地分化成感光细胞谱系 (Meyer et al.,2011;Nakano et al.,2012;Boucherie et al.,2013;Zhu et al.,2013)〇
[0002] 因此,现有技术中需要一种在体外准确模拟分化和发育的简单、有效且可靠的方 法,来获得特定的人类神经上皮谱系细胞的基本纯的培养物,其中特定的人类神经上皮谱 系细胞包括视网膜祖细胞、RPE细胞和神经视网膜细胞。
【发明内容】
[0003] 如在下面的实验部分所公开的,发明人现在使iPS细胞进行一种组合了2D和30培 养系统的新的视网膜分化方案。该方案避免形成拟胚体或细胞团,并且可在没有基质胶或 血清时进行。发明人证明,培养在促神经培养基中的融汇的hiPS细胞可在两周内生成具有 眼域(eye field)特征的神经上皮样结构,当转换成3D培养时,该神经上皮样结构可分化成 主要的视网膜细胞类型。在这些条件下,hiPS细胞自组装成神经视网膜样组织,并且在发育 的适当时间窗中具有视网膜标记物的快速表达;它们产生不同的视网膜细胞类型,诸如RGC 和光感受器。
[0004] 因此,本发明的第一目标是一种用于在体外获得人类视网膜祖细胞的方法,该方 法包括以下步骤:
[0005] (i)将人类多能干细胞的贴壁培养物放置于促神经培养基中;并且
[0006] (ii)使所述培养物保持在所述促神经培养基中,直至出现色素细胞和/或神经上 皮样结构。
[0007] 在本文中,"视网膜祖细胞(progenitor )",也被称为"视网膜先祖细胞 (progenitor cell)",涵盖有能力生成神经视网膜的全部细胞类型的细胞,包括光感受器 的前体以及能分化成RPE的细胞。
[0008] "人类多能干细胞"包括人类胚胎干(hES)细胞和人类诱导多能干(hiPS)细胞。上 述方法有利地使用人类诱导多能干细胞进行。
[0009] "促神经培养基"在本文中指有利于神经元细胞的维持和/或生长的任意培养基。 这样的培养基的非限制性实例是由营养培养基构成的任意培养基,诸如杜氏改良伊格尔培 养基(Dulbeco's Modified Eagle Medium):营养混合物F_12(DMEM/F12)或Neurobasal?.培 养基(Gibco?),上述营养培养基补充有培养基补充物,该培养基补充物包括以下成分的至 少一部分:碳源、维生素、无机盐、氨基酸和蛋白消化物。适于获得促神经培养基的补充物的 非限制性实例是N2、B27、G5和BIT9500补充物,以及衍生自这些补充物的任意补充物。存在 于这些补充物中的组分总结于下面的表1中。
[0010]
[0012] 表1:促神经培养基的四种培养基补充物的组成,参见Brewer et al.,1993;b由制 造商提供(Gibco BRL,德国);c由制造商提供(StemCell Technologies Inc.,加拿大)一由 制造商提供(Life Technologies,USA) 〇
[0013] 在下文中,"神经上皮样结构",在下面的实验部分中也被命名为"神经视网膜样结 构",指在促神经培养基中培养几天之后开始出现的相光(phase-bright)结构。这些结构基 本上由不显著表达多能相关基因(诸如0CT4),但表达与眼区特化(eye-field specification)相关的转录因子(诸如LHX2、RAX、PAX6和SIX3)的细胞构成。如在实验部分 中所公开的,当进行上述方法时,首先出现色素细胞,而神经上皮样结构最常出现在色素细 胞斑块的附近。
[0014] 当然,在进行根据本发明的方法时,技术人员可检测多种标记物的表达(以检验它 们的表达或检验它们不再被表达的事实,和/或定量测量它们的表达水平)。为了实现这一 目的,可使用本领域已知的任意技术,例如定量RT-PCR和免疫测定。多能性标记物的实例是 0CT4、S0X2和NAN0G;眼区标记物的实例是1^乂、?六乂6、(1^2、1^^2和3^3,前两个是优选的。
[0015] 有利地,可在不使用复杂且昂贵的培养基的情况下进行上述方法。实际上,可使用 非常简单的培养基,从多能干细胞的贴壁培养物中获得人视网膜祖细胞。尤其不需要分化 因子。根据上述方法的优选实施方式,在培养步骤中使用的促神经培养基缺乏以下分化因 子中的至少一种:头蛋白(noggin)、Dkk-l和IGF-1。尤其是,促神经培养基可缺乏这三种因 子。
[0016] 在步骤(i)中使用的人类多能干细胞可在任意类型的贴壁培养系统中培养。可用 于这种培养的表面的非限制性实例是:玻璃、塑料(可能是经过处理的)、胶原、层粘连蛋白、 纤连蛋白、Matrigel?、聚-L-赖氨酸、滋养细胞,或市场上可购买的任意合成表面,诸如 Corning Synthemax?。在优选实施方式中,在上述方法的步骤(i)中使用的贴壁培养物是达 到至少80%细胞覆盖的集落型单层的形式。技术人员熟知贴壁细胞的细胞覆盖的概念,并 且能评价该细胞覆盖,其中对细胞覆盖可进行局部理解,即特别是如果细胞覆盖在整个培 养表面是不均匀的,则细胞覆盖可仅是在容器的一个区域中的细胞覆盖。在集落型单层的 情况中,如果需要,可将"80%细胞覆盖"定义为以下状态:当一些集落与其它集落点状接 触,而同时在这些集落之间还保持有一些空闲空间(占表面的10%至30% )。
[0017] 如在实验部分中所描述的,但这不是强制性的,可进行根据本发明的方法,以便在 步骤(i)之前,进行以下步骤:在培养基中对所述多能干细胞进行贴壁培养,以维持多能干 细胞1至4天,优选2天,其中该培养基经改良以缺乏基本的成纤维细胞生长因子(bFGF/ FGF2)。用于该额外的步骤的适当培养基的非限制性实例是,来自ReproCELL的灵长类动物 ES细胞培养基(Primate ES Cell Medium)和ReproStem培养基。
[0018] 在上述方法的特定实施方式中,步骤(ii)进行至少7天,优选进行10至14天,以便 出现足够量的神经上皮样结构。当然,培养方法可进行演化,以便可缩短步骤(ii)。如上面 已经提到的,神经上皮样结构基本由不显著表达多能性相关基因(诸如0CT4),但表达与眼 区特化相关的转录因子的细胞构成。因此,取决于培养系统,技术人员可选择将步骤(ii)的 结束定义为,至少一些细胞停止表达0CT4和/或开始表达RAX和PAX6的时间。如已经提到的, 该特征描述可通过任意已知的技术,诸如qRT-PCR或免疫染色进行。
[0019] 根据另一方面,本发明涉及一种用于获得RPE细胞的方法,其中,所述方法包括以 下步骤:
[0020] (i)将人类多能干细胞的贴壁培养物放置于促神经培养基中;
[0021 ] (i i)使所述培养物保持在所述促神经培养基中,直至出现色素细胞;
[0022] (iiiRPE)从在步骤(ii)中获得的培养物收集至少一种色素细胞;以及
[0023] ( i VRPE)培养在步骤(i i iRPE)中获得的色素细胞。
[0024] 当进行该方法时,技术人员可检验在步骤(iiiRPE)中收集的细胞表达小眼畸形相 关的转录因子(MITF)和/或Z0-1。如已经提到的,为了实现该目的可使用本领域已知的任意 技术(诸如qRT-PCR和免疫染色)。
[0025] 根据上述用于获得RPE细胞的优选实施方式,在贴壁培养系统中进行步骤(ivRPE) 中的培养。如上面已经提到的,可使用任意的贴壁培养系统。
[0026] 当进行本发明的用于获得RPE细胞的方法时,在至少5天中,在步骤(ivRPE)中扩增 细胞。有利地,步骤(ivRPE)的培养物可维持和扩增数周,以获得大量的RPE细胞:例如,当在 步骤(iiiRPE)中收集约10个斑块的色素细胞,并且将这10个斑块的色素细胞一起铺在新的 3cm 2平皿中时,在3周至4周之后,或如果在培养基中添加 FGF2(每隔2至3天,10ng/ml),则在 10天至14天之后,获得RPE细胞的基本纯(99 % )的融汇的贴壁培养物。
[0027] 本发明的另一方面是一种用于获得神经视网膜细胞的方法,其中,所述方法包括 以下步骤:
[0028] (i)将人类多能干细胞的贴壁培养物放置于促神经培养基中;
[0029 ] (i i)使所述培养物保持在所述促神经培养基中,直至出现神经上皮样结构;
[0030] ( ii iNR)从在步骤(i i )中获得的培养物,收集来自至少一种神经上皮样结构的细 胞;以及
[0031 ] (i)培养在步骤(i i iNR)中获得的细胞。
[0032]在此,"视网膜神经细胞"包括RGC、双极细胞、水平细胞、无长突细胞、感光细胞(视 杆细胞和视锥细胞)、穆勒(Milller)胶质细胞,以及这些细胞类型中的任意类型的前体。
[0033] 重要的是,在步骤(ivNR)的过程中,多种视网膜神经细胞不同时出现,其中培养的 细胞在步骤(iv NR)过程中发生分化。因此,取决于步骤(ivNR)的持续时间,将形成不同的细 胞类型。出现顺序如下:首先出现神经节细胞,接着是无长突细胞和水平细胞,光感受器出 现较晚。取决于所需要的细胞类型,技术人员应将培养步骤(iv NR)进行21天至42天。
[0034] 如在下面的实验部分所例示的,根据本发明的这一方面的方法可通过在步骤 (iiiNR)中收集至少一种神经上皮样结构来进行。这可以例如通过从贴壁细胞层机械分离该 结构来进行。然后,将该结构单独或与其它神经上皮样结构一起放置于另一培养容器,诸如 多孔板的孔、皮氏培养皿、培养瓶(flask)等中。
[0035]当进行本方法时,技术人员可有利地检验,在步骤(iiiNR)中收集的细胞共表达眼 区细胞特有的PAX6和RAX。或者,可测量在步骤(iiiNR)中收集的细胞对细胞增殖标记物Ki67 的表达。
[0036]根据特别有利的方面,本发明涉及一种用于获得光感受器前体的方法,该方法包 括上述步骤(i)至(ivNR),其中步骤(ivNR)进行至少21天,优选进行至少28天。当然,取决于 培养条件的未来发展,可进一步缩短该步骤。
[0037] 在步骤(i VNR)中的任意时间,技术人员可例如通过qRT-PCR,测量培养出的细胞中 的NRL和/或CRX的表达,以检验向光感受器谱系的分化。或者,如下面的实验部分所公开的, 可使用恢复蛋白(REC0VERIN)免疫染色来鉴定光感受器前体。发明人已经证明,CD73与 RE
C0VERIN共表达,其中⑶73可用作对光感受器前体进行细胞分选的细胞表面标记物。这可 通过以下步骤进行有利地利用:在步骤(iv NR)之后,例如通过使用抗⑶73抗体,对光感受器 前体进行额外的细胞分选步骤。得到的富集光感受器前体的细胞群可用于例如细胞移植或 筛选途径。
[0038] 可选地,可在步骤(ivNR)中,持续至少1天,优选持续5天或更长时间段,向培养基中 添加缺口(Notch)抑制剂,诸如DAPKDAPT是γ -分泌酶抑制剂,并且间接地是Notch的抑制 剂。另外,发明人已经示出,在步骤(ivNR)中持续几天添加 DAPT,有利于生成光感受器前体 (参见下面的实施例2和图5)。
[0039] 根据上述用于获得神经视网膜细胞的方法的优选实施方式,在非贴壁的培养系统 中进行步骤(ivNR)中的培养。例如,将在步骤(iiiNR)中收集的神经上皮样结构作为漂浮结 构来培养。根据特定实施方式,在单个容器/孔中将在步骤(i i iNR)中收集的每一个神经上皮 样结构都作为漂浮结构培养。
[0040] 非贴壁系统的非限制性实例包括:磁性旋转的转瓶,或者摇动的培养瓶或培养皿, 在这些非贴壁系统中,细胞被保持活动地悬浮在培养基中;以及,静止的培养容器,或者T-瓶和瓶子,在这些非贴壁系统中,尽管不对细胞进行持续搅拌,但细胞仍不能牢固地附着于 基底上。
[0041] 如实验部分所述,通过在摇动条件下进行步骤(ivNR),可使细胞或神经上皮样结构 有利地保持活动地悬浮于培养基中。为了此目的,可使用任意的振动器,例如三维搅拌培养 物的旋转器。
[0042] 根据本发明的用于获得视网膜神经细胞的方法的另一优选实施方式,持续至少5 天,向步骤(ivNR)中使用的培养基补充FGF2。该培养基优选是如上定义的促神经元培养基。
[0043] 本发明的一个优点在于,从第一贴壁培养物,可平行进行两种不同的培养,以获得 RPE细胞(第一培养物,优选是贴壁的)和神经视网膜前体(第二培养物,优选是非贴壁的)。 因此,本发明涉及一种用于获得神经视网膜前体和RPE细胞的方法,该方法包括如上定义的 步骤⑴和步骤(ii),接着是如上定义的步骤(iiiRPE)和步骤Gvrpe),其中步骤(iiiRPE)和步 骤(iVRPE)与如上定义的步骤(iiiNR)和步骤Qvnr)平行进行。
[0044]最重要的是,本发明提供了可靠的方法,以容易且快速地获得主要类型(RPE、RGC、 无长突细胞、水平细胞、Milller胶质细胞和光感受器)中任意类型的具有高纯度的大量视网 膜细胞。例如,可在小于一个月的时间中,获得包括高于75%的光感受器前体的培养物。
[0045]设想这些方法和通过这些方法获得的基本纯的细胞培养物,在以下领域中是有用 的:
[0046] ?移植/细胞疗法:非限制性实例包括,RPE和/或视网膜祖细胞或由其分化的细胞 在丢失细胞(lost cell)的替换疗法中的应用,以帮助恢复之前丧失的视力。上述方法和培 养物还可用于发育组织,以用于全组织替换疗法中。
[0047] ?药物筛选,用于鉴定出能保护或提高包括RGC、视杆细胞、视锥细胞和RPE细胞的 所有细胞的功能的药剂。在此,"药剂"指任意种类的分子或组合物,以及非化学药剂,诸如 任意的电磁辐射或微粒辐射(UV、可见光、电离辐射等)。
[0048] ?从多能细胞,尤其从hiPS细胞,产生人类视网膜疾病模型,该人视网膜疾病模型 还可用于研究病理生理学,和用于药物筛选或使用干细胞或其衍生物的定制疗法。
[0049] ?作为人类神经发育的独特模型,将是研究多种过程的有用来源,该多种过程在 没有限制的情况下包括发育、组织形成和突触形成。
[0050] 通过下面的附图和实施例,将对本发明作进一步解释。
【附图说明】
[0051 ] 图1:无整合(integration-free)hiPS细胞的来源和表征。(A)描绘在AHDF的重编 程中所涉及的步骤的示意图。(B)异质hiPS集落在成纤维细胞上的出现。(C)很好建立的 hiPS细胞的阳性碱性磷酸酶的染色。(D、E)通过hiPS细胞(亚克隆2)中的免疫组织化学显示 多能性标记物的表达。(F)在h iPS细胞、AHDF和hES细胞中,对多能性和自我更新的标记物进 行的qRT-PCR分析(n = 3次实验)。数据对hES细胞进行标准化。(G)在两周之后,对来源于 hiPS细胞的拟胚体中的几种胚层标记物进行的qRT-PCR分析(η = 3次实验)。数据对未分化 的hiPS细胞进行标准化。(H-J)两周后,对来源于hiPS细胞(亚克隆2)的拟胚体的内胚层 (S0X17)、中胚层(SMA)和外胚层(PAX6、TUJI-1)的标记物进行的免疫染色。(K)hiPS亚克隆2 的染色体组型的分析。(L)使用靶向oriP的引物进行PCR筛选,用于在5次传代(AHDFc2p5)或 15次传代(AHDFc2pl5)之后,检测在hiPS亚克隆2的基因组DNA(gDNA)部分和游离体部分 (Ep i提取物)中的or iP/EBNAl载体,其中天然AHDF作为对照。比例尺=1 ΟΟμπι。
[0052] 图2:由无整合hiPS细胞有效生成视网膜祖细胞。(Α)示出分化方案的不同阶段的 示意图。(B、C)在7天和14天之后,在促神经培养基中分化的hiPS细胞的形态。(D)在第14天, 对神经上皮样结构中的眼区转录因子(3以3、^^2、1^乂、?4乂6、]\0了?和¥5乂2)、冊1^、0?和多能 性标记物P0U5F1进行的qRT-PCR分析(n = 3次实验)。数据对在第0天(D0)的hiPS细胞进行标 准化。(E~0)对第14天的神经上皮样结构的PAX6和RAX(E~G),Ki67和LHX2(H~J),或MITF 和VSX2(K~0)进行的免疫荧光染色。比例尺=100ym(B、C、E、H和K);50ym(F、G、I、J、L~0)。 (P)对第〇天、第7天和第14天的hiPSC-2中的NOGGIN和DKK1进行的qRT-PCR分析。数据对 hiPSC-2单个集落进行标准化。
[0053] 由漂浮的神经视网膜(NR)样结构分化成多种视网膜细胞类型。(A)概述生成 视网膜细胞的分化方案的示意图(D= 3D搅拌)。0~D)在分离之后的不同时间,漂浮的NR 样结构的形态。(E、F)对不同时间的、NR样结构中的眼区和光感受器的特异性转录因子进行 的qRT-PCR分析(η = 3次实验)。数据对第14天的hiPS细胞进行标准化。(G~I)对第21天的NR 样结构的 11了?(6)、¥3乂2(6、!1)、?4乂6(!1)、(/^2(1)和81^34(1)进行的免疫染色。(1~〇对第 14天(J)、第21天(K)和第28天(L)的NR样结构的CRX的免疫染色。(M-N)对第21天的NR样结构 的CALRETININ(M)和UM1(N)的免疫染色。(0)对第28天的NR样结构的RECOVERIN的免疫染 色。比例尺= 100ym(B-D、G-L),50ym(M-0)。
[0054] 图4:RPE细胞从无整合的hiPS细胞的生成和扩增。(A)实验的示意图。(B、C)30天之 后,hips细胞来源的RPE细胞单层的相差纤维术。(D)30天之后,hips细胞来源的RPE细胞单 层的Z0-1和MITF的免疫染色。比例尺zlOOymjE)对第0(P0)、P1和P2代的hiRPE细胞中的成 熟RPE标记物的qRT-PCR分析。数据对分离自人类成熟RPE细胞的对照RNA进行标准化。(F)对 RPE细胞的吞噬活性的评价;在与FITC标记的POS孵育3小时之后,P1的hiRPE细胞培养物和 对照RPE-J细胞系中的FITC/DAPI荧光的比率。如在材料和方法中所述的,测定POS的结合和 摄取(实施例1)。
[0055] 图5:通过Notch抑制,从漂浮的NR样结构生成光感受器前体加速。(A)从第21天至 第28天,或从第28天至第35天,使用添加 DAPT的实验的示意图(CJ=3D搅拌)。(8)在DAPT存 在或不存在(对照)的情况下,第28天或第35天的NR样结构的CRX和RECOVERIN的免疫染色。 比例尺=l〇〇ynu(C和D)在有DAPT或没有(对照)DAPT的情况下,第28天和第35天的光感受器 前体(CRX、RECOVERIN)和有丝分裂祖细胞(Ki67)的量化。各值代表阳性细胞的平均百分比 土 SEM(n = 4,*P〈0.05)。(E)在经DAPT处理的第35天的NR样结构中,对成熟的光感受器标记 物和GLAST(Miiller胶质细胞的标记物)的qRT-PCR分析。数据对未经DAPT处理的第35天的NR 样结构进行标准化。比例尺=1 OOwn。
[0056] 图6 :光感受器前体在NR样结构中的早期分化。(A)对分化的NR样结构中的NRL和 CRX转录因子的qRT-PCR分析。数据表示为,与第0天的hiPSC-2相比,PCR表达水平的循环变 化。(B)对第14天的冷冻切片的NR样结构的CRX的免疫荧光染色。(C~H)对第21天和第35天 的冷冻切片的NR样结构的CRX和0TX2的免疫荧光染色。激光共聚焦(Confocal)图像证明 0TX2和CRX在第21天(C~E)和第35天(F~H)的NR样结构的切片中共定位。(M~N)对第28天 的冷冻切片的NR样结构的Ki67(M)、PAX6(N)、0TX2(N)、CRX(M)的免疫组织化学分析。比例尺 =100μπι(Β)、50ym(C-H和M-N)。
[0057]图7:hiPSC-2来源的NR样结构的厚度分析。(A~C)从第17天至第24天的一个代表 性NR样结构的厚度演变(黑线)。0)13个独立的NR样结构的厚度演变的图示。每条线都对应 一个NR样结构。(E)代表13个分离的NR样结构的厚度(平均值土 SEM;**P〈0.01;****P〈 0.0001)的柱状图,示出在第17天至第24天之间增加80.6± 10.2%。比例尺=100μπι。
[0058]图8:使用不同hiPSC克隆的视网膜分化方案的重复性。(Α~C)来源于第17天、第21 天和第24天的hiPSC-Ι的漂浮的NR样结构的形态。(D~F)来源于第17天、第21天和第24天的 hiPSC-2的漂浮的NR样结构的形态。(G和H)在来源于hiPSC-Ι或hiPSC-2的NR样结构中,对第 17天和第35天的眼区转录因子的qRT-PCR分析。(I和J)在来源于hiPSC-Ι或hiPSC-2的NR样 结构中,对第17天和第35天的光感受器特异性转录因子的qRT-PCR分析。以上数据与第14天 的每一基因相比较。比例尺=1 ΟΟμηι。
[0059]图9:来自漂浮的NR样结构的所有视网膜细胞类型的分化。(Α~Ε)在不同时间的NR 样结构中,对选定的神经视网膜细胞类型的qRT-PCR分析。对于R/G和蓝视蛋白 (BLUE0PSIN),数据都对第14天和第35天的NR样结构进行标准化。(F~Q)使用RGC(BRN3A、 PAX6、钙网膜蛋白(CALRETININ))、无长突细胞(?4乂6、4?2、0六1^^1'預1幻、水平细胞(1^]、 PAX6、CALRETININ)、光感受器(0TX2、RE⑶VERIN、CRX、CD73、视锥细胞抑制蛋白(C0NE ARRESTIN)、视紫红质(RHODOPSIN)、BLUE OPSIN和R/G视蛋白(OPSIN))、双极细胞(PKCa)、Μ? ller胶质细胞(GS、S0X9)和有丝分裂祖细胞(Ki67)的标记物,对分化不同阶段的冷冻切片 的NR样结构的免疫组织化学分析。比例尺= 50μπι( (F~Ν)、25μπι(0~Q)。
[0060]图10:在长期培养之后,NR样结构中的成熟光感受器的存在。对第112天的冷冻切 片的NR样结构的REC0VERIN(A~D)、RH0D0PSIN(A~Β)和乙酰化微观蛋白(AcetylTUBULIN) (C~D)的免疫荧光染色。免疫组织化学分析证明,在内部玫瑰结(rosette)中显著存在光感 受器,同时在玫瑰结的内腔区(D中的箭头)中出现乙酰化微管蛋白的阳性结构。比例尺=25 μηι(Α~C)和 10ym(D) 〇
【具体实施方式】 [0061 ] 实施例
[0062] 实施例1:人类无整合的诱导多能性干细胞向视网膜神经元和视网膜色素上皮细 胞的可靠且有效的分化
[0063] 1.1实验程序
[0064]人类成纤维细胞和iPS细胞的培养
[0065]在37°C、标准5%⑶2/95%空气的培养箱中,将来自8岁男孩的成熟人类真皮成纤 维细胞(AHDF)(由Rustin博士赠送,INSERM U676,法国巴黎)培养在高葡萄糖Glutamax II 的杜氏改良的伊格尔培养基(DMEM) (Life Technologies)中,该DMEM补充有10%FBS(Life Technologies)、lmM丙酮酸钠 (Life Technologies)、IX MEM非必需氨基酸(Li fe Technologies)。该培养基被称为"成纤维细胞培养基"。在具有lOng/ml人类重组成纤维细 胞生长因子2(FGF2) (Preprotech)的ReproStem(ReproCell)培养基中,将建立的人类iPS细 胞维持在经丝裂霉素-C失活的小鼠胚胎成纤维细胞(MEF)滋养层(
Zenith)上。细胞常规孵 育在37°C,标准5%C0 2/95%空气的培养箱中。该培养基被称为"iPS培养基"。在立体显微镜 (Vision Engineering Ltd)下,一星期对细胞进行人工传代一次。
[0066]人类成纤维细胞的重编程
[0067]使用如上述的游离体方法(Yu et al.,2009),进行重编程。简单来讲,经由核转染 (Nucleofector 4D,V4XP,使用DT-130程序,Lonza),将基于oriP/EBNAl 的游离体载体 PEP4E02SEN2K(质粒20925,Addgene)、pEP4E02SET2K (质粒20927,Addgene)和pCEP4-M2L(质 粒20926、Addgene)共转染到AHDF中。将转染的成纤维细胞(10 6个细胞/核转染)直接铺在3 X 10-cm接种了MEF的平皿(5 X 106个细胞/cm2)的"成纤维细胞培养基"中。在转染后第4天, 将"成纤维细胞培养基"替换成"iPS培养基",该"iPS培养基"补充有被描述为增加重编程效 率的分子(Zhang et al.2013):500yM 丙戊酸(Sigma,法国),0·5μΜ PD-0325901(Selleck, Euromedex,法国)和2μΜ SB431542(Selleek)。在14天之后,将细胞单独培养在"iPS培养基" 中。在30天至40天,切割致密的细胞团,并且转移到60mm器官型细胞培养皿(Dutscher,法 国)中。在立体显微镜下,按照它们的人类ES细胞样集落形态拾取显现的hiPS集落。将它们 展开在如上所述的经丝裂霉素 C失活的MEF滋养层上,用于后续的特化。通过如下所述的 PCR,实现游离体载体的完全丢失和重编程基因的非整合。
[0068]游离体载体的PCR分析
[0069] 使用Nucleospin质粒快速纯化试剂盒(Macherey-Nagel,法国),按照制造商的方 案从hiPS细胞纯化游离体DNA。使用苯酚/氯仿提取方法,提取基因组DNA。如Yu et al. (2009)所清楚报道的,由于纯化方法的性质,基因组纯化DNA很可能被来自同一细胞的残留 量的游离体DNA污染,而且,纯化的游离体DNA同样也被少量的基因组DNA污染。PCR反应使用 Go Taq flexi聚合酶(Promega,法国)进行。对于每一个PCR反应,都添加从104个细胞中提 取的1〇μ1基因组DNA或游离体DNA(相当于含有100ng)作为模板。PCR混合物含有IX Go Taq Flexi缓冲液、2mM MgCl2、0.2mMdNTPs、0.5μΜ每一种引物和1.25U聚合酶,PCR以以下程序进 行:94°C初始变性lmin; 94°C保持45sec,60°C保持30sec,72°C保持lmin,进行35个循环;接 着72°C保持5min。来自天然成纤维细胞的游离体DNA和基因组DNA用作阴性对照,而基于 oriP/EBNAl的游离体载体(参见上述Yu et al.2009)用作阳性对照。
[0070] 染色体组型分析
[0071] 活跃生长的hiPS细胞集落(80%细胞覆盖)在37°C,经秋水仙素(20mg/ml, Eurobio,法国)处理90min。使用0.05%胰蛋白酶-EDTA离解细胞,然后在37°C,在75mM KC1 (Sigma Aldrich)中孵育10~14min,接着用3:1的甲醇/冰醋酸固定。为了进行mFISH染色体 组型分析,经固定的细胞在37°C,与变性的"鸡尾酒绘画(cocktail painting)mFISH"探针 (MetaSystems,Altussheim,德国)杂交过夜。在IX SSC和0.4X SSC的连续浴中清洗载玻片, 并且使用250ng/ml二脒基苯基吲噪(DAPI)对核进行染色。使用Cy5MetaSystems B-tect检 测试剂盒(MetaSystems),使生物素化的探针显现出来。使用蔡司(Zeiss)Zl荧光显微镜捕 获十至二十个细胞分裂中期,该Zeiss Z1荧光显微镜配备有UV ΗΒ0 100-W灯,联接至 AxioCam相机(Carl Zeiss,法国)。使用MetaSystems Isis软件(MetaSystems),对所有分析 的细胞分裂中期进行染色体组型分析。
[0072] 碱性磷酸酶(AP)染色
[0073] 在室温,使用95%的乙醇对培养在MEF上的人类iPS细胞固定10min。然后,使用roS 冲洗细胞,并且在室温,与在具有5mM MgCl2和0.05%吐温〇¥6〇11)-20的?!19.5的1^8缓冲 液中的5-溴-4-氯-3-吲哚基磷酸盐(BCIP)和氮蓝四唑(NBT) (Roche,法国)的混合物孵育 5min至10min。染色之后,使用PBS冲洗细胞,之后在明视野显微镜下观察。
[0074]拟胚体的形成和分析。
[0075] 在立体显微镜(Vision Engineering Ltd.)下,从MEF层机械分离人类iPS细胞集 落,然后以悬浮液形式培养在超低吸附培养皿(Nunc,Dutscher,法国)内的ReproStem培养 基中。每隔两天换一次培养基,并且将EB培养2周,之后提取RNA或进行免疫组织化学分析。 [0076]视网膜分化
[0077]使人类iPS细胞展开覆盖在iPS培养基中的经丝裂霉素-C失活的小鼠 MEF滋养层 上。此时,限定为第0天,将融汇的hiPS细胞培养在没有FGF2的iPS培养基中。2天之后,将培 养基换成"促神经培养基",该促神经培养基由杜氏改良伊格尔培养基:营养物混合物F-12 (DMEM/F12,1:1,L-谷氨酰胺)、1%MEM非必需氨基酸和1%N2补充物(Life technologies) 构成。每隔2~3天,更换一次培养基。在第14天,分离鉴定出的被色素细胞围绕的神经上皮 样结构,并且在开始两天中,将上述神经上皮样结构置于3D Nutator振动器(VWR,法国)的 24孔板中,使用补充有10ng/ml FGF2的"促神经培养基",作为漂浮结构(3D)单独培养,并且 每隔2~3天更换一次培养基。当在振动器平台上培养时,分离的结构维持悬浮在培养基中, 并且通常不能附着至培养板的底部。在第19、20或21天,去除FGF2,并且每隔2~3天更换一 半的"促神经培养基",持续接下来的几周。
[0078]对于RPE细胞培养物,在第7至14天之间,切割已鉴定出的没有非色素出芽结构 (budding structure)的色素斑块(pigmented patch),并且转移至经0· 1%明胶包被的板 上(标作P〇) JPE细胞在"促神经"培养基(参见上文)中展开,并且每隔2~3天更换一次培养 基,直至细胞融汇。细胞在0.05 %胰蛋白酶-EDTA中解离,并且接种在新的经明胶包被的板 上(被认为是第Ρ1代)。
[0079] RNA提取和Taqman测定
[0080] 使用Nucleospin RNA II试剂盒(Macherey-nagel,法国),按照制造商的方案提取 总RNA,并且仅用NanoDrop分光光度计(Thermo Scientific,法国)检验RNA的产量和质量。 使用QuantiTect逆转录试剂盒(Qiagen),遵循制造商的建议,由500ng总RNA合成cDNA。然 后,将合成的cDNA以1/20稀释在无脱氧核糖核酸酶(Dnase)的水中,然后进行定量PCR。使用 定制的TaqMan?_Array 96-Well Fast(阵列96孔快)板和TaqMan?Gene expression Master Mix(基因表达主混合物)(Applied Biosystems),遵循制造商的说明书,在Applied Biosystems的实时PCR系统(7500Fast System)上进行qPCR分析。用于扩增的所有引物和标 记有FAM的MGB探针都购自Applied Biosystems(Life Technologies,法国)。结果针对18S 进行标准化,并且在三次独立实验中,基因表达的量化基于△ Ct法进行。来自人类成体RPE 细胞的对照RNA对应于在小窝水平,分离自解剖的视杯的RPE细胞。
[0081]冷冻切片、免疫染色和图像的获取
[0082] 对于冷冻切片,视网膜样结构在4°C,4%多聚甲醛(PFA)中固定15min,并且在roS 中进行清洗。结构在4°C,在PBS/30 %蔗糖(Sigma)溶液中孵育至少2小时。将结构包埋在 PBS、7.5%明胶(Sigma)、10%蔗糖溶液中,并且在-50°C在异戊烷中冷冻,并收集ΙΟμπι厚的 冷冻切片。
[0083]如之前所述(Roger et al.2006),对切片进行免疫荧光染色。简单来讲,载玻片在 室温与封闭溶液(PBS,0.2 %明胶和0.25 % Triton X-100)孵育lhr,然后在4°C与一抗(参见 表2)孵育过夜。载玻片在具有Tween 0.1%的PBS(PBT)中清洗三次,然后与适当的二抗孵育 1 小时,该适当的二抗缀合有AlexaFluor 488或AlexaFluor 594(Life Technologies),并 且以1:600稀释在具有1:10000DAPI的封闭缓冲液中。使用配备有CCD CoolSNAP-HQ相机 (Roper Scientific)的DM6000显微镜(Leica),或使用配备有405、488和543nm激光器的 Olympus FV1000激光共聚焦显微镜,来捕获荧光染色信号。使用1.55或0.46μπι步长来获取 激光共聚焦图像,并且每次获取是2~4个叠层或4~8个光学切面的投影。
[0084]
[0085]
[0086] 表2、用于免疫组织化学分析的抗体的列表
[0087] 畸胎瘤形成的测定
[0088]如之前所述的(Griscelli et al.,2012),使用略微改变进行畸胎瘤形成测定。简 单来讲,将1X106至2X106个细胞注射到6周龄NOD Scidy (NSG)小鼠 (Charles River)的后 腿肌肉中。在9周至10周之后,对畸胎瘤进行解剖,并且在4%多聚甲醛中进行固定。然后,将 样品包埋在石蜡中,使用苏木精和曙红对切片进行染色。
[0089] 吞噬测定
[0090] 从猪眼中提纯光感受器外节(P0S),并且按照建立好的程序(2),通过与0.1mg/ml FITC(同分异构体-1)孵育而用荧光染料进行共价标记。将第3代的RPE-J(永生化的大鼠 RPE 细胞系)和第1代的hiRPE细胞放置于96孔组织培养板的各个孔中。每一孔都分层堆积有100 μL含有1X106个P0S颗粒,并且在32°C(RPE-J)或37°C(hiRPE)孵育3小时,之后使用含ImM MgCl 2和0.2mM CaCl2的rosO^BS-CM)冲洗孔三次。对于内在化颗粒独有的检测,通过在roS- CM的0.2%台盼蓝中孵育lOmin,对表面结合的FITC-POS的荧光进行选择性淬火,然后进行 细胞固定。通过在冰冷的甲醇中孵育5min,使细胞固定,然后再水合,并且在室温与DAPI孵 育lOmin。使用Inf inite MlOOOPro(Tecan)酶标仪(plate reader),对焚光信号进行量化。 RPE-J细胞系用作吞噬活性的阳性对照,而hiRPE细胞在不存在P0S的情况下用作阴性对照。 [0091 ]统计分析
[0092] 使用非参数弗里德曼检验(non parametric Friedman test),然后进行多恩多重 比较检验,或对所有的成对分析都使用曼-惠特尼检验(Mann-Whitney test) (Prism 6, GraphPad软件),来进行方差分析。P〈0.05的值被认为在统计学上是显著的。
[0093] 1.2结果
[0094] 人类无整合iPS细胞的生成和特化。
[0095] 使用编码0(^4、嫩勵6、3(^2、1^呢8、1(1^4和〇1^(:的三种质粒对成体人类真皮成纤 维细胞(AHDF)进行共转染,其中这三种质粒对应于之前Yu et al. (2009)所述的质粒载体。 在之前被描述为加速重编程过程且降低游离体载体的丢失(Zhang et al.2012)的小分子 的存在下(图1A),将转染的成纤维细胞培养在"iPS培养基"中。在转染后第30至40天之间, ES样集落首先变得近似可见,具有紧凑排列的穹状结构(图1B)。当拾取和展开时,这些hiPS 细胞集落示出典型的人类ES细胞的形态。这些hiPS细胞的分析证明,克隆发展出碱性磷酸 酶(AP)活性,同时表达多能性标记物Nanog、TRA-1 -81、0CT4和SSEA4(图1C~E)。基于qRT-PCR的TaqMan探针显示,表达多能性基因在各成纤维细胞群上都显著增加,并且与在人类ES 细胞中所看到的相当(图11)。如基于qRT-PCR(图1J)的TaqMan探针和在培养两周之后对拟 胚体进行免疫组织化学(图1F~H)所观察到的,iPS集落可在体外分化成所有三个胚层的衍 生物。此外,人类iPS细胞系显示出正常的染色体组型(图1K)。如对游离体中的OriP位点进 行的RT-PCR分析(图1L)所证明的,hiPS细胞没有示出转基因的基因组整合,并且在15次传 代之后,已经完全丢失了游离体
载体。通过畸胎瘤形成测定,证实了人类iPSC细胞系具有多 能性。
[0096] hiPS细胞向具有眼区特性的神经上皮样结构的分化
[0097] 因为iPS细胞分化的必要条件是关闭自我更新机制,所以从培养基中去除FGF2,以 刺激融汇的iPS细胞的自发分化。如Greber et al. (2011)在人类ES细胞中所精确证明的, FGF2从培养基中的收回还可能促使神经外胚层的诱导。为了有利于hiPS细胞向神经外胚层 谱系的这种分化,将集落培养在包含DMEM/F12培养基的促神经培养基中,该DMEM/F12培养 基具有i^MEM非必需氨基酸和1%N2补充物(图2A)。这导致在4天内出现色素集落。在7天之 后,开始出现相光结构,近似超过色素细胞斑块的一半(图2B)。在两周内,所以这些结构都 组织成被色素细胞斑块部分环绕的神经上皮样结构(图2C),对应于1~2个结构/cm 2。其它 色素集落不发育成神经上皮样结构,并且在无色素区域中很少观察到这些结构的形成。在 第14天,基于qRT-PCR的TaqMan探针显示,所有形成的神经上皮样结构都丢失了多能性相关 基因0CT4(P0U5F1)的表达,而获取了与眼区特化相关的转录因子(诸如LHX2、RAX、PAX6、 SIX3)的表达(图2D)。神经上皮样结构的免疫染色证明,所有细胞都共表达PAX6和RAX(图2E ~G),具有眼区细胞的特征((Mathers and Jamrich 2000)。几乎所有的细胞都是LHX2阳性 的(图2H、2J),并且使用细胞增殖标记物Ki67证实了它们的祖细胞状态(图2H~JhqRT-PCR 进一步证明,MITF和VSX2的表达在第14天分别增加了 10倍和100倍(图2D),其中MITF和VSX2 是在视泡/视杯形成过程中参与视网膜特化的两个转录因子(Horsford et al.2005)。免疫 组织化学显示出VSX2和MITF表达的相反梯度,在神经上皮样结构中具有VSX2的最强染色, 同时在该结构的外周色素部分中发现最强的MITF表达(图1K~0)。总起来讲,这些发现证 明,神经上皮样结构具有神经视网膜祖细胞典型的标记物表达谱,并且可被重命名为神经 视网膜(NR)样结构。有趣的是,qRT-PCR显示出早在培养14天之后,光感受器前体的转录因 子(诸如NRL和CRX)的表达就在NR样结构中增加了 5倍(图2D ),这暗示一些视网膜祖细胞可 能已经参与了光感受器谱系。
[0098] 基因表达分析显示出,在融汇的hiPSC培养物中,Wnt和BMP拮抗物、DKK1和NOGGIN 的外源表达,并且这两个基因在神经上皮样结构的形成过程中都被上调(图2P)。
[0099] 来源于hiPS细胞的视网膜祖细胞有效分化成视网膜神经元
[0100]在第14天,机械分离整个结构(图2C),并且在3D搅拌下作为漂浮结构进行进一步 培养(图3A),其中该整个结构对应于具有围绕的细胞色素斑块的NR样结构。在FGF2存在下, 培养漂浮的结构,以有利于神经视网膜的分化,而不是分化成RPE谱系(Fuhrmann 2010 ; Martinez-Morales et al.2004)。在分离之后一天(第15天),NR样结构已经形成了空心球 体,该空心球体的尺寸在培养中继续增大(图3B~D)。定量分析示出神经上皮的厚度在D17 至D24之间,从139± 19μπι增加到251 ±41μπι(图7)。发明人使用免疫组织化学和对从生长的 球体分离的RNA进行qRT-PCR,分析了特异性视网膜表型的时间过程和获取。从第14至42天 的分化过程中,仍然表达参与视网膜特化和分化的转录因子,诸如LHX2、RAX、S1X3、PAX6、 VSX2和MITF(图3E)。在第21天,表达VSX2的细胞位于NR样结构的正在发育的神经上皮中,而 MITF阳性细胞仅在该结构外周的RPE细胞中发现(图3G)。通过减少其mRNA在NR样结构中的 表达(图1E),证明RPE细胞中的MITF表达受到限制。VSX2阳性细胞主要沿神经上皮的外部定 位,并且还表达PAX6(图3H) JAX6阳性/VSX2阴性细胞聚集在神经上皮的内部,这可能对应 于首先分化的视网膜神经元并且不携带增殖标记物Ki67。实际上,早在第21天,使用针对 BRN3A(图31)或钙网膜蛋白(CALRETININ)(图3M)的抗体在相同的内部位置中,通过免疫组 织化学鉴定出神经节细胞和无长突细胞。在正在发育的神经上皮中,还发现对应于分化的 水平细胞的LM1阳性细胞(图和神经源性分化蛋白(NEUROD)l的表达在漂浮培养 期间大大增加(图3E),其中0TX2和NEUR0D1是编码参与诸如光感受器的视网膜细胞分化的 转录因子的两个基因 (Basset and Wallace 2012)。免疫组织化学分析示出,0TX2在结构外 周的RPE细胞中表达,并且0TX2阳性细胞出现在神经上皮中(图31 ),对应于光感受器的定向 前体(Nishida et al. ,2003)。通过qRT-PCR证实,NRL和CRX表达从第14天至第42天大幅增 加,从而证明分化成光感受器谱系(图3F和图6AKCRX阳性细胞早在第14天就可在神经上皮 中鉴定出来(图3J),并且数量在第21天和第28天逐渐增加(图3K、图3L)。在这一阶段,通过 恢复蛋白(REC0VERIN)免疫染色鉴定出光感受器前体(图30)。
[0101] 在第21天,在神经上皮中出现共表达0TX2的CRX+细胞(图6C~H)。在第28天,CRX基 本表达在有丝分裂后的Ki67细胞中(图6M)。如预期的那样(Nishida et al.,2003),0TX2+ 定向的光感受器前体不表达ΡΑΧ6(图6Ν)。所有这些数据证明,这些培养条件允许hiPS细胞 在3周内分化成主要类型的视网膜细胞(神经节细胞、无长突细胞/水平细胞和光感受器)。 此外,当对比两个不同的非整合hiPSC细胞系(hiPSC-Ι和hiPSC-2)时,这里开发的方案示出 良好的重复性(图8)。
[0102] 由hiPS细胞生成RPE细胞
[0103] 假定从在促神经培养基中培养的融汇hiPS细胞快速出现细胞色素斑块,发明人试 图分离它们并且使它们分化成RPE细胞。在第7天至第14天之间,细胞的色素斑块经机械选 定,并且重新铺在经明胶包被的平板上进行扩增(图4A)。在三周至一个月之后,它们形成融 汇的细胞单层,该融汇的细胞单层示出RPE细胞典型的鹅卵石形态(图4B~4C)。大部分细胞 对于关键的RPE特异性转录因子MITF是具有免疫活性的,并且细胞与细胞的界面通过Z0-1 排列,其中Z0-1是视网膜色素上皮细胞紧密连接的标记物(图ADhqRT-PCR分析(对成体人 类RPE细胞进行标准化)证明,在几次传代之后,hiRPE细胞保持与成熟RPE相关的标记物(诸 如MERTK、RPE65、BEST 1和PEDF)的表达(图4E)。为了确定hiRPE细胞是否有功能,测试了它们 进行FITC标记的光感受器外节(P0S)的吞噬作用的能力。检测到显著的吞噬活性,像对照的 RPE-J细胞系一样有效,其中对照的RPE-J细胞系在3小时内具有平均30%的内在化的P0S (图 4F)。
[0104] 实施例2:视网膜祖细胞向晚生(late-born)的视网膜细胞类型的分化
[0105] 如由qRT-PCR所证明的,在漂浮的培养物中持续维持分离的NR样结构,允许RPC进 一步分化成晚生的视网膜细胞类型(图9A~9E)。实际上,在首先表达了成熟的RGC细胞 (BRN3A和BRN3B)、无长突细胞(钙网膜蛋白和GAD2)和水平细胞(LIM)的早生视网膜标记物 (图9A和图9B)之后,观察到晚生的视网膜细胞类型的标记物的出现,对应于视锥细胞(R/G 0PSIN、BLUE OPSIN和CONE ARRESTIN)和视杆细胞光感受器(RH0D0PSIN和REC0VERIN)(图9C 和图9D)、双极细胞(PKCa)和Miiller胶质细胞(GLAST1)(图9E)。在第21天(图9F)至第42天 (图9G)之间,大部分NR样结构丢失了它们的片状外观,并且发育出含有0TX2+、CRX+和 REC0VERIN+细胞的内部玫瑰结,对应于分化的光感受器(图9G,图9J~9L和图6F~6H),被表 达RGC细胞(BRN3A和CALRETININ)、无长突细胞(CALRETININ和AP2)和水平细胞(UM)的不同 标记物的细胞包围(图9G~J)。有趣的是,在第42天,REC0VERIN+细胞表达细胞表面标记物 CD73(图9L),其中细胞表面标记物CD73是对用于移植的光感受器前体进行细胞分选的标记 物(Eberle et al.,2011)。在第77天,PAX6仅存在于有丝分裂后的细胞(KI67-)中的玫瑰结 外部,这与它在RGC、无长突细胞和水平细胞中的表达一致(图9M)。到第112天之前, RH0D0PSIN和R/G视蛋白(OPSIN)出现在NR样结构中,这反映出视杆细胞和视锥细胞的成熟 (图9N)。在第112天,REC0VERIN+和RH0D0PSIN+细胞通常位于剩余的玫瑰结的最内部(图10A 和图10B)。有趣的是,使用连接纤毛标记物微管蛋白(TUBULIN)进行免疫组织化学显示出, 在与REC0VERIN+细胞并列的玫瑰结的内腔区域中存在很薄的结构,这暗示形成了潜在的纤 毛和光感受器外节(图10C和图10D)。两种其它晚生的视网膜细胞类型,双极细胞和Miiller 胶质细胞的分化也需要较长时间的培养(112天),要分别通过PKCa染色(图9P)和通过谷氨 酰氨合成酶(GS)和S0X9的共表达(图9Q)进行检测。因此,这些细胞培养条件允许从NR样结 构中存在的RPC,以顺序的方式生成所有的视网膜细胞类型。
[0106] 实施例3:通过Notch抑制来加速光感受器前体的生成
[0107]使用抗CRX和REC0VERIN的抗体进行的免疫组织化学分析证明,光感受器前体的数 量在第14天(图3J)至第28天(图3L、图5B)之间逐渐增加。在第21天至第35天之间,NR样结构 丢失了它们的层状结构,并且发育出含有CRX和REC0VRIN阳性细胞的内部玫瑰结(图5B)。有 趣的是,在第21天,持续添加7天Notch抑制剂DAPT,足以显著增加 CRX阳性细胞和RE⑶VRIN 阳性细胞的数量(图5B)。从第28天至第35天,使用DAPT进行的后续处理也导致表达CRX和 RECOVERIN的细胞数量大大增加(图5B)。在第21天至第28天之间,使用DAPT处理一周能提高 光感受器前体的生成,因为与对照相比,第28天的CRX+和RECOVRIN+细胞的数量分别增加2.2 倍和2.6倍(图5C)。同时,第28天的处理之后,在第28天通过Ki67染色评估的有丝分裂的祖 细胞群体大大减少(3倍)(图5C)。在第28天至第35天之间,也评价了Notch抑制的效果,而不 是持续暴露于DAPT,因为在DAPT处理之后,在第28天仍然维持少量的RPC。在这些条件下, Notch抑制还导致NR样结构内的光感受器前体数量增加,即在第35天,CRX+和REC0VRIN+细胞 的数量分别增加了 1.7倍和4.1倍(图f5D)。有趣的是,在DAPT处理之后的该时间,可清楚地鉴 定出视锥细胞(CONE)-ARRESTIN+细胞(正常在第35天检测不到)(未示出)。此外,qRT-PCR分 析证实,在DAPT处理之后,在第35天,CONE-ARRESTIN表达增加,同时没有观察到RH0D0PSIN、 BLUE OPSIN(蓝视蛋白)或G/R OPSIN基因表达的显著变化(图5E)。在DAPT处理之后,降低了 GLAST1的表达(图5E)。
[0108] 这些发现证明,Notch信号传导减缓了从hiPS细胞的光感受器分化,如最近对于 hES细胞所提出的(Nakano et al. 2012),因此它的抑制有利于光感受器分化并且加速了从 多能性RPC生成光感受器前体。
[0109] 实施例4:讨论
[0110] 本研究示出,在无血清的促神经培养基中进行融汇hiPSC的简单培养的新发现足 以在2周内生成NR样结构和RPE细胞。本文中描述的过程避免了以下步骤:EB的形成和选择; 添加诱导分子,诸如DKK1、N0GGIN和WNT和/或基质胶;以及EB涂敷在附着基质上。早期生成 的结构存在通过PAX6和RAX的共表达显示的0V表型,以及VSX2和MITF在神经上皮和RPE之间 的相对梯度。这种效率可能部分是由于:融汇的hiPSC内源性产生的DKK1和NOGGIN增加,其 中DKK1和NOGGIN是神经和视网膜特化的两种诱导因子,通常添加它们用于hESCS或hiPSC的 视网膜分化(Meyer et al.,2011;Boucherie et al.,2013)。然而,之前的研究报道了添加 至培养基或存在于基质胶中的IGF-I可将hESC导向视网膜祖细胞(Lamba et al.,2006;Zhu et al.,2013),这暗示已经存在于N2补充物中的胰岛素足以在上述条件下起到类似作用。
[0111] 分离的hiPSC来源的NR样结构的漂浮培养物,允许RPC以与脊椎动物体内的视网膜 发生(retinogenesis) -致的顺序方式,分化成所有的视网膜细胞类型,这证明了hiPSC来 源的RPC的多能性。有趣的是,发明人还报道了,当RPC用于光感受器谱系时,抑制Notch的途 径明显提高了N
R样结构中的光感受器前体的比例,其中CRX+细胞增加了两倍。使用Notch抑 制剂DAPT处理一周,确实足以诱导大部分RPC退出细胞周期,这允许在35天之后,生成约 40 %的表达视锥前体标记物的CRX+光感受器前体。这种策略对于有效生成具有治疗应用的 细胞是有利的。NR样结构不内陷形成双层杯,如Nakano et al. (2012)使用hESC在EBs/基质 胶-依赖的方案中所完美报道的那样。hiPSC来源的结构直至第21天还维持层状构造,并且 随后在中央区域中发育出含有光感受器样细胞的玫瑰结,被具有视网膜内核层-特异性特 征的细胞和RGC细胞围绕。但是,生成成熟且分层的NR组织并不是未来基于纯化的光感受器 前体或其他视网膜来源的细胞的细胞疗法策略所必需的。在本上下文中,本方案允许在42 天内生成用于移植的有前途的候选物,即CD73+光感受器前体。这样的前体之前已经进行了 纯化,并且被成功移植在小鼠的视网膜中(Eberle et al. ,2011)。组合NOTCH抑制和⑶73选 择的可能性,使得能够分离大量可移植的细胞,从而有希望替代视网膜营养不良中的退化 的光感受器。从NR样结构产生RGC的能力在治疗青光眼中具有重要的意义。除了生成视网膜 神经元之外,本方案同时允许生成RPE细胞(hiRPE),该RPE细胞(hiRPE)可容易地进行传代 和扩增,同时保持它们的表型,接近它们的体内状态。本方案由此具有快速生成hiRPE细胞 库的很大的可能性,用于未来治疗AMD和其它RPE相关的疾病。
[0112]以维持临床等级为目标,发明人通过游离体重编程生成了hiPSC,因为使用慢病毒 载体具有基因毒性的风险。自体滋养层可用于维持hiPSC;无异源体系和无滋养层体系对于 再生治疗将是优选的。从药理学角度看,hiPSC提供了有价值的潜力,以在药物发现的第一 过程中描绘出新的化合物。hiPS来源的RPC和RPE细胞的增殖能力能确保新的细胞工具的发 育,用于以鉴定出为了视网膜营养不良的未来治疗的特异性活性化合物为目标,进行基于 表型和靶标的高通量筛选。
[0113]该新的方案提供了可容易改变规模的途径,以生成大量的RPE细胞和多能性RPC, 而且该新的方案消除了通常使hiPSC分化成特定的视网膜谱系对耗时和劳动密集型手动步 骤的需要。因此,在相对短的时段中,本文描述的方法产生了光感受器前体或RGC的来源,有 希望产生了一种再生药剂和药品测试/药物筛选的新途径。这种使用hiPSC的策略还提供了 研究构成人类视网膜发育的基础的分子和细胞机制的时机,并且推进了人类视网膜退行性 疾病的体外模型的发展。
[0114] 参考文献
[0115] Barber,A·C· ,Hippert,C·,Duran,Y·,West,E·L·,Bainbridge,J·W·,Warre_ Cornish,K·,Luhmann,U.F·,Lakowski,J·,Sowden,J.C.,Ali,R.R·,and Pearson,R.A. (2013)Repair of the degenerate retina by photoreceptor transplantation.Proc.Natl.Acad.Sci.U S A.110,354-359.
[0116] Basett,E.A.,and Wallace,V.A.(2012)Cell fate determination in the vertebrate retina.Trends Neurosci.9,565-573.
[0117] Boucherie,C.,Mukherjee,S.,Henckaerts,E.,Thrasher,A.J.,Sowden,J.C.,and Ali,R.R.(2013)Self-organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors.Stem Cells.31,408-414.
[0118] Boucherie,C.,Sowden,J.C.,and Ali,R.R.(2011)Induced pluripotent stem cell technology for generating photoreceptors.Regen.Med.4,469-479.
[0119] Buchholz,D·E·,Hikita,S·T·,Rowland,T·J·,Friedrich,A.M.,Hinman,C·R·, Johnson,L.V.,and Clegg,D.0.(2009)Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells.Stem Cells 27,2427-2434.
[0120] Chen,M.,Chen,Q.,Sun,X.,Shen,W.,Liu,B.,Zhong,X.,Leng,Y.,Li,C.,Zhang, W.,Chai,F.,Huang,B.,Gao,Q.,Xiang,A.P.,Zhuo,Y.,and Ge,J.(2010)Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts. Invest.Ophthalmol.Vis.Sci.il,5970-5978.
[0121] Comyn,0.,Lee,E.,and MacLaren,R.E.(2010)Induced pluripotent stem cell therapies for retinal disease.Curr.Opin.Neurol.1,4-9.
[0122] Dahlmann-Noor,A. ,Vijay,S. ,Jayaram,H.,Limb,A.,and Khaw,P.T.(2010) Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve.Can.J.Ophthalmol.4,333-341.
[0123] Eberle D,et al.(2011)Increased integration of transplanted CD73-positive photoreceptor precursors into adult mouse retina. Invest Ophthalmol Vis Sci 52:6462-71.
[0124] Fuhrmann,S.(2010)Eye morphogenesis and patterning of the optic vesicle.Curr.Top.Dev.Biol.93,61-84.
[0125] Greber,B.,Coulon,P.,Zhang,M.,Moritz,S.,Frank,S.,Miiller_Molina,A.J., Arauzo-Bravo , M. J. , Han , D . ff. , Pape , H. C. , and Scholar,H. R. (2011 )FGF signalling inhibits neural induction in human embryonic stem cells.ΕΜΒ0 J.30,4874-4784.
[0126] Griscelli F,et al.(2012)Malignant germ cell-like tumors,expressing Ki_lantigen(CD30),are revealed during in vivo differentiation of partially reprogrammed human-induced pluripotent stem cells.Am J Pathol 180:2084-96.
[0127] Horsford,D.J.,Nguyen,M.T.,Sellar,G.C.,Kothary,R.,Arnheiter,H.,and Mclnnes,R.R.(2005)Chxl0repression of Mitf is required for the maintenance of mammalian neuroretinal identity.Development 1,177-187.
[0128] Idelson,M.,Alper,R.,0bolensky,A.,Ben_Shushan,E·,Hemo,I.,Yachimovich-Cohen,N.,Khaner,H.,Smith,Y.,Wiser,0.,Gropp,M.,Cohen,M.A.,Even_Ram,S.,Berman_ Zaken,Y.,Matzrafi,L.,Rechavi,G.,Banin,E.,and Reubinoff,B·(2009)Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells.Cell Stem Cell 5,396-408.
[0129] Kokkinaki,M·,Sahibzada,N·,and Golestaneh,N·(2011)Human induced pluripotent stem-derived retinal pigment epithelium(RPE)cells exhibit ion transport,membrane potential,polarized vascular endothelial growth factor secretion,and gene expression pattern similar to native RPE.Stem Cells 5,825-835.
[0130] Jagatha,B·,Divya,M·S·,Sanalkumar,R·,Indulekha,C·L·,Vidyanand,S·, Divya,T.S.,Das,A.V.,and James,J·(2009)In vitro differentiation of retinal gang lion-like cells from embryonic stem cell derived neural progenitors.Biochem.Biophys. Res.Commun.380,230-235.
[0131] Jin,Z.B.,0kamoto,S.,Xiang,P.,and Takahashi,M.(2012)Integration_free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling.Stem Cells Trans1.Med.6,503-509.
[0132] Lamba,D.A.,Karl,M.0·,Ware,C.B.,and Reh,T.A.(2006)Efficient generation of retinal progenitor cells from human embryonic stem cells.Proc.Natl.Acad.Sci.USA 103,12769-12774.
[0133] Lamba,D·A·,Gust,J·and Reh,T·A·(2009)Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice.Cell Stem Cell 1,73-79.
[0134] Lu,B.,Malcuit,C.,Wang,S.,Girman,S.,Francis,P.,Lemieux,L.,Lanza,R.,and Lund,R.(2009)Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration.Stem Cells.9,2126-2135.
[0135] Mart inez-Mora1es,J.R.,Rodrigo,I·,and Bovolenta,P.(2004)Eye development:a view from the retina pigmented epithelium.Bioessays.7,766-777.
[0136] Mathers,P.H.,and Jamrich M.(2000)Regulation of eye formation by the Rx and pax6 homeobox genes. Cell.Mol. Life Sci.2,18
6-194.
[0137] Mel lough,C · B · ,Sernagor,E·,Moreno_Gimeno,.I,Steel,D.H·,and Lako,M. (2012)Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells.Stem Cells 30,673-686.
[0138] Meyer,J·S·,Shearer,R·L·,Capowski,Ε·Ε·,Wright,L.S.,Wallace,Κ·Α·, McMi1lan , E.L. , Zhang ,S.C. , and Gamm,D.M.(2009)Modeling early retinal development with human embryonic and induced pluripotent stem cells.Proc.Natl.Acad.Sci.USA 106,16698-16703.
[0139] Meyer,J·S·,Howden,S·E·,Wallace,K·A·,Verhoeven,A·D·,Wright,L·S·, Capowski,Ε.E.,Pinilla, I.,Martin,J.M.,Tian,S.,Stewart,R.,Pattnaik,B.,Thomson, J. A.,and Gamm,D.M.(2011)Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment.Stem Cells 29,1206-1218.
[0140] Nakano,T.,Ando,S.,Takata,N.,Kawada,M.,Muguruma,K.,Sekiguchi,K.,Saito, K. ,Yonemura,S.,Eiraku,M.,and Sasai,Y.(2012)Self-formation of optic cups and storable stratified neural retina from human ESCs·Cell Stem Cell 10,771-785. [0141 ] Nishida,A·,Furukawa,A·,Koike,C·,Tano,Y·,Aizawa,S·,Matsuo,I·,and Furukawa,T.(2003)0tx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development.Nat.Neurosci.12,1255-1263.
[0142] Osakada,F·,Ikeda,H.,Mandai,M.,Wataya,T·,Watanabe,K·,Yoshimura,N., Akaike,A.,Sasai,Y.,and Takahashi,M.(2008)Toward the generation of rod and cone photoreceptors from mouse , monkey and human embryonic stem cells.Nat.Biotechnol.26,215-224.
[0143] Osakada,F., Jin,Z.B.,Hirami ,Y.,Ikeda,H.,Danjyo,T.,ffatanabe,K.,Sasai, Y.,and Takahashi,M.(2009)In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction.J.Cell.Sci.122,3169-3179.
[0144] Parameswaran,S·,Balasubramanian,S·,Babai,N.,Qiu,F.,Eudy,J.D., Thoreson,ff.B.,and Ahmad, I.(2010)Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors:therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 4,695-703.
[0145] Pearson,R.A.,Barber,A.C.,Rizzi,M.,Hippert,C.,Xue,T.,ffest,E.L., Duran, Y., Smith , A.J.,Chuang,J.Z., Azam,S. A.,Luhmann,U.F., Benueci, A., Sung ,C.H., Bainbridge,J·W·,Carandini,M·,Yau,K·W·,Sowden,J.C·,and Ali,R.R.(2012) Restoration of vision after transplantation of photoreceptors.Nature 485,99-103.
[0146] Roger,J.,Brajeul,V.,Thomasseau,S.,Hienola,A.,Sahel,J-A.,Guillonneau, X. , and Goureau,0.(2006) Involvement of Pleiotrophin in CNTF-mediated differentiation of the late retinal progenitor cells.Dev.Biol.298,527-539.
[0147] Tucker,B.A.,Anfinson,K.R.,Mul1 ins ,R.F.,Stone,E.M.,and Young,M.J. (2013)Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl.Med.1,16-24.
[0148] Zahabi,A.,Shahbazi,E.,Ahmadieh,H.,Hassani,S.N·,Totonchi,M.,Taei,A., Masoudi,N.,Ebrahimi,M.,Aghdami,N.,Seifinejad,A.,Mehrnejad,F.,Daftarian,N., Salekdeh,G.H.,and Baharvand,H.(2012)A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells.Stem Cells Dev.21,2262-2272.
[0149] Vaajasaari,H.,Ilmarinen,T.,Juuti-Uusitalo,K.,Rajala,K.,0nnela,N., Narkilahti,S.,Suuronen,R.,Hyttinen,J.,Uusitalo,H.,and Skottman,H.(2011)Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells.Mol.Vis.17,558-575
[0150] Yu,J·,Hu,K·,Smuga-Otto,K·,Tian,S·,Stewart,R.,Slukvin,I.I.,and Thomson,J.A.(2009)Human induced pluripotent stem cells free of vector and transgene sequences.Science 324,797-801.
[0151] Zhang,Y.,Li,ff.,Laurent,T.,and Ding,S.(2012)Small molecules,big roles-the chemical manipulation of stem cell fate and somatic cell reprogramming.J.Cell.Sci.125,5609-5620.
[0152] Zhu,Y.,Carido,M.,Meinhardt,A.,Kurth,T.,Karl,M.0.,Ader,M.,and Tanaka, E.M. (2013)Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium.PLoS One.2013;8(1):e54552.
【主权项】
1. 一种用于在体外获得人类视网膜祖细胞的方法,包括以下步骤: (i) 将人类多能干细胞的贴壁培养物放置于促神经培养基中;以及 (ii) 使所述培养物保持在所述促神经培养基中,直至出现色素细胞和/或神经上皮样 结构。2. 根据权利要求1所述的方法,其中,所述促神经培养基缺乏以下分化因子中的至少一 种:头蛋白、Dkk-Ι和IGF-1。3. 根据权利要求2所述的方法,其中,所述促神经培养基缺乏头蛋白、Dkk-Ι和IGF-1。4. 根据前述权利要求中任一项所述的方法,其中,在步骤(i)中,所述多能干细胞形成 达到至少80 %细胞覆盖的集落型单层。5. 根据前述权利要求中任一项所述的方法,其中,步骤(ii)进行至少7天。6. 根据前述权利要求中任一项所述的方法,用于获得视网膜色素上皮细胞(RPE细胞), 其中,所述方法进一步包括以下步骤: (iiiRPE)从在步骤(ii)中获得的培养物收集至少一个色素细胞;以及 (iVRPE)培养在步骤(iiiRPE)中获得的色素细胞。 7 .根据权利要求6所述的方法,其中,在贴壁培养系统中进行步骤(iVRPE)中的培养。8. 根据权利要求1至5中任一项所述的方法,用于获得神经视网膜细胞,其中,所述方法 进一步包括以下步骤: (iiiNR)从在步骤(ii)中获得的培养物,收集来自至少一个神经上皮样结构的细胞;以 及 (iVNR)培养在步骤(iiiNR)中获得的细胞。9. 根据权利要求8所述的方法,其中,在步骤(iiiNR)中收集至少一个神经上皮样结构。10. 根据权利要求8或9所述的方法,其中,在非贴壁培养系统中进行步骤(ivNR)中的培 养。11. 根据权利要求8至10中任一项所述的方法,其中,在步骤(ivNR)中,在至少5天中向培 养基中补充FGF2。12. 根据权利要求8至11中任一项所述的方法,其中,在摇动的条件下进行步骤(ivNR)中 的培养。13. 根据权利要求8至12中任一项所述的方法,用于获得光感受器前体,其中,步骤 (ivNR)进行至少21天。14. 根据权利要求13所述的方法,其中,在步骤(ivNR)中,在至少1天至5天中,向培养基 中添加缺口抑制剂。15. 根据权利要求13或14所述的方法,进一步包括以下步骤:通过细胞表面标记物CD73 的结合,对光感受器前体进行细胞分选。16. 根据前述权利要求中任一项所述的方法,用于获得RPE细胞和神经视网膜前体,其 中,权利要求6或7中限定的步骤(iiiRPE)和步骤(ivRPE)与权利要求8至14中任一项限定的步 骤(iiiNR)和步骤Qvnr)平行进行。
【专利摘要】本发明涉及一种用于在体外获得人类视网膜祖细胞的方法,该方法包括以下步骤:(i)将人类多能干细胞的贴壁培养物放置于促神经培养基中;以及,(ii)使所述培养物保持在所述促神经培养基中,直至出现色素细胞和/或神经上皮样结构。有利地,可进行额外的步骤,以获得RPE细胞和/或神经视网膜前体。
【IPC分类】C12N5/079, C12N5/071, C12N5/0793
【公开号】CN105492596
【申请号】CN201480029524
【发明人】萨夏·赖奇曼, 奥利维尔·古瑞奥, 约瑟-阿兰·萨赫尔
【申请人】皮埃尔-玛丽-居里大学(巴黎第六大学), 国家科学研究中心
【公开日】2016年4月13日
【申请日】2014年4月25日
【公告号】CA2909851A1, EP2796545A1, EP2989200A1, US20160060596, WO2014174492A1