利用往返时间信息的被动定位的制作方法
【专利说明】利用往返时间信息的被动定位
[0001 ] 相关申请案的交叉参考
[0002] 本申请案主张20 13年8月30日申请的标题为"被动定位方案(Passive Positioning Schemes)"的第61/872,087号美国临时申请案、2013年9月3日申请的标题为 "被动定位方案"的第61/873,253号美国临时申请案、2014年3月31日申请的标题为"利用信 标相邻者报告的被动定位(Passive Positioning Utilizing Beacon Neighbor Reports)"的第61/973,034号美国临时申请案以及2014年4月28日申请的标题为"利用信标 相邻者报告的被动定位"的第61 /985,247号美国临时申请案的权益,以上申请案中的每一 者转让给本受让人且其内容以全文引用的方式并入本文中。
【背景技术】
[0003] 本发明标的物的实施例大体上涉及无线通信的领域,且更确切地说涉及用于无线 通信装置的被动定位方案。
[0004] 各种定位技术可用于基于接收无线通信信号确定无线通信装置(例如,无线局域 网(WLAN)装置)的位置。举例来说,可实施定位技术,其利用无线通信信号的到达时间 (TOA)、往返时间(RTT)、接收信号强度指示符(RSSI)或无线通信信号的到达时间差(TDOA) 以确定无线通信装置在无线通信网络中的位置。
【发明内容】
[0005] 根据本发明的用于在接入点之间交换定位消息的方法的实例包含:检测来自接入 点的传入消息;确定与所述接入点相关联的往返时间(RTT)值;产生确认消息;至少部分地 基于所述RTT值计算所述确认消息的出发时间;以及在所述出发时间发送所述确认消息。
[0006] 此类方法的实施方案可包含以下特征中的一或多者。可计算所述传入消息的第一 到达校正(FAC)。所述确认消息的出发时间可至少部分地基于所述FAC。可确定短帧间间隔 (SIFS)值,且计算出发时间可基于RTT值和SIFS值。计算确认消息的出发时间的方程式可为 t3 = t2+SIFS-RTT/2+LM,使得t3是所述出发时间,t2是检测到传入消息的时间,SIFS是与接 入点相关联的短帧间间隔,RTT/2是当发送所述传入消息时的时间实例与当检测到所述传 入消息时的时间实例之间的时间差,且Lm是传入消息的长度。可确定传入消息的消息长度。 传入消息可为服务质量空(QoSNuII)交换。
[0007] 根据本发明的在利用接入点间消息接发的客户端站上的定位的方法的实例包含: 在客户端站处检测来自第一接入点的指示与第二接入点的消息交换的广播消息;检测从所 述第一接入点发送到所述第二接入点的第一消息;检测从所述第二接入点发送到所述第一 接入点的后续第二消息;确定与所述第一接入点和所述第二接入点相关联的位置信息;确 定短帧间间隔(SIFS)值;确定所述第一消息的消息长度值;至少部分地基于所述第一消息 和所述后续第二消息的所述检测而确定到达时间差(TDOA)信息;以及基于与所述第一接入 点和所述第二接入点相关联的所述位置信息、所述TDOA信息、所述SIFS值以及所述消息长 度值而计算位置估计。
[0008] 此类方法的实施方案可包含以下特征中的一或多者。所述第一消息可为精细定时 消息或Q0SNull消息。所述广播消息可包含与第一接入点和第二接入点相关联的位置信息, 与第一接入点和第二接入点相关联的往返时间(RTT)信息,和/或所述SIFS值。
[0009] -种交换消息以用于在移动单元的被动定位中使用的系统的实例包含:存储器单 元;至少一个处理器,其耦合到所述存储器单元且经配置以:检测来自接入点的传入消息; 确定与所述接入点相关联的往返时间(RTT)值;产生确认消息;基于所述RTT值计算所述确 认消息的出发时间;以及在所述出发时间发送所述确认消息。
[0010]此系统的实施方案可包含以下特征中的一或多者。所述处理器可进一步经配置以 计算所述传入消息的第一到达校正(FAC)。所述处理器可进一步经配置以至少部分地基于 所述FAC计算所述确认消息的出发时间。所述处理器可进一步经配置以确定短帧间间隔 (SIFS)值且基于RTT值和SIFS值计算所述出发时间。所述确认消息的出发时间可确定为t3 = t2+SIFS-RTT/2+LM,使得t3是所述出发时间,t2是检测到传入消息的时间,SIFS是与接入 点相关联的短帧间间隔,RTT/2是当发送所述传入消息时的时间实例与当检测到传入消息 时的时间实例之间的时间差,且Lm是传入消息的长度。可确定传入消息的消息长度。来自接 入点的传入消息可为QoSNul 1消息。
[0011] 根据本发明的机器可读存储媒体的实例包含指令,所述指令当由一或多个处理器 执行时致使所述一或多个处理器执行操作,所述操作包含:检测来自接入点的传入消息;确 定与所述接入点相关联的往返时间(RTT)值;产生确认消息;至少部分地基于所述RTT值计 算所述确认消息的出发时间;以及在所述出发时间发送所述确认消息。
[0012] 此机器可读存储媒体的实施方案可包含以下特征中的一或多者。所述指令可致使 所述一或多个处理器执行包含计算所述传入消息的第一到达校正(FAC)的操作。计算确认 消息的出发时间的操作可至少部分地基于所述FAC。所述指令可致使所述一或多个处理器 执行包含确定短帧间间隔(SIFS)值的操作,且计算所述出发时间的操作可基于RTT值和 SIFS值。所述指令可致使所述一或多个处理器执行包含确定所述传入消息的消息长度的操 作。检测来自接入点的传入消息的操作可包含检测传入消息是Q 0SNull交换。
[0013] 根据本发明的一种客户端站的实例,处理器;定位单元,其耦合到所述处理器且经 配置以:检测来自第一接入点的指示与第二接入点的消息交换的广播消息;检测从所述第 一接入点发送到所述第二接入点的第一消息;检测从所述第二接入点发送到所述第一接入 点的后续第二消息;确定与所述第一接入点和所述第二接入点相关联的位置信息;确定短 帧间间隔(SIFS)值;确定所述第一消息的消息长度值;至少部分地基于所述第一消息和所 述第二消息的所述检测而确定到达时间差(TDOA)信息;以及基于与所述第一接入点和所述 第二接入点相关联的所述位置信息、所述TDOA信息、所述SIFS值以及所述消息长度值而计 算位置估计。
[0014] 此客户端站的实施方案可包含以下特征中的一或多者。所述定位单元可经配置以 检测精细定时消息或QoSNuII消息作为所述第一消息。所述定位单元可经配置以检测所述 广播消息中与第一接入点和第二接入点相关联的位置信息。所述定位单元可经配置以检测 所述广播消息中与第一接入点和第二接入点相关联的往返时间(RTT)信息。所述定位单元 可经配置以检测所述广播消息中的SIFS值。
[0015] 本文中所描述的项目和/或技术可提供以下能力中的一或多者以及未提到的其它 能力。网络中的接入点(AP)与相邻AP交换周期性精细定时或Q0SNull消息。AP广播其位置。 确定消息(M)离开第一AP(APl)的时间。确定消息(M)在第二AP(AP2)处的到达时间。第一到 达校正(FAC)用以调整第二AP(AP2)处的到达时间。消息(M)的确认(ACK)从第二AP(AP2)发 送返回到第一AP(APl)。客户端站检测消息(M)和确认(ACK)且确定客户端站处的相应到达 时间。AP确定与两个AP之间的发射时间相关联的往返时间(RTT)信息(例如,RTT 12/2) JP广 播RTT信息和SIFS信息。可基于到达时间以及RTT和SIFS信息确定客户端的位置。可提供其 它能力,且不是根据本发明的每个实施方案都必须提供所论述的能力中的任一者,更不用 说全部。AP不广播RTT信息,但基于RTT信息修改发送ACK消息的时间。确定客户端位置而无 需接收广播RTT信息。另外,通过除了所提到的手段之外的手段来实现上文提到的效果可为 可能的,且所提到的项目/技术可能不一定产生所提到的效果。
【附图说明】
[0016] 图IA是用于确定客户端站的位置的被动定位方案的实例框图。
[0017] 图IB是包含位置服务器的无线局域网的实例网络图。
[0018] 图2是精细定时测量请求的概念图的现有技术实例。
[0019] 图3A是基于FAC估计的被动定位方案的概念图的实例。
[0020]图3B是FAC估计的图形实例。
[0021 ]图4是基于动态SIFS时间的被动定位方案的概念图的实例。
[0022]图5A和5B是示范性接入点广播和消息交换时序图。
[0023]图6是用于基于RTT值发送确认消息的过程的流程图。
[0024]图7是用于计算客户端站的位置的过程的流程图。
[0025]图8A是示范性客户端站的框图。
[0026]图8B是示范性接入点的框图。
【具体实施方式】
[0027] 下文的描述包含实施本发明的标的物的技术的示范性系统、方法、技术、指令序列 和计算机程序产品。但是,应理解,可以在没有这些具体细节的情况下实践所描述的实施 例。举例来说,虽然实例指代用于无线局域网(WLAN)装置的被动定位方案,但实施例不受如 此限制。在其它实施例中,被动定位方案可由其它无线标准和装置(例如,WiMAX装置)实施。 在其它情况下,为了不使描述变混乱,未详细展
示众所周知的指令实例、协议、结构和技术。
[0028] 在无线通信网络中,确定具有无线通信能力的电子装置的位置(例如,室内或室外 环境内)可为通信装置的用户(例如,移动电话用户)和无线通信网络的运营商的所需特征。 在一些系统中,可实施往返时间(RTT)技术用于确定通信装置的位置。举例来说,通信装置 可将请求消息发射到多个接入点,且可接收来自所述接入点中的每一者的响应消息。通信 装置与接入点中的每一者之间的距离可通过测量请求消息与对应响应消息之间的往返时 间而确定。可确定通信装置的位置。在一些系统中,可实施到达时间差(TDOA)技术用于确定 通信装置的位置。举例来说,通信装置可基于从接入点中的每一者到通信装置的距离之间 的差而确定其位置。然而,起始RTT定位操作(或TDOA定位操作)(例如,将请求消息发射到接 入点)的责任通常位于通信装置上。因为通信装置在将请求消息发射到每一接入点中起到 主动作用,所以通信装置可消耗实质量的带宽和电力。此外,如果无线通信网络包括多个此 些通信装置,那么每一通信装置可需要执行RTT定位操作(或TDOA定位操作),从而增加无线 通信网络中的业务负荷。
[0029]通信装置的位置计算单元可经配置以基于被动定位方案确定通信装置的位置以 减少无线通信网络中的业务负荷。无线通信网络中的接入点可经配置以与无线通信网络中 的一或多个相邻接入点(即,目标接入点)交换精细定时或QoSNuII消息(例如,按需要或周 期性地)。接入点可基于发射的消息(M)与由目标接入点发射的对应确认(ACK)响应消息之 间的时间差而确定与所述一或多个相邻接入点相关联的RTT定时信息。位置计算单元可拦 截所述消息(M)和对应ACK消息,且可基于消息(M)与对应ACK消息之间的到达时间差而确定 TDOA定时信息。接入点也可将包括RTT定时信息的RTT测量消息发射到通信装置。位置计算 单元可随后至少部分地基于TDOA定时信息、RTT定时信息以及与预定数目的网络接入点相 关联的位置信息而确定通信装置的位置。在实施例中,接入点可经配置以基于RTT信息而调 整ACK消息的定时且并不将RTT测量消息发射到客户端站。
[0030] 用于确定通信装置的位置的被动定位方案可消除为了计算通信装置的位置而由 通信装置起始的发射。这可最小化通信装置发射对无线通信网络的业务负荷的影响。此外, 因为通信装置可被动地监听(且检测)精细定时或Q 0SNull消息交换和RTT测量消息,所以被 动定位方案可使得接入点网络的范围内的较大数目的通信装置能够计算其位置。这也可最 小化通信装置处的带宽和功率消耗。
[0031] 参考图1A,展示用于确定客户端站的位置的被动定位方案的实例框图。所述被动 定位方案包含无线通信网络100,其包括三个接入点102、104、106和客户端站120。接入点 102、104、106可为能够确定其自身位置的高级WLAN接入点(例如,自定位接入点)。接入点中 的每一者可选择无线通信网络100中(例如,彼此的通信范围内)的一或多个其它接入点。在 一些实施方案中,接入点可经布置成一个接入点可表示为主接入点,且其它接入点可表示 为目标接入点。客户端站120可为具有WLAN通信能力的任何合适的电子装置(例如,笔记本 计算机、平板计算机、上网本、移动电话、游戏控制台、个人数字助理(PDA)、库存标签等)。此 外,在图IA中,客户端站120在一或多个接入点102、104、106的通信范围内。
[0032]在实施例中,接入点102将周期性精细定时或Q0SNull消息(M)发射到其它接入点 104、106中的一或多者。消息M可包括与第一接入点相关联的识别符(例如,接入点102的网 络地址)、与第二接入点相关联的识别符(例如,接入点104的网络地址)、识别精细定时或 Q0SNull消息的序列号,以及指示消息M发射的时刻的时戳。第二接入点104可将RTT信息(例 如,RTT/2)确定为消息M发射的时刻与接收的时刻之间的时间差。接入点102从一或多个接 入点104、106接收精细定时或Q 0SNull确认消息(ACK)且确定与接入点104、106中的每一者 相关联的RTT定时信息。响应于接收到消息M,第二接入点(例如,在此实例中的接入点104) 可产生且发射对应确认ACK响应消息。在一个实施方案中,ACK消息指示接入点104处的消息 M的接收。ACK消息可包括与第一接入点102相关联的识别符、与第二接入点104相关联的识 别符、和识别对应精细定时或QoSNuII请求消息的序列号,以及指示ACK消息发射的时刻的 时戳。
[0033]第一接入点102可从第二接入点104接收ACK响应消息,确定ACK消息接收的时刻, 且确定与第二接入点104相关联的RTT定时信息。第一接入点102可将与第二接入点104相关 联的RTT定时信息确定为消息M发射的时刻与ACK响应消息接收的时刻之间的时间差。在图I 的实例中,第一接入点102可与第二接入点104交换精细定时或Q0SNull消息/ACK响应消息 108,并且还可与另一接入点106交换精细定时或QoSNuII消息/ACK响应消息110。第二接入 点104也可与另一接入点106交换精细定时或QoSNuII消息/ACK响应消息112。接入点102、 104、106中的每一者可确定与网络中的其它接入点相关联的RTT定时信息。
[0034]客户端站120可拦截M消息和ACK响应消息以确定与接入点102、104、106相关联的 TDOA定时信息。虚线114、116、118表示客户端站120拦截在接入点102、104、106(例如AP群 集)之间交换的Qo SNu11消息/ACK响应消息108、110、112。客户端站120可测量M消息与对应 ACK响应消息之间的到达时间差。举例来说,客户端站120可确定检测到消息M(由第一接入 点102发射到第二接入点104)的第一时刻。客户端站120也可确定检测到ACK消息(由第二接 入点104发射到第一接入点102)的第二时刻。客户端站120可从所述第二时刻减去所述第一 时刻以确定与第一接入点102和第二接入点104相关联的TDOA定时信息。
[0035]在实施例中,接入点102、104、106可发射包括RTT定时信息和AP位置信息的指示的 RTT测量控制消息。在一个实施方案中,接入点102、104、106中的每一者可广播用于相邻接 入点的相异RTT测量控制消息以指示与相邻接入点相关联的RTT定时信息。除与接入点相关 联的RTT定时信息之外,RTT测量控制消息也可包括AP位置信息。AP位置信息可包含广播接 入点的位置的指示和相邻接入点的位置的指示。客户端站120可接收RTT测量控制消息且可 将与接入点102、104、106相关联的AP位置信息、TDOA定时信息和RTT定时信息存储在预定存 储器位置、数据结构或另一合适的存储装置中。
[0036]客户端站120经配置以至少部分地基于与接入点相关联的AP位置信息、TDOA定时 信息以及RTT定时信息而确定位置。在一些实施方案中,如将进一步描述,客户端站120可使 用AP位置信息、TDOA定时信息和RTT定时信息来在客户端站120与预定数目的接入点中的每 一者之间的距离方面构造"定位方程式"。举例来说,在确定AP位置信息、TDOA定时信息和与 三个目标接入点相关联的RTT定时信息可用时,客户端站120可求解三个定位方程式以确定 客户端站120的三维位置。应注意在其它实施方案中,客户端站120可基于与任何合适数目 的接入点相关联的AP位置信息、TDOA定时信息和RTT定时信息而确定位置。举例来说,位置 可基于来自与两个目标接入点相关联的AP位置信息、TDOA定时信息和RTT定时信息的两个 独立定位方程式以确定客户端站120的二维位置。
[0037]在实施例中,接入点102、104、106并不发射RTT测量信息到客户端站120 ATT定时 信息可用以使AP中的SIFS时间改变/修改与两个AP站之间的距离成比例的量。客户端站120 经配置以在不知道RTT测量信息的情况下确定位置。即,位置计算是基于与接入点102、104、 106相关联的AP位置信息、TDOA定时信息和SIFS信息。AP位置信息和SIFS信息可包含在周期 性广播消息中且存储在客户端站120上的预定存储器位置、数据结构或另一合适的存储装 置中。
[0038]参考图1B,展示包含位置服务器的无线局域网的实例网络图。网络150包含接入点 102、104、106、位置服务器152和通信路径154。位置服务器152是包含处理器和存储器的计 算装置且经配置以执行计算机可执行指令。举例来说,位置服务器152包括计算机系统,其 包含处理器、非暂时性存储器、磁盘驱动器、显示器、键盘、鼠标。处理器优选地为智能装置, 例如,例如由Intel?公司或AMD?制造的那些个人计算机中央处理单元(CPU )、微控制器、 专用集成电路(ASIC)等。所述存储器包含随机存取存储器(RAM)和只读存储器(ROM)。磁盘 驱动器包含硬盘驱动器、光盘驱动器和/或磁盘驱动器,且可包含其它形式的驱动器。所述 显示器是液晶显示器(IXD)(例如,薄膜晶体管(TFT)显示器),但其它形式的显示器是可接 受的,例如阴极射线管(CRT)。所述键盘和鼠标为用户提供数据输入机构。位置服务器152存 储(例如,在存储器中)处理器可读、处理器可执行软件代码,其含有用于控制处理器执行本 文所描述的功能的指令。所述功能辅助被动定位方案的实施。软件可通过经由网络连接下 载而加载到存储器上,从磁盘上载等
。此外,软件可能不可直接执行,例如需要在执行之前 编译。接入点102、104、106经配置以与位置服务器152通信以经由通信路径154交换位置信 息。通信路径154可为广域网(WAN)且可包含因特网。位置服务器152可包含数据结构(例如, 关系数据库、平面文件)以存储AP位置信息。举例来说,位置服务器152可包含AP位置信息 (例如,炜度/经度,x/y)、RTT信息、SIFS信息以及与接入点相关联的其它信息(例如,SSID、 MAC地址、不确定性值、覆盖区域等)。接入点102、104、106可与位置服务器152106通信且可 检索AP位置信息、SIFS信息和RTT信息用于在客户端站定位解决方案中使用。位置服务器 152的配置仅是示范性的,且不是限制。在实施例中,位置服务器152可直接连接到接入点。 可使用一个以上位置服务器。位置服务器152可包含含有与额外网络上的其它接入点相关 联的位置信息的一或多个数据库。在一实例中,位置服务器152包括多个服务器单元。
[0039] 参考图2,展示精细定时测量请求的概念图的现有技术实例。所述一般方法包含接 收站和发送站。接收站可将精细定时测量请求发送到发送站且接收对应确认消息。发送站 随后在时间11发射动作帧M。动作帧M由接收站在时间t2接收,且确认消息ACK由接收站在时 间t3发射。客户端站可检测在时间11的消息的出发时间(ToD),以及在时间t3的ACK的ToD。 ACK消息由发送站在时间t4接收。发送站随后准备后续消息,其包含用于tl和t4的值。接收 站随后估计RTT为(t4-tl)-(t3-t2)。随后将RTT信息提供到客户端站。现有技术方法需要多 个往返消息以确定t4,且随后计算RTT值。因此,在具有许多客户端站和对应数目的测量请 求的环境中,多个往返消息可对可用于接入点和客户端站的带宽具有重要影响。如下文将 论述,被动定位方案的优点是减少接入点之间发射的消息的数目。
[0040] 参考图3A,进一步参看图IA,展示基于FAC估计的被动定位方案的概念图的实例。 所述图包含例如在第一接入点102与第二接入点104之间的QoSNuII消息/ACK响应消息108 中包含的消息。在此实例中,第一接入点102(API)是发送站且第二接入点104(AP2)是接收 站。虚线118a、118b分别表示客户端站120拦截M/ACK消息。接入点102、104(例如)按周期性 基础参与精细定时或QoSNuII交换。接入点102、104可广播其位置信息。在时间tl302,时间 消息M离开APl。消息M具有Lm的消息长度。在时间t4308,来自AP2的ACK消息到达APl。来自 AP1的消息M到达客户端站120的时间表示为客户端处的到达时间(即,ToaC(M) 310)。来自 AP2的ACK消息到达客户端站120的时间表示为客户端处的到达时间(即,ToaC(ACK) 312)。位 置方程式可基于APl与客户端站120之间的飞行时间(ToF),以及AP2与客户端站120之间的 ToF。举例来说,使用' c '作为光速,差分距离可表达为:
[0041 ] Diff_dist_12 = c*[ToaC(M)-tl-(ToaC(ACK)-t3]
[0042] RTT12/2是API与AP2之间的飞行时间。RTT12/2的值可基于tl和t2的时间实例而确 定,或可基于APl和AP2的位置而确立。在实施例中,AP2经配置以针对信道的第一到达而调 整t2的值(即,M的ToA)。参考图3B中的曲线图350,FAC的值可基于所接收的信号。作为一实 例且不是限制,FAC算法可使用前边缘样本和统计信息。FAC算法可确定h(n)的值的最大值 且随后将所述值设定为"1"。可随后应用可变阈值且所得FAC可用以调整t2304:
[0043] t2 = t2+FAC
[0044] 可基于FAC值而调整t2的值。AP2可经配置以在时间t3306发送ACK消息,其中:
[0045] t3 = t2+SIFS+LM
[0046] SIFS的值通过先前广播消息或所建立的网络标准而已知。SIFS的特定值可为标准 值的原因内的任何常数。当消息M由AP2接收时可确定消息长度Lm(即,传入包或消息的长 度)的值。代入t2,所述方程式可如下导出:
[0047] t2 = tl+RTW2
[0048] t3 = tl+RTTi2/2+SIFS+LM
[0049] Diff_dist_12 = c*[ToaC(M)-(ToaC(ACK)-(RTTi2/2+SIFS+LM))]
[0050] 确定客户端站120的位置的此方法不需要图2中描述的现有技术方法中使用的额 外开销包。客户端站120可接收呈先前广播消息形式或经由从位置服务器152的先前下载而 接收RTT 12数据。
[0051]参考图4,进一步参看图3A,展示基于动态SIFS时间400的被动定位方案的概念图 的实例。在此实例中,接入点按周期性基础参与精细定时或QoSNuII交换,且使其SIFS时间 带改变与到它们进行交换的AP的距离成比例的量。AP不需要广播RTT信息,且如果AP位置信 息在客户端站120上可用则不需要广播其位置。在一实例中,发送站402(即,API)在时间tl 发射消息M 406。接收站404(即,AP2)在时间t2接收消息M 408。在实施例中,可如先前描述 通过FAC调整时间t2。在时间t3410发射且在时间t4412接收ACK消息。与图3A中所描绘且展 示为点306与308之间的虚线的实施例相比,时间t3减少RTT 12/2,其为与APl与AP2之间的距 离成比例的量。接收站404(即,AP2)在时间t3递送ACK,其中:
[0052] t3 = t2+SIFS-RTTi2/2+LM
[0053] 图4中的t3点410和图3A中的t3点306(并且还在图4上展示)之间的差仅是示范性 的且不一定成比例。t3点410、306说明接收站404经配置以在比先前实施例早的时间发送 ACK消息。如上文所描述,QoSNu 11消息M和ACK消息由客户端站42 2拦截414、416。ToaC (M) 418 是来自APl的消息M到达客户端站422的时间,且ToaC(ACK)420是来自AP2的ACK到达客户端 站422的时间。求解差分距离:
[0054] Diff_dist_12 = c*[ToaC(M)-tl-(ToaC(ACK)-t3]
[0055] t2 = tl+RTW2
[0056] t3 = t I+RTT12/2+SIFS+LM-RTT12/2
[0057] Diff_dist_12 = c*[ToaC(M)-(ToaC(ACK)-(SIFS+LM))]
[0058] 此方法既不需要空中的添加包的开销,也不需要客户端站处的辅助数据(即,RTT 数据)。在实施例中,客户端站是仅依赖于基于网络的定位的低价格标签(例如,RFID标签)。 [0059]参考图5A,展示实例接入点广播和消息交换时序图500。接入点广播和消息交换时 序图500包含具有成群集的接入点(例如,4?1^?2^?3^?4^?5)的列表的 7轴502,指示时 间进展的X轴504,用于接入点中的每一者的信标发射506的时隙的指示,以及用于接入点中 的每一者的消息交换508的时隙的指示。消息交换508包含时隙的一般指示,以及参与交换 的接入点的指示(例如,1-2、2-3、3-4、等~)。消息交换可为精细定时交换或如5灿11交换。 在实施例中,信标发射可包含AP位置信息和RTT信息。客户端站120可被动地监听信标发射 506且随后接收包含消息M和对应ACK消息的消息交换508(例如,精细定时或QoSNul 1消息)。 如接入点广播和消息交换时序图500中所描绘,APl可经配置以在第一时间广播信标消息, 且随后在第二时间起始与AP2的交换消息。AP2可经配置以随后广播信标消息且随后起始与 AP3的交换消息。所述序列可如图中所描绘继续以使得每一 AP具有机会与群集中的其它接 入点执行消息交换。
[0060] 接入点广播和消息交换时序图500中的信标发射506和消息交换508的定时和序列 仅是示范性的且不是限制。举例来说,参考图5B,时序图520说明第一 AP可广播信标消息且 随后循序地起始与群集中的其它AP中的一者以上的消息交换。相邻AP可随后起始与群集中 的一或多个AP的消息交换。也可以使用其它序列。在一实例中,信标发射506可每IOOms发 生,且每一 AP可每秒执行与10个最近相邻AP的精细定时或Q0SNull交换(即,每秒的完全更 新)。如果存在仅5个相邻AP,那么AP可经配置以一秒更新两次或每隔一个信标执行精细定 时交换且每秒进行更新。在包含仅2个相邻AP的实例中,则AP可经配置以一秒更新五次,或 每第5信标执行精细定时交换且每秒进行更新。基于网络(例如,群集)的大小、网络硬件和 软件的技术能力或其它性能准则可使用其它信标发射和消息交换情形。
[0061] 在操作中,参考图6,进一步参看图1A-4,用于使用无线通信网络100基于RTT值发 送确认的过程600包含展示的阶段。然而,过程600仅是示范性的且并非限制。可例如通过添 加、移除或重新排列阶段来更改过程600。举例来说,在阶段604处确定第一到达校正(FAC) 是任选的,不需要包含在过程600中。
[0062] 在阶段602处,接收站(例如,第二接入点104(AP2))经配置以检
测来自相邻发送站 (例如,第一接入点1〇2(ΑΡ1))的传入消息。所述接入点可为包含至少一个处理器和存储器 的高级WLAN接入点。所述传入消息可为例如精细定时消息或Q 0SNull消息的包交换,且可包 含指示消息从发送站发射的时间的时戳。
[0063]在阶段604处,接收站可确定传入消息的到达时间。在实施例中,由于无线通信中 的多信道效果的影响,可需要校正到达时间。接收接入点可经配置以对传入消息执行任选 的第一到达校正(FAC)算法且确定到达时间。
[0064] 在阶段606处,接收站(例如,第二接入点104(AP2))可确定与发送站(例如,API)相 关联的RTT值。在实施例中,可基于消息发射的时间(例如,时戳)而确定RTT值。可基于先前 精细定时消息交换而确定RTT值(即,信息)。举例来说,接收站可将先前RTT信息存储在本地 存储器中,且可具有对位置服务器152上的数据库的存取。在一实例中,RTT信息可包含在信 标发射506中,或可基于发送站和接收站的相对位置。在阶段608处,接收站响应于在阶段 602处检测到的传入消息而产生确认消息(ACK)。
[0065]在阶段610处,接收站可经配置以基于RTT值计算对传入消息的确认消息的出发时 间。举例来说,无线通信网络100可具有针对每一参与站(例如,102、104、106)的所建立的 SIFS值。示范性SIFS值可为16微秒(或由联网标准设定的其它值)。接收站可使SIFS值减少 与到发送站的距离成比例的量。举例来说,SIFS值可减少RTT值的二分之一(例如,RTT/2)。 在阶段612处,参考图4,接收站可经配置以在出发时间(例如,时间t3410)发送确认消息。确 认消息可包含指示出发时间的时戳。
[0066]在操作中,参看图7,进一步参看图1A-5B,用于使用无线通信网络100计算客户端 站422的位置的过程700包含展示的阶段。然而,过程700仅是示范性的且并非限制。可例如 通过添加、移除或重新排列阶段来更改过程600。举例来说,位置计算可由客户端站422上的 处理器(g卩,本地)或由位置服务器152中的处理器(即,远程)进行。
[0067]在阶段702处,客户端站422可检测来自第一 AP(APl)的指示与第二AP(AP2)的消息 交换的广播消息。在一实例中广播消息可为从APl发射的信标发射506。所述广播消息可包 含后续消息交换的指示。在实施例中,所述广播消息不包含RTT信息或AP位置信息。在阶段 704处,客户端站422可经配置以检测(例如,拦截414)从APl发送到AP2的第一消息。举例来 说,所述第一消息可为精细时间请求或QoSNuII消息(例如,消息M)。所述第一消息将具有在 Lm表示的消息长度。客户端站422可确定且存储第一消息(例如,ToaC(M)418)的到达时间的 时刻。
[0068]在阶段706处,客户端站422可经配置以检测(例如,拦截416)从第二AP(AP2)发送 到第一 AP (AP1)的后续消息。举例来说,客户端站422可检测在时间t3410从接收站404发射 的ACK消息。客户端站422可经配置以确定且存储ACK消息的到达时间的时刻(例如,ToaC (ACK)420) ^CK消息可包含指示发射时间(例如,时间t3404)的时戳。
[0069]在阶段708处,客户端站422可确定与APl和AP2相关联的位置信息。此信息可先前 存储在客户端站422上。举例来说,网络中的站的位置可从位置服务器152下载。在阶段710 处,客户端站422确定短帧间间隔(SIFS)值。在一实例中,SIFS值可为用于网络的先前确立 的常数。用于为客户端站422提供位置和SIFS数据的其它机构可包含推送通知、基于位置的 服务、可使用同步。在阶段712处,客户端站422可基于在阶段704处拦截的消息确定Lm的值。 客户端站422可经配置以基于ToaC(M)和ToaC(ACK)的时间实例而计算位置。在阶段714处, 客户端站将到达时间差(TDOA)信息确定为ToaC (M)和ToaC (ACK)的时间实例。
[0070] 在阶段716处,客户端站422经配置以基于第一和第二AP的位置信息、TDOA定时信 息、SIFS值和消息长度值计算位置估计。在实施例中,位置服务器152或其它网络硬件(例 如,接入点、库服务器)的处理能力可用以执行计算。位置估计可基于如下表达的差分距离 公式:
[0071] Diff_dist_12 = c*[ToaC(M)-(ToaC(ACK)-(SIFS+LM))]
[0072] 其中'c'是光速,SIFS是所确立的系统常数,且Lm是第一消息的消息长度。客户端 站422可经配置以用加法AP重复过程700以确定加法位置估计,且随后组合所得位置估计以 确定客户端站422的位置。
[0073] 实施例可呈完全硬件实施例、完全软件实施例(包含固件、驻留软件、微码等)或组 合了可全部大体上在本文中被称作"电路"、"模块"或"系统"的软件和硬件方面的实施例的 形式。此外,本发明的标的物的实施例可采用体现于任何有形表现媒体中的计算机程序产 品的形式,所述有形表现媒体具有体现于所述媒体中的计算机可用程序代码。所描述的实 施例可提供为计算机程序产品或软件,其可包含具有存储于其上的指令的机器可读媒体, 所述指令可用以编程计算机系统(或其它电子装置)以实行(例如,执行)根据实施例的过 程,无论当前已描述还是未描述,因为本文未列举每个可以想象的可以想象的变化。机器可 读媒体包含用于以机器(例如,计算机)可读的形式(例如,软件、处理应用程序)存储或发射 信息的任何机构。机器可读媒体可为机器可读存储媒体或机器可读信号媒体。机器可读存 储媒体可包含例如但不限于,磁性存储媒体(例如,软盘);光学存储媒体(例如,CD-ROM);磁 光存储媒体;只读存储器(ROM);随机存取存储器(RAM);可擦除可编程存储器(例如,EPROM 和EEPR0M);快闪存储器;或其它类型的适合于存储电子指令的有形媒体。机器可读信号媒 体可包含其中实施有计算机可读程序代码的传播数据信号,例如电、光学、声或其它形式的 传播信号(例如,载波、红外信号、数字信号等)。实施于机器可读信号媒体上的程序代码可 使用任何合适的媒体发射,包含但不限于有线、无线、光纤电缆、RF或其它通信媒体。
[0074]可以一或多种编程语言的任何组合撰写用于执行实施例的操作的计算机程序代 码,所述一或多种编程语言包含例如Java、Smalltalk、C++或其类似者等面向对象的编程语 言,及例如"C"编程语言或类似编程语言等常规程序性编程语言。所述程序代码可完全在用 户的计算机上、部分地在用户的计算机上、作为单独软件包、部分地在用户的计算机上且部 分地在远程计算机上或完全在远程计算机或服务器上执行。在后一种情况下,远程计算机 可通过任何类型的网络连接到用户的计算机,包含局域网(LAN)、个域网(PAN)或广域网 (WAN),或可做出到外部计算机的连接(例如,通过因特网使用因特网服务提供者)。
[0075]参考图8A是用于在被动定位方案中使用的电子装置800的一个实施例的框图。客 户端站120可为电子装置800。在一些实施方案中,电子装置800可为笔记本计算机、平板计 算机、上网本、移动电话、游戏控制台、个人数字助理(PDA)、库存标签或包括具有定位和无 线通信能力的WLAN装置(例如,归属节点B(HNB))的其它电子系统中的一者。电子装置800包 含处理器单元802(可能包含多个处理器、多个核心、多个节点和/或实施多线程等)。电子装 置800包含存储器单元806。存储器单元806可为系统存储器(例如,高速缓冲存储器、SRAM、 DRAM、零电容器RAM、双晶体管RAM、eDRAM、EDO RAM、DDR RAM、EEPROM、NRAM、RRAM、SONOS、 PRAM等中的一或多者)或上文已经描述的机器可读媒体的可能实现中的任何一或多者。电 子装置 800 还包含总线 810(例如,PCI、I SA、PCI-Express、HyperTransport.RTM·、 InfiniBancLRTM.、NuBus、AHB、AXI等),以及包含无线网络接口(例如,WLAN接口、 Bluetooth.RTM.接口、WiMAX接口、ZigBee.RTM.接口、无线USB接口等)中的至少一者和有线 网络接口(例如,以太网接口等)的网络接口 804。
[0076] 电子装置800还包含通信单元808。通信单元808包括定位单元812、接收器814、发 射器816以及一或多个天线818。发射器816、天线818和接收器814形成无线通信模块(其中 发射器816和接收器814为收发器820)。发射器816和接收器814经配置以经由对应天线818 与一或多个客户端站和其它接入点双向通信。在一些实施例中,电子装置800可被配置成具 有定位能力的WLAN客户端站。定位单元812可检测在接入点之间交换的精细定时或QoSNuII 请求/响应消息以确定与接入点相关联的TDOA定时信息。定位单元812可至少部分地基于 TDOA定时信息和AP位置信息确定电子装置800的位置,如上文参考图1-7所描述。在一些实 施例中,接入点102、104、106也可经配置为图8A的电子装置800。在此实施例中,接入点可使 用其处理能力执行上述其相应操作。这些功能性中的任一者可部分地(或完全)在硬件中 和/或处理器单元802上实施。举例来说,所述功能性可以专用集成电路实施,在处理器单元 802
中实施的逻辑中实施,在外围装置或卡上的协处理器中实施等等。此外,实现可包含较 少或图8A中未说明的额外组件(例如,视频卡、音频卡、额外网络接口、外围装置等)。处理器 单元802、存储器单元806和网络接口 804耦合到总线810。虽然说明为耦合到总线810,但存 储器单元806可親合到处理器单元802。
[0077]参考图8B,接入点(AP)850的实例包括计算机系统,其包含处理器851、包含软件 854的存储器852、发射器856、天线858和接收器860。在一些实施例中,接入点102、104、106 也可经配置为图8B的AP 850。发射器856、天线858和接收器860形成无线通信模块(其中发 射器856和接收器860为收发器)。发射器856连接到天线858中的一者且接收器860连接到天 线858中的另一者。其它实例AP可具有不同配置,例如具有仅一个天线858,和/或具有多个 发射器856和/或多个接收器860。发射器856和接收器860经配置以使得AP 850可经由天线 858与客户端站120双向通信。处理器851优选地为智能硬件装置,例如,例如由 ARM?、Intel?公司或AMDJi $ij造的那些中央处理单元(CPU)、微控制器、专用集成电路 (ASIC)等。处理器851可包括可分布于AP 850中的多个单独的物理实体。存储器852包含随 机存取存储器(RAM)和只读存储器(ROM)。存储器852为处理器可读存储媒体,其存储软件 854,所述软件为处理器可读、处理器可执行的软件代码,其含有经配置以在被执行时使处 理器851执行本文中描述的各种功能的处理器可读指令(但所述描述可仅指代执行所述功 能的处理器851)。替代地,软件854可能并不可由处理器851直接执行,而是经配置以(例如) 在被编译和执行时使处理器851执行所述功能。
[0078] 虽然参看实施方案和开发形式描述所述实施例,但是将理解,这些实施例是说明 性的,并且本发明的标的物的范围不限于此。一般来说,如本文中所描述的用于无线通信装 置的被动定位方案的技术可以与任何硬件系统一致的设施或硬件系统实施。许多变化形 式、修改、添加和改进是可能的。
[0079] 针对本文中描述为单个实例的组件、操作或结构可以提供多个例子。最后,多个组 件、操作和数据存储装置之间的边界在某种程度上是任意的,并且特定操作是在特定的说 明性配置的背景中说明的。预想出功能性的其它分配,并且这些分配可以属于本发明的标 的物的范围。总的来说,在示范性配置中呈现为分开的组件的结构和功能性可以实施为组 合结构或组件。类似地,呈现为单个组件的结构和功能性可以实施为分开的组件。这些和其 它变化形式、修改、添加和改进可以属于本发明的标的物的范围。
[0080] 如本文中所使用(包含在权利要求书中),除非另外规定,否则功能或操作是"基 于"项目或条件的表述意味着所述功能或操作是基于所陈述的项目或条件且可基于除了所 陈述的项目或条件之外的一或多个项目和/或条件。
[0081] 另外,可揭示一个以上发明。
【主权项】
1. 一种用于在接入点之间交换定位消息的方法,其包含: 检测来自接入点的传入消息; 确定与所述接入点相关联的往返时间RTT值; 产生确认消息; 至少部分地基于所述RTT值计算所述确认消息的出发时间;以及 在所述出发时间发送所述确认消息。2. 根据权利要求1所述的方法,其进一步包括计算所述传入消息的第一到达校正FAC。3. 根据权利要求2所述的方法,其中所述确认消息的所述出发时间是至少部分地基于 所述FAC。4. 根据权利要求1所述的方法,其进一步包括确定短帧间间隔SIFS值;且其中计算所述 出发时间是基于所述RTT值和所述SIFS值。5. 根据权利要求4所述的方法,其中计算所述确认消息的所述出发时间是根据下式执 行: t3 =t2+SIFS-RTT/2+LM 其中, t3是所述出发时间; t2是检测到所述传入消息的时间; SIFS是与所述接入点相关联的所述短帧间间隔; RTT/2是当发送所述传入消息时的时间实例与当检测到所述传入消息时的时间实例之 间的时间差;且 Lm是所述传入消息的长度。6. 根据权利要求1所述的方法,其进一步包括确定所述传入消息的消息长度。7. 根据权利要求1所述的方法,其中所述传入消息是QoSNul1消息。8. -种在利用接入点间消息接发的客户端站上的定位的方法,其包括: 在客户端站处检测来自第一接入点的指示与第二接入点的消息交换的广播消息; 检测第一消息,其中所述第一消息是从所述第一接入点发送到所述第二接入点; 检测第二消息,其中所述第二消息是从所述第二接入点发送到所述第一接入点; 确定与所述第一接入点和所述第二接入点相关联的位置信息; 确定短帧间间隔SIFS值; 确定所述第一消息的消息长度值; 至少部分地基于所述第一消息和所述第二消息的所述检测而确定到达时间差TD0A信 息;以及 基于与所述第一接入点和所述第二接入点相关联的所述位置信息、所述TD0A信息、所 述SIFS值以及所述消息长度值而计算位置估计。9. 根据权利要求8所述的方法,其中所述第一消息是精细定时消息。10. 根据权利要求8所述的方法,其中所述第一消息是QoSNul1消息。11. 根据权利要求8所述的方法,其中所述广播消息包含与所述第一接入点和所述第二 接入点相关联的所述位置信息。12. 根据权利要求8所述的方法,其中所述广播消息包含与所述第一接入点和所述第二 接入点相关联的往返时间RTT信息。13. 根据权利要求8所述的方法,其中所述广播消息包含所述SIFS值。14. 一种交换消息以用于在移动单元的被动定位中使用的系统,其包括: 存储器单元; 至少一个处理器,其耦合到所述存储器单元且经配置以: 检测来自接入点的传入消息; 确定与所述接入点相关联的往返时间RTT值; 产生确认消息; 基于所述RTT值计算所述确认消息的出发时间;以及 在所述出发时间发送所述确认消息。15. 根据权利要求14所述的系统,其中所述至少一个处理器进一步经配置以计算所述 传入消息的第一到达校正FAC。16. 根据权利要求14所述的系统,其中所述至少一个处理器进一步经配置以至少部分 地基于所述FAC而计算所述确认消息的所述出发时间。17. 根据权利要求14所述的系统,其中所述至少一个处理器进一步经配置以确定短帧 间间隔SIFS值且基于所述RTT值和所述SIFS值而计算所述出发时间。18. 根据权利要求17所述的系统,其中所述至少一个处理器进一步经配置以根据下式 计算所述确认消息的所述出发时间: t3 =t2+SIFS-RTT/2+LM 其中, t3是所述出发时间; t2是检测到所述传入消息的时间; SIFS是与所述接入点相关联的所述短帧间间隔; RTT/2是当发送所述传入消息时的时间实例与当检测到所述传入消息时的时间实例之 间的时间差;且 Lm是所述传入消息的长度。19. 根据权利要求14所述的系统,其中所述至少一个处理器进一步经配置以确定所述 传入消息的消息长度。20. 根据权利要求14所述的系统,其中所述至少一个处理器进一步经配置以检测 QoSNu11消息作为来自所述接入点的所述传入消息。21. -种客户端站,其包括: 处理器; 定位单元,其耦合到所述处理器且经配置以: 检测来自第一接入点的指示与第二接入点的消息交换的广播消息; 检测第一消息,其中所述第一消息是从所述第一接入点发送到所述第二接入点; 检测第二消息,其中所述第二消息是从所述第二接入点发送到所述第一接入点; 确定与所述第一接入点和所述第二接入点相关联的位置信息; 确定短帧间间隔SIFS值; 确定所述第一消息的消息长度值; 至少部分地基于所述第一消息和所述第二消息的所述检测而确定到达时间差TDOA信 息;以及 基于与所述第一接入点和所述第二接入点相关联的所述位置信息、所述TD0A信息、所 述SIFS值以及所述消息长度值而计算位置估计。22. 根据权利要求21所述的客户端站,其中所述定位单元进一步经配置以检测精细定 时消息作为所述第一消息。23. 根据权利要求21所述的客户端站,其中所述定位单元进一步经配置以检测QoSNull 消息作为所述第一消息。24. 根据权利要求21所述的客户端站,其中所述定位单元进一步经配置以检测所述广 播消息中与所述第一接入点和所述第二接入点相关联的所述位置信息。25. 根据权利要求21所述的客户端站,其中所述定位单元进一步经配置以检测所述广 播消息中与所述第一接入点和所述第二接入点相关联的往返时间RTT信息。26. 根据权利要求21所述的客户端站,其中所述定位单元进一步经配置以检测所述广 播消息中的所述SIFS值。
【专利摘要】本发明揭示用于客户端站的被动定位的技术。在一实例中,被动定位方案可包含:检测来自接入点的传入消息;确定与所述接入点相关联的往返时间RTT值;产生确认消息;至少部分地基于所述RTT值计算所述确认消息的出发时间;以及在所述出发时间发送所述确认消息。
【IPC分类】G01S5/02, H04W64/00, G01S5/00
【公开号】CN105492922
【申请号】CN201480047502
【发明人】卡洛斯·荷拉西欧·阿尔达那
【申请人】高通股份有限公司
【公开日】2016年4月13日
【申请日】2014年8月8日
【公告号】EP3039445A1, US20150063138, WO2015031029A1