混合动力电动车辆的制作方法
【技术领域】
[0001 ] 本公开涉及混合动力电动车辆中的主动马达阻尼。
【背景技术】
[0002] 混合动力电动车辆(HEV)利用发动机和电动马达两者来向车辆动力传动系提供 扭矩,发动机和电动马达可共同运转或单独运转。所有的车辆,混合动力车辆和非混合动 力车辆,都会经历破坏平稳的车辆操作和车辆操控性的车辆动力传动系速度振荡。动力传 动系共振是令驾驶员感觉到不平稳行为的主要原因之一。通常,不平稳行为由在动力传动 系扭矩的瞬时事件期间出现的动力传动系共振触发。因此,有必要使瞬时事件期间动力传 动系共振频率附近的动力传动系速度振荡衰减,这是大多数汽车动力传动系控制的典型任 务。
[0003] 在HEV应用中,电动马达可用于使动力传动系速度振荡衰减。这有时被称为主动 马达阻尼(AMD,active motor damping)。已知的是,一些瞬时事件比其他瞬时事件更易导 致引起不平稳行为的动力传动系共振。例如,使用起步离合器将动力源(发动机或电动马 达)接合到传动装置变速箱的车辆会因起步离合器接合时的动力传动系速度振荡而比使 用液力变矩器将动力源结合到传动装置变速箱的车辆经历更大的速度扰动。这是因为带有 液力变矩器的自动变速器具有大的自然粘滞阻尼效应。在车速较高且扭矩变化适中的条件 下,变矩器通常将被提供机械耦合的锁止离合器或类似装置锁止,以使能量损失最小化。
[0004] 为了使对其他的车辆或子系统控制动作的潜在影响最小化,会希望在HEV中提供 利用电动马达来使动力传动系速度振荡衰减的控制系统,其中,该控制系统仅在会激发动 力传动系共振频率并导致不平稳行为的特定瞬时事件期间被触发,同时在对动力传动系共 振频率贡献不大且不平稳行为可以忽略不计的瞬时事件期间不被触发。
【发明内容】
[0005] 在本公开的一方面,提供一种混合动力电动车辆。该混合动力电动车辆具有被构 造成产生车辆动力传动系扭矩的发动机和电动马达两者。提供控制器,该控制器响应于动 力传动系扭矩变化情形激活阻尼功能达有限的持续时间。代表性的动力传动系扭矩变化情 形可包括可导致引起不平稳行为的动力传动系共振的瞬时事件,诸如发动机启动、起步离 合器部分或完全闭合、换档、踩加速器踏板、松加速器踏板、大的扭矩命令、变矩器旁通离合 器部分或完全闭合等。阻尼功能基于测量的马达速度和期望的马达速度之间的差异而利用 电动马达调节动力传动系扭矩,以抵消动力传动系速度振荡。
[0006] 还可使用阻尼功能的正向回路中的滤波器来将阻尼功能限制在动力传动系速度 振荡的预定频率范围内。
[0007] 可使用阻尼功能中的反馈回路来产生马达扭矩调节值,从期望的马达扭矩中减去 所述马达扭矩调节值得到实际的或命令的马达扭矩。所述马达扭矩调节值可基于测量的马 达速度和期望的马达速度之间的差异。在一个实施例中,反馈回路中产生马达扭矩调节值 的函数包括导数项和比例项,所述导数项与测量的马达速度和期望的马达速度之间的差异 的导数成比例,所述比例项与测量的马达速度和期望的马达速度之间的差异成比例(反馈 回路中的该函数可被称为比例微分或ro控制器)。
[0008] 所述控制器可被设置为基于预定的经过时间或者当速度误差降低至预定阈值以 下时停用阻尼功能,所述速度误差是测量的马达速度和期望的马达速度之间的差异。
[0009] 在本公开的另一方面,提供一种用于控制混合动力电动车辆的方法。所述方法包 括:利用发动机和/或电动马达产生车辆动力传动系扭矩;响应于可导致引起不平稳行为 的动力传动系共振的动力传动系扭矩变化情形(诸如发动机启动、起步离合器部分或完全 闭合、换档、踩加速器踏板、松加速器踏板、大的扭矩命令、变矩器旁通离合器部分或完全闭 合等)激活阻尼功能达有限的持续时间;通过阻尼功能基于测量的马达速度和期望的马达 速度之间的差异而利用电动马达调节动力传动系扭矩,以抵消动力传动系速度振荡。
[0010] 还可使用阻尼功能的正向回路中的滤波器来将阻尼功能限制在动力传动系速度 振荡的预定频率范围内。
[0011] 可使用阻尼功能中的反馈回路来产生马达扭矩调节值,从期望的马达扭矩中减去 所述马达扭矩调节值得到实际的或命令的马达扭矩。所述马达扭矩调节值可以是测量的 马达速度和期望的马达速度之间的差异的函数。在一个实施例中,反馈回路中产生马达扭 矩调节值的函数包括导数项和比例项,所述导数项与测量的马达速度和期望的马达速度之 间的差异的导数成比例,所述比例项与测量的马达速度和期望的马达速度之间的差异成比 例。
[0012] 可基于预定的经过时间或者当速度误差降低至预定阈值以下时停用所述方法的 阻尼功能,所述速度误差是测量的马达速度和期望的马达速度之间的差异。
[0013] 根据本发明,提供一种用于控制混合动力电动车辆的方法,所述混合动力电动车 辆具有电动马达,所述方法包括:针对动力传动系扭矩变化情形利用阻尼功能使用电动马 达来调节车辆动力传动系扭矩达有限的持续时间,以抵消动力传动系速度振荡,所述阻尼 功能基于测量的马达速度和期望的马达速度之间的差异。
[0014] 根据本发明的一个实施例,动力传动系扭矩变化情形是发动机启动、换档、踩加速 器踏板、松加速器踏板或大的扭矩命令中的至少一个。
[0015] 根据本发明的一个实施例,动力传动系扭矩变化情形是起步离合器部分或完全闭 合。
[0016] 根据本发明的一个实施例,动力传动系扭矩变化情形是变矩器旁通离合器部分或 完全闭合。
[0017] 根据本发明的一个实施例,阻尼功能包括正向回路中的陷波滤波器,用于将阻尼 功能限制在动力传动系速度振荡的预定频率范围内。
[0018] 根据本发明的一个实施例,阻尼功能包括产生马达扭矩调节值的反馈回路,从期 望的马达扭矩中减去所述马达扭矩调节值得到实际的马达扭矩,所述马达扭矩调节值基于 测量的马达速度和期望的马达速度之间的差异。
[0019] 根据本发明的一个实施例,所述反馈回路包括导数项和比例项,所述导数项与测 量的马达速度和期望的马达速度之间的差异的导数成比例,所述比例项与所述差异成比 例。
[0020] 根据本发明的一个实施例,有限的持续时间基于预定的经过时间或者当速度误差 降低至预定阈值以下时,所述速度误差是测量的马达速度和期望的马达速度之间的差异。
[0021] 根据本发明,提供一种用于控制混合动力电动车辆的方法,所述方法包括:预计到 动力传动系扭矩变化情形基于阻尼功能控制马达扭矩达有限的持续时间,所述阻尼功能包 括正向回路中的陷波滤波器和反馈回路,所述陷波滤波器用于将阻尼功能限制在动力传动 系速度振荡的预定频率范围内,所述反馈回路产生马达扭矩调节值,从期望的马达扭矩中 减去所述马达扭矩调节值得到实际的马达扭矩,所述马达扭矩调节值基于测量的马达速度 和期望的马达速度之间的差异;通过阻尼功能利用电动马达调节车辆动力传动系扭矩,以 抵消动力传动系速度振荡。
[0022] 根据本发明的一个实施例,动力传动系扭矩变化情形是发动机启动、起步离合器 部分或完全闭合、换档、踩加速器踏板、松加速器踏板、大的扭矩命令或变矩器旁通离合器 部分或完全闭合中的至少一个。
[0023] 根据本发明的一个实施例,所述反馈回路包括导数项和比例项,所述导数项与测 量的马达速度和期望的马达速度之间的差异的导数成比例,所述比例项与所述差异成比 例。
[0024] 根据本发明的一个实施例,有限的持续时间基于预定的经过时间或者速度误差变 得小于相应的阈值,所述速度误差是测量的马达速度和期望的马达速度之间的差异。
【附图说明】
[0025] 图1是混合动力电动车辆的示例性动力传动系的示意图;
[0026] 图2是示出根据本公开的一个实施例的用于控制混合动力电动车辆的马达扭矩 的算法的流程图;
[0027] 图3示出了根据本公开的一个实施例的车辆动力传动系扭矩的主动马达阻尼控 制;
[0028] 图4示出了用于计算扭转速度(twist speed)的方法,所述扭转速度是任何给定 情况下实际的马达速度与期望的马达速度之间的差异;
[0029] 图5是示出用于在混合动力电动车辆中控制马达扭矩以抵消动力传动系速度振 荡的控制架构的流程图。
【具体实施方式】
[0030] 在此描述了本公开的实施例。然而,应理解,公开的实施例仅为示例,其他实施例 可采取多种和替代的形式。附图不一定按比例绘制;可夸大或最小化一些特征以显示特定 组件的细节。因此,
在此所公开的具体结构和功能细节不应解释为限制,而仅为教导本领域 技术人员以多种形式使用实施例的代表性基础。如本领域普通技术人员将理解的,参考任 一附图示出和描述的各个特征可与一个或更多个其他附图中示出的特征组合,以产生未被 明确示出或描述的实施例。示出的特征的组合提供用于典型应用的代表性实施例。然而, 与本公开的教导一致的特征的各种组合和变型可期望用于特定应用或实施方式。
[0031] 参照图1,示出了根据本公开实施例的混合动力电动车辆(HEV) 10的示意图。图1 示出了组件之间的代表性关系。组件在该车辆内的实体布局(physical placement)和方位 可改变。HEV 10包括动力传动系12。动力传动系12包括驱动传动装置16的发动机14,传 动装置16可被称为模块化混合动力传动装置(MHT,modular hybrid transmission)。如下 面将进一步详细地描述的,传动装置16包括电机(诸如连接到关联的牵引电池20的电动 马达/发电机(M/G) 18)、变矩器22以及多阶梯传动比自动变速器(multiple step-ratio automatic transmission)或变速箱 24。
[0032] 发动机14和M/G 18都是用于HEV 10的驱动源。发动机14通常代表可包括内燃 发动机(诸如汽油、柴油或天然气驱动的发动机)或燃料电池的动力源。当发动机14和M/ G 18之间的分离离合器26至少部分接合时,发动机14产生提供至M/G 18的发动机功率和 对应的发动机扭矩。M/G 18可由多种类型的电机中的任何一者实现。例如,M/G 18可以为 永磁同步马达。如下面将描述的,电力电子器件(power electronics) 56将由电池20提供 的直流(DC)电调节成M/G 18所需要的。例如,电力电子器件可以向M/G 18提供三相交流 电(AC) 〇
[0033] 当分离离合器26至少部分接合时,动力可以从发动机14流向M/G 18或者从M/G 18流向发动机14。例如,分离离合器26可接合,并且M/G 18可作为发电机运转,以将由曲 轴28和Μ/G轴30提供的旋转能转换成电能储存在电池20中。分离离合器26也可分离, 以使发动机14与动力传动系12的其余部分隔离,使得M/G 18可用作HEV 10的唯一驱动 源。轴30延伸穿过M/G 18。M/G 18持续可驱动地连接至轴30,而发动机14仅在分离离合 器26至少部分接合时才可驱动地连接至轴30。
[0034] M/G 18经由轴30连接至变矩器22。因此,当分离离合器26至少部分接合时,变 矩器22连接至发动机14。变矩器22包括固定至Μ/G轴30的泵轮以及固定至变速器输入 轴32的涡轮。从而,变矩器22在轴30和变速器输入轴32之间提供液力耦合。当泵轮旋 转得比涡轮快时,变矩器22将动力从泵轮传递至涡轮。涡轮扭矩和泵轮扭矩的大小通常取 决于相对速度。当泵轮速度与涡轮速度之比足够高时,涡轮扭矩是泵轮扭矩的倍数。还可 提供在接合时摩擦地或机械地连接变矩器22的泵轮和涡轮的变矩器旁通离合器34 (有时 被称为锁止离合器),从而允许更高效的动力传输。变矩器旁通离合器34可作为起步离合 器运转,以提供平稳的车辆起步。可替代地或者组合地,对于不包括变矩器22或变矩器旁 通离合器34的应用,可以在M/G 18和变速箱24之间提供类似于分离离合器26的起步离 合器。在一些应用中,分离离合器26通常称为上游离合器,而起步离合器(可以是变矩器 旁通离合器34)通常称为下游离合器。
[0035] 变速器24可包括通过摩擦元件(诸如离合器和制动器(未示出))的选择性接合 而选择性地置于不同传动比以建立期望的多个离散或阶梯传动比的齿轮组(未示出)。可 通过连接和分离齿轮组的特定元件以控制变速器输出轴36和变速器输入轴32之间的传动 比的换档计划来控制摩擦元件。变速箱24基于多个车辆和环境工况通过关联的控制器(诸 如动力传动系控制单元(PCU)50)从一个传动比自动换档至另一个。变速箱24随后将动力 传动系输出扭矩提供至输出轴36。
[0036] 应理解,与变矩器22 -起使用的液压控制的变速箱24仅是变速箱或变速器布置 的一个示例;在本公开的实施例中使用从发动机和/或马达接收输入扭矩并随后以不同的 传动比将扭矩提供至输出轴的任何多传动比变速箱是可以接受的。例如,变速箱24可由包 括沿换档导轨平移/旋转换档拨叉以选择期望的传动比的一个或更多个伺服马达的自动 机械式(或手动)变速器(AMT)实现。如本领域普通技术人员通常理解的,例如,在扭矩要 求较高的应用中可以使用AMT。
[0037] 如图1的代表性实施例示出的,输出轴36连接至差速器40。差速器40经由连接 至差速器40的各个轴44驱动一对车轮42。差速器向每个车轮42传递大约相等的扭矩,同 时(诸如当车辆转弯时)允许轻微的速度差异。可以使用不同类型的差速器或类似装置将 扭矩从动力传动系分配至一个或更多个车轮。在一些应用中,例如,取决于特定的运转模式 或状况,扭矩分配可变化。
[0038] 动力传动系12进一步包括关联的动力传动系控制单元(P⑶)50。虽然P⑶50被 示出为一个控制器,但是PCU 50可以是较大的控制系统的一部分并且可以由车辆10中的 多个其他控制器(诸如车辆系统控制器(VSC))控制。因此,应理解,动力传动系控制单元 50和一个或更多个其他控制器可以统称为响应于来自多个传感器的信号而控制多个致动 器以控制多种功能(诸如起动/停止发动机14、运转M/G 18以提供车轮扭矩或给电池20充 电、选择或计划变速器换档等)的"控制器"。控制器50可包括与各种类型的计算机可读存 储装置或介质通信的一个或更多个微处理器或中央处理器(CPU)。例如,计算机可读存储装 置或介质可包括只读存储器(ROM)、随机存取存储器(RAM)和保活存储器(KAM,keep-alivememory)中的易失性和非易失性存储。KAM是可以用于在CPU断电时存储多个操作变量的 永久或非易失性存储器。计算机可读存储装置或介质可使用任何数量的已知存储装置,诸 如PROM (可编程只读存储器)、EPROM (电可编程只读存储器)、EEPROM (电可擦除可编程只 读存储器)、闪存或能够存储数据的任何其他电、磁、光学或组合的存储装置实现,所述数据 中的一些代表由控制器使用以控制发动机或车辆的可执行指令。
[0039] 控制器经由输入/输出(I/O)接口与多个发动机/车辆传感器和致动器通信,该 I/O接口可以实现为提供多种原始数据或信号调节、处理和/或转换、短路保护等的单个集 成接口。可替代地,在将特定信号提供至CPU之前,一个或更多个专用硬件或固件芯片可以 用于调节和处理所述特定信号。如图1的代表性实施例总体上示出的,PCU 50可以将信号 传送至发动机14、分离离合器26、M/G 18、起步离合器34、传动装置变速箱24和电力电子 器件56和/或从它们接收信号。尽管未明确示出,但是本领域普通技术人员将识别出在上 文指出的每个子系统内可以由PCU 50控制的多个功能或组件。可以使用由控制器执行的 控制逻辑直接或间接致动的参数、系统和/或组件的代表性示例包括燃料喷射正时、速率 和持续时间、节气门位置、(用于火花点火式发动机的)火花塞点火正时、进气/排气门正 时和持续时间、前端附件驱动(FEAD,front-end accessory drive)组件(诸如交流发电 机)、空调压缩机、电池充电、再生制动、Μ/G运转、用于分离离合器26、起步离合器34和传动 装置变速箱24的离合器压力等。例如,通过I/O接口传送输入的传感器可用于指示涡轮增 压器增压压力、曲轴位置(PIP)、发动机转速(RPM)、车轮速度(WS1、WS2)、车速(VSS)、冷却 剂温度(ECT)、进气歧管压力(MAP)、加速器踏板位置(PPS)、点火开关位置(IGN)、节气门位 置(TP)、空气温度(TMP)、废气氧(EGO)或其他废气成分浓度或存在情况、进气流量(MF)、 变速器档位、传动比或模式、变速器油温(TOT)、传动装置涡轮速度(TS)、变矩器旁通离合 器34状态(TCC)、减速或换档模式(MDE)。
[0040] 可以通过一个或更多个附图中的流程图或类似图来表示由PCU 50执行的控制逻 辑或功能。这些附图提供可以使用一个或更多个处理策略(诸如事件驱动、中断驱动、多任 务、多线程等)实现的代表性控制策略和/或逻辑。这样,示出的多个步骤或功能可以以示 出的顺序执行、并行执行或在某些情况下有所省略。尽管没有总是明确地示出,但是本领域 普通技术人员将认识到,取决于使用的特定处理策略,可以反复执
行一个或更多个示出的 步骤或功能。同样,处理顺序并非是实现在此描述的特点和优点所必需的,而是为了便于 说明和描述而提供。可以主要在由基于微处理器的车辆、发动机和/或动力传动系控制器 (诸如PCU 50)执行的软件中实现控制逻辑。当然,取决于特定应用,可以在一个或更多个 控制器中的软件、硬件或者软件和硬件的组合中实现控制逻辑。当在软件中实现时,可以在 存储有代表由计算机执行以控制车辆或其子系统的代码或指令的数据的一个或更多个计 算机可读存储装置或介质中提供控制逻辑。计算机可读存储装置或介质可包括利用电、磁 和/或光学存储以保持可执行指令和关联的校准信息、操作变量等的一个或更多个已知物 理装置。
[0041] 车辆驾驶员使用加速器踏板52提供需求的扭矩、动力或驱动命令以推进车辆。通 常,踩下和松开踏板52产生可通过控制器50被分别解释为增加动力的需求或减小动力的 需求的加速器踏板位置信号。至少基于来自踏板的输入,控制器50从发动机14和/或M/ G 18命令扭矩。控制器50还控制变速箱24内的换档正时以及分离离合器26和变矩器旁 通离合器34的接合或分离。类似于分离离合器26,可以在接合位置和分离位置之间的范围 内调节变矩器旁通离合器34。除由泵轮和涡轮之间的液力耦合产生的可变打滑之外,这也 在变矩器22中产生可变打滑。可替代地,取决于特定应用,变矩器旁通离合器34可操作为 锁止或打开而不使用调节的操作模式。
[0042] 为了利用发动机14驱动车辆,分离离合器26至少部分地接合,以通过分离离合器 26将发动机扭矩的至少一部分传输至M/G 18,然后再从M/G 18经过变矩器22和变速箱24 传输。M/G 18可以通过提供额外功率来使轴30转动而辅助发动机14。该操作模式可被称 为"混合动力模式"或"电动辅助模式"。
[0043] 为了利用M/G 18作为唯一动力源驱动车辆,除了分离离合器26将发动机14与动 力传动系12的其余部分隔离以外,动力流保持相同。在这段时间内可以禁用或者否则切断 发动机14中的燃烧以节省燃料。例如,牵引电池20通过线路54将储存的电能传输至可包 括逆变器的电力电子器件56。电力电子器件56将来自电池20的DC电压转换成AC电压以 供M/G 18使用。P⑶50命令电力电子器件56将来自电池20的电压转换成提供至M/G 18 的AC电压,以将正扭矩或负扭矩提供至轴30。该操作模式可被称为"纯电动"操作模式。 [0044] 在任何操作模式中,M/G 18都可以用作马达并且为动力传动系12提供驱动力。可 替代地,M/G 18可以用作发电机并且将来自动力传动系12的动能转换成电能储存在电池 20中。例如,当发动机14为车辆10提供推进动力时,M/G 18可以用作发电机。此外,在来 自旋转的车轮42的旋转能通过变速箱24回传并转换成电能储存在电池20中的再生制动 期间,M/G 18可以用作发电机。
[0045] HEV 10的发动机14和M/G 18两者均被构造成产生车辆动力传动系扭矩58。车 辆动力传动系扭矩58可由协调作用的发动机14和M/G 18两者产生,或者可由单独作用的 发动机14或M/G 18产生。
[0046] 应理解,图1中示出的示意图仅仅是示例并不意味着限制。可以预想利用发动机 和马达两者的选择性接合来通过传动装置进行传输的其他构造。例如,M/G 18可偏移曲轴 28、可以提供额外的马达来起动发动机14和/或M/G 18可设置在变矩器22与变速箱24 之间。在不脱离本公开的范围的情况下,可以预想其他构造。
[0047] 图2是用于控制混合动力电动车辆10的方法200所使用的算法的流程图。方法 200可使用包含在PCU 50内的软件代码被实现。在其他实施例中,该方法可在其他车辆控 制器中实现或者可分布在多个车辆控制器中。为简单起见,在此描述的实施例将假设软件 代码被包含在P⑶50内。
[0048] 在步骤202中,开启HEV 10, P⑶50通电。在车辆已被开启并且POT 50通电之 后,在步骤204中接收期望的车辆动力传动系扭矩信号,该信号由HEV 10的驾驶员利用加 速器踏板52产生。期望的车辆动力传动系扭矩信号表示期望的车辆动力传动系扭矩τρ?^,期望的车辆动力传动系扭矩%1>是期望的发动机扭矩16>与期望的马达扭矩1" 1_ dt;s之和。
[0049] 在步骤206中确定是否存在动力传动系扭矩变化情形。动力传动系扭矩变化情形 是可能存在动力传动系速度振荡的情形。动力传动系的速度振荡通常起因于动力传动系共 振,动力传动系共振导致驾驶员感觉到不平稳行为。动力传动系扭矩变化情形是作为PCU 50的指令的直接结果的动力传动系扭矩的瞬时事件,诸如,发动机启动、起步离合器部分或 完全闭合(也被称为锁止)、换档、踩加速器踏板(利用加速器踏板52增加动力、扭矩或者 驱动命令)、松加速器踏板(利用加速器踏板52减小动力、扭矩或者驱动命令)、大的扭矩 命令(例如,超过可用扭矩的50%的扭矩)、变矩器旁通离合器部分或完全闭合(也被称为 锁止)等。然而,扭矩变化情形可包括在此未列出的另外的情形。如果存在扭矩变化情形, 则在步骤208中激活阻尼功能。如果不存在扭矩变化情形,则方法200返回到步骤204并 被设置为接收另一车辆动力传动系扭矩信号。
[0050] 一旦在步骤208中激活阻尼功能,便在步骤210中对阻尼功能进行滤波,以在动力 传动系速度振荡的预定频率范围内运行。在步骤212中,如果动力传动系速度振荡不在预 定频率范围内,则方法200返回到步骤204并被设置为接收另一车辆动力传动系扭矩信号。 如果动力传动系速度振荡在预定频率范围内,则在步骤214中计算期望的马达速度,在步 骤216中测量实际的马达速度,并在步骤218中计算扭转速度,该扭转速度是测量的马达速 度与期望的马达速度之间的差异。
[0051] 在步骤220中,产生作为扭转速度的函数的马达扭矩调节值。然后,从期望的马达 扭矩中减去马达扭矩调节值,得到在步骤222中发送的实际的马达扭矩命令。
[0052] 在步骤224中,方法200确定阻尼功能是否已经运行了预定时间或者速度误差是 否在预定阈值以下。所述速度误差是测量的马达速度与期望的马达速度之间的差异。如果 阻尼功能已经运行了预定时间或者速度误差在预定阈值以下,则在步骤226中阻尼功能结 束,方法200返回到步骤204并被设置为接收另一车辆动力传动系扭矩信号。如果阻尼功 能尚未运行预定时间以及速度误差不在预定阈值以下,则阻尼功能返回到滤波步骤210,并 且该过程重复进行。阻尼功能将运行有限的持续时间,该持续时间将持续到预定时间已经 过去或者速度误差已经下降到预定阈值以下为止。
[0053] 尽管在方法200中示出的各个步骤看似按时间顺序进行,但是至少一些步骤可以 按不同的顺序进行,一些步骤可同时执行或者根本不执行。
[0054] 现在参照图3,示出了控制系统框图,该框图示出了用于调节马达扭矩以减轻动力 传动系速度振荡的阻尼功能的一个实施例。控制系统300可包括滤波器302(这里在正向 回路中示出),滤波器302去除任何期望的频率成分并将阻尼功能限制在预定频率范围内, 该滤波器作为带通滤波器有效地运作。所述预定频率范围可能将会包括已被确认为激发动 力传动系共振而引起不平稳车辆行为的任何动力传动系扭矩变化情形。此外,滤波器可以 是将阻尼功能限制在窄的频率范围(比如5Hz至7Hz)的窄带陷波滤波器。然而,窄的频率 范围可变化,并且可以是IHz和IOOHz之间的任何范围。
[0055] 此外,滤波器302可依赖于变速箱24的一组选定的齿轮和传动比。由于在已经选 定了不同组的齿轮和传动比时导致不平稳行为的动力传动系共振会在不同的动力传动系 速度振荡频率发生,因此另一个优点会是:针对在变速箱内使用的每组齿轮和传动比,基于 导致不平稳行为的频率范围修改或调节滤波器302。
[0056] 表示M/G 18的简化模型的机械系统包括在控制系统300内,并可被写为下面的传 递函数304(在正向回路中示出):
[0057]
[0058] 其中,1是M/G 18的惯量,c是机械系统的阻尼常数,k是机械系统的弹簧常数。 传递函数304用于确定对应于输入的马达扭矩命令18的角位置Θ。Μ/G的角 位置Θ被输入到导数框306,导数框306的输出ωπ表示M/G 18的马达速度(马达速度为 马达角速度)。尽管马达速度《,皮示出为导数框306的输出,但这仅仅是机械系统的一个 代表。马达速度^^通常为M/G 18的输出轴30的旋转速度的测量值,并且还可被称为测 量的马达速度ωπ。可使
用感测技术(诸如霍尔效应传感器)测量Μ/G轴30的旋转速度来 测量马达速度。
[0059] 参照图4,示出了测量的马达速度Om,并示出了 M/G 18的马达速度现的振 荡。还示出了期望的马达速度Umdes,通过生成逼近测量的马达速度ωπ的平滑线来计算期 望的马达速度ωπ>。可利用数值分析曲线拟合技术(诸如插值或平滑)来构造期望的马 达速度COnutei。一旦计算出期望的马达速度c〇m_de;s,便计算出了扭转速度c〇 m_twist,扭转速度 ωπ twist是测量的马达速度ω A期望的马达速度ω m^之间的差异。
[0060] 再次参照图3,一旦已经计算出了扭转速度Om twist,便将其用作反馈回路的输入。 反馈回路可包括反馈控制器308,反馈控制器308可以是由下面的传递函数表示的(比例 微分)控制器:
[0061]
[0062] 其中,kmd是关于扭转速度ω m twist的导数项,该导数项与测量的马达速度ω m和期 望的马达速度Wni des之间的差异的导数成比例,表示超前滤波器(lead filter) Jnip 是基于扭转速度《m twist的比例项,该比例项与测量的马达速度ω m和期望的马达速度ω m des之间的差异成比例。导数项kmd和比例项kmp既可以是常数值也可以是来自存储在P⑶50 中的表(该表的输入是扭转速度Wm twist)的输出。反馈控制器308的输出是马达扭矩调节 值在求和节点310处从期望的马达扭矩τπ>中减去马达扭矩调节值τ m a(U得到 马达扭矩命令τπ。期望的马达扭矩τπ&将是在混合动力模式下或者在纯电动模式下M/ G 18作为发电机运转时由其提供的扭矩的量。马达扭矩命令τπ在经过滤波器302之后再 次被用作传递函数304的输入。
[0063] 在替代方案中,kmd可以是基于马达速度ω m的导数项,kmp可以是基于马达速度ω m的比例项,导数项kmd和比例项k mp既可以是常数值也可以是来自存储在PCU 50中的表(该 表的输入是马达速度Wni)的输出。
[0064] 反馈控制器308不应当被解释为仅限于ro控制器,而是可包括其他类型的控制 器,诸如,PI (比例积分)控制器或PID (比例积分微分)控制器。
[0065] 控制系统300将重复该过程,直到预定时间已经过去或者速度误差降低至预定阈 值以下为止。速度误差是测量的马达速度ωπ与期望的马达速度ω m des之间的差异(扭转 速度并可由下面的等式表示:
[0066] e = Oni-COni>或 e = ω ^ twist
[0067] 参照图5,示出了用于在混合动力电动车辆中控制马达扭矩以抵消动力传动系速 度振荡的控制架构500。其他的车辆控制功能502产生动力传动系速度振荡阻尼请求。这 些其他的车辆控制功能可包括但不限于发动机控制、变速器控制、变矩器控制、变矩器旁通 离合器控制、起步离合器控制、发动机分离离合器控制、混合动力操作控制、制动系统控制、 马达/发电机控制、扭矩、动力或驱动命令控制等。一旦产生了动力传动系速度振荡阻尼请 求,车辆控制仲裁器504便确定是否开启阻尼功能来调节马达扭矩从而减轻动力传动系速 度振荡。车辆控制仲裁器504基于车辆状态和测量值506来确定是否开启阻尼功能。车辆 状态和测量值506通知车辆控制仲裁器504是否存在需要动力传动系速度振荡阻尼的扭 矩变化情形。动力传动系扭矩变化情形可包括但不限于发动机启动、起步离合器部分或完 全闭合(也被称为锁止)、换档、踩加速器踏板(利用加速器踏板52增加动力、扭矩或者驱 动命令)、松加速器踏板(利用加速器踏板52减小动力、扭矩或者驱动命令)、大的扭矩命 令(例如,超过可用扭矩的50%的扭矩)、变矩器旁通离合器部分或完全闭合(也被称为锁 止)等。
[0068] -旦车辆控制仲裁器504已经确定存在动力传动系速度振荡且需要阻尼,车辆控 制仲裁器504便将阻尼功能标志发送到动力传动系速度振荡阻尼激活步骤508,在步骤508 中,计算马达扭矩命令τπ。然后将马达扭矩命令τπ发送到马达扭矩控制步骤510。然后, 马达扭矩控制步骤510将信号发送到M/G 18,以调节马达扭矩从而使动力传动系速度振荡 衰减。
[0069] 在此公开的过程、方法或算法可以被传送到可包括任何现有的可编程电子控制单 元或专用电子控制单元的处理装置、控制器或计算机/通过其实现。类似地,过程、方法或 算法可存储为可通过控制器或计算机以多种形式执行的数据和指令,包括但不限于永久存 储在不可写的存储介质(诸如ROM装置)中的信息以及可变地存储在可写的存储介质(诸 如软盘、磁带、CD、RAM装置和其他磁和光学介质)中的信息。过程、方法或算法还可以实现 为软件可执行对象。可替代地,可以使用适当的硬件组件整体地或部分地实施该过程、方法 或算法,诸如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、状态机、控制器或其他硬件 组件或装置或者硬件、软件和固件组件的结合。
[0070] 虽然上文描述了示例性实施例,但是并不意味着这些实施例描述了权利要求所包 含的所有可能的形式。说明书中使用的词语为描述性词语而非限制性词语,并且应理解,在 不脱离本公开的精神和范围的情况下,可以作出各种改变。如上所述,可以组合多个实施例 的特征以形成本发明没有明确描述或说明的进一步的实施例。尽管多个实施例已经被描述 为提供优点或者在一个或更多个期望特性方面优于其他实施例或现有技术的实施方式,但 是本领域普通技术人员应该认识到,取决于具体应用和实施方式,为了实现期望的整体系 统属性,可以折衷一个或更多个特征或特性。这些属性可包括但不限于成本、强度、耐用性、 生命周期成本、可销售性、外观、包装、尺寸、可维护性、重量、可制造性、装配容易性等。因 此,被描述为在一个或更多个特性方面不如其他实施例或现有技术的实施方式合意的实施 例也未超出本公开的范围,并且可期望用于特定应用。
【主权项】
1. 一种混合动力电动车辆,包括: 发动机和电动马达,两者均被构造成产生车辆动力传动系扭矩;以及 控制器,被配置为响应于动力传动系扭矩变化情形而利用阻尼功能来控制动力传动系 扭矩达有限的持续时间,所述阻尼功能基于测量的马达速度和期望的马达速度之间的差异 利用电动马达调节车辆动力传动系扭矩,以抵消动力传动系速度振荡。2. 如权利要求1所述的混合动力电动车辆,其中,动力传动系扭矩变化情形是发动机 启动、换档、踩加速器踏板、松加速器踏板或大的扭矩命令中的至少一个。3. 如权利要求1所述的混合动力电动车辆,其中,动力传动系扭矩变化情形是起步离 合器部分或完全闭合。4. 如权利要求1所述的混合动力电动车辆,其中,动力传动系扭矩变化情形是变矩器 旁通离合器部分或完全闭合。5. 如权利要求1所述的混合动力电动车辆,其中,阻尼功能包括正向回路中的陷波滤 波器,用于将阻尼功能限制在动力传动系速度振荡的预定频率范围内。6. 如权利要求1所述的混合动力电动车辆,其中,阻尼功能包括产生马达扭矩调节值 的反馈回路,从期望的马达扭矩中减去所述马达扭矩调节值得到实际的马达扭矩,所述马 达扭矩调节值基于测量的马达速度和期望的马达速度之间的差异。7. 如权利要求6所述的混合动力电动车辆,其中,所述反馈回路包括导数项和比例项, 所述导数项与测量的马达速度和期望的马达速度之间的差异的导数成比例,所述比例项与 所述差异成比例。8. 如权利要求1所述的混合动力电动车辆,其中,有限的持续时间基于预定的经过时 间或者当速度误差降低至预定阈值以下时,所述速度误差是测量的马达速度和期望的马达 速度之间的差异。
【专利摘要】一种混合动力电动车辆包括:发动机和电动马达,两者均被构造成产生车辆动力传动系扭矩;控制器,被配置为预计到动力传动系扭矩变化情形而利用阻尼功能来控制动力传动系扭矩达有限的持续时间,其中,所述阻尼功能基于测量的马达速度和期望的马达速度之间的差异而利用电动马达调节车辆动力传动系扭矩,以抵消动力传动系速度振荡。
【IPC分类】B60W30/20, B60W10/06, B60W10/08, B60W20/00
【公开号】CN104890665
【申请号】CN201510096776
【发明人】梁伟, 马克·斯蒂芬·耶马扎基, 罗吉特·乔赫里, 王小勇, 瑞恩·亚伯拉罕·麦吉, 邝明朗
【申请人】福特全球技术公司
【公开日】2015年9月9日
【申请日】2015年3月4日
【公告号】DE102015203747A1, US20150251649