一种石墨烯基超支化苝酰亚胺/环氧复合材料的制备方法

xiaoxiao2020-10-23  2

一种石墨烯基超支化苝酰亚胺/环氧复合材料的制备方法
【技术领域】
[0001]本发明属于超支化聚合物改性技术领域,具体涉及一种石墨烯基超支化茈酰亚胺/环氧复合材料的制备方法。
【背景技术】
[0002]自从1913年Friedlander合成了花酰亚胺以来,花酰亚胺衍生物作为一种染料和光学材料在η型半导体、有机光电器件和超分子组装等领域备受关注。一方面,这主要是因为茈酰亚胺具有良好的光、热稳定性、耐化学性及荧光量子产率高等优点;另一方面,由于茈酰亚胺类化合物具有大的共苯环平面结构,能与其它一些同样具有共轭结构的分子通过非共价作用力发生31堆叠,从而形成超分子结构,使其广泛应用于超分子组装。然而茈酰亚胺类化合物溶解性较差,为解决这一难题,Haag课题组在茈酰亚胺的bay位上引入超支化聚合物制备得到水溶性的茈酰亚胺,从而改善其溶解性。
[0003]超支化聚合物具有大量的表面官能团、高度规整的支化结构和分子内部存在空腔等特点,从而具有黏度低、溶解性好等优点,正因为其独特的分子结构,超支化聚合物被人们广泛应用于生物医用材料、特种涂料、表面活性剂、纳米材料等领域。并且超支化聚合物的合成工艺较简单,一般采用一步合成法,所得产物只需要简单的纯化,大大降低了企业大规模的生产成本。
[0004]石墨烯是由单层碳原子紧密堆积而成的六方蜂窝状结构的一种新型碳材料,引起科学界新一轮的“碳”热潮。石墨烯具有优异的导热导电性能、大的比表面、拉伸模量大等优点,因此被广泛应用于储能材料、导电复合材料、超级电容和耐热材料等领域。事实上,石墨烯美中不足的是其易于聚集而形成褶皱,为能充分利用石墨烯优良的性能,就必须通过对其进行化学改性来克服其易聚集的难题。一方面,共价改性会改变石墨烯的电子排布结构,从而改善其物理性能;另一方面,非共价改性不会改变石墨烯的共轭结构,如π - Ji堆叠相互作用。研宄表明:其导电系数是14 s/m,杨氏模量为lOOOGPa,极限强度为116 GPa,作为目前世界上最硬最薄的材料,具有极高的力学性能。
[0005]环氧树脂是典型的热固性聚合物,具有良好的电绝缘性、化学稳定性、优异的粘接性和力学稳定性,在耐腐蚀涂料、电气绝缘材料和结构粘接材料等方面得到应用。但环氧树脂固化后形成交联的三维网络结构,内应力大、阻止裂纹扩展能力差和耐冲击性较差等缺点,从而难以满足工业生产的要求,故改性环氧树脂成为研宄的热点。目前主要采用橡胶弹性体增韧、无机纳米粒子增韧、热塑性聚合物增韧和超支化聚合物增韧等方法对环氧树脂进行增韧改性。其中采用超支化聚合物改性环氧树脂不仅能提高其韧性,还不降低其耐热性等性能,故超支化聚合物使环氧树脂的综合性能得到增强。
[0006]尹梅贞等报道了发明专利“一种双功能水溶性茈酰亚胺衍生物的合成及其应用”(CN103755703A),使用携带四个醛基的茈荧光核,通过巯基对醛基的保护反应制备得到双功能水溶性茈酰亚胺衍生物。陈润峰等报道了发明专利“茈酰亚胺类光电功能材料及其制备方法”(CN102070771A),通过Suzuki聚合、Yamamoto聚合和Stille聚合制备了一系列不同含量的聚合物,该材料具有良好的光热稳定性。刘括等报道了发明专利“端氨基超支化聚合物接枝氧化石墨烯改性环氧树脂的方法”(CN102504147A),利用超支化聚合物来改性环氧树脂,研宄表明少量的超支化聚合物可大幅度提高环氧树脂的热性能和力学性能。胡惹惹等在“超支化聚合物对石墨烯的功能化研宄进展”论文中,综述了超支化聚合物功能化的石墨烯基复合材料的性能和应用。但上述这些研宄均未涉及到以茈酰亚胺为核,端氨基超支化聚合物为壳,石墨烯为基体,通过31堆叠合成石墨烯基超支化茈酰亚胺,并将其与环氧树脂复合制备石墨烯基超支化茈酰亚胺/环氧树脂复合材料。利用该方法制备的复合材料目前未见文献报道。

【发明内容】

[0007]本发明的目的是提供一种石墨烯基超支化茈酰亚胺/环氧复合材料的制备方法。
[0008]本发明的思路:利用超支化茈酰亚胺与石墨烯JT-JT堆叠作用,解决石墨烯在环氧树脂基体中易团聚、分散困难等技术难点,并提高其与环氧树脂的界面结合强度,从而制备性能优异的复合材料。
[0009]具体步骤为:
(I)称取0.l~0.8g端羧基茈酰亚胺、20~40ml N1Nr -二甲基甲酰胺及5~8ml碱性溶液,于70~100°C下混合搅拌反应l~3h,再缓慢滴加2~3ml环氧丙醇,继续反应8~12h,然后沉淀,过滤,沉淀物烘干,制得超支化茈酰亚胺,即为PB1-HPG。
[0010](2)称取0.05~0.08g经高温还原处理的石墨烯,将其分散在5~8ml N1Nr -二甲基甲酰胺中超声分散5~6h制得混合液,然后向混合液中加入0.5~lg步骤⑴制得的PB1-HPG,并在80~100°C下反应20~24h,再离心分离,所得产物在60°C下烘干,制得石墨烯基超支化茈酰亚胺,即为PB1-HPG-g-RGO。
[0011](3)取0.026-0.08g步骤⑵制得的PB1-HPG-g-RGO加入到26g环氧树脂中,减压抽气,再加入7.Sg固化剂4,4' - 二氨基二苯砜,混合均匀后一起倒入涂有硅脂的钢模具中于140°C/2h + 160°C /2h + 180°C/2h下固化成型,即制得石墨烯基超支化茈酰亚胺
/环氧复合材料。
[0012]所述碱性溶液为氢化钠水溶液、氢化钾水溶液和甲醇钾水溶液中的一种或几种。
[0013]本发明方法具有以下优点:
(I)原料来源广泛,工业成本低,对环境污染小。
[0014](2)合成工艺简单,适合工业大规模生产。
[0015](3)超支化茈酰亚胺通过非共价作用与石墨烯π-π堆叠,解决了石墨烯易聚集的技术难题,将产物石墨烯基超支化茈酰亚胺用于改性环氧树脂,可实现其与树脂基体的均匀分散,并能有效提高复合材料的力学性能和热性能。
【具体实施方式】
[0016]以下实施例所用的主要原料如下:端羧基茈酰亚胺(工业级),石墨烯(工业级),N,N' -二甲基甲酰胺(分析纯),环氧丙醇(分析纯),环氧树脂E-44(工业级),4,4' -二氨基二苯砜(工业级)。
[0017]实施例1: (I)称取0.1g端羧基茈酰亚胺(PB1-COOH)、20ml N,N' -二甲基甲酰胺及5ml氢化钠水溶液(质量百分比浓度为15%),于70°C下混合搅拌反应2h,再缓慢滴 加2ml环氧丙醇,继续反应10h,然后沉淀,过滤,沉淀物烘干,制得超支化茈酰亚胺,即为PB1-HPG。
[0018](2)称取0.05g经高温还原处理的石墨烯,将其分散在8ml N,N' -二甲基甲酰胺中超声分散5h制得混合液,然后向混合液中加入0.5g步骤⑴制得的PB1-HPG,并在100°C下反应20h,再离心分离,所得产物在60°C下烘干,制得石墨烯基超支化茈酰亚胺,即为 PB1-HPG-g-RGO。
[0019](3)取0.026g步骤(2)制得的PB1-HPG-g-RGO加入到26g环氧树脂中,减压抽气,再加入7.Sg固化剂4,4' - 二氨基二苯砜,混合均匀后一起倒入涂有硅脂的钢模具中于140°C /2h + 160°C /2h + 180°C /2h下固化成型,即制得石墨烯基超支化茈酰亚胺/环氧复合材料。
[0020]本实施例制得的石墨烯基超支化茈酰亚胺/环氧复合材料的冲击强度由纯环氧树脂的26.25kJ/m2提高到30.33kJ/m2,提高了 15.54%,拉伸强度提高了 15.00%,弯曲强度增加了 29.43%,热分解温度提高了 10°C。
[0021]实施例2:
(I)称取0.5g端羧基茈酰亚胺(PB1-COOH)、20ml N1Nr -二甲基甲酰胺及5ml氢化钠水溶液(质量百分比浓度为15%),于70°C下混合搅拌反应2h,再缓慢滴加3ml环氧丙醇,继续反应12h,然后沉淀,过滤,沉淀物烘干,制得超支化茈酰亚胺,即为PB1-HPG。
[0022](2)称取0.07g经高温还原处理的石墨烯,将其分散在8ml N,N' -二甲基甲酰胺中超声分散5h制得混合液,然后向混合液中加入0.7g步骤⑴制得的PB1-HPG,并在100°C下反应20h,再离心分离,所得产物在60°C下烘干,制得石墨烯基超支化茈酰亚胺,即为 PB1-HPG-g-RGO。
[0023](3)取0.042g步骤(2)制得的PB1-HPG-g-RGO加入到26g环氧树脂中,减压抽气,再加入7.Sg固化剂4,4' - 二氨基二苯砜,混合均匀后一起倒入涂有硅脂的钢模具中于140°C /2h + 160°C /2h + 180°C /2h下固化成型,即制得石墨烯基超支化茈酰亚胺/环氧复合材料。
[0024]本实施例制得的石墨烯基超支化茈酰亚胺/环氧复合材料的冲击强度由纯环氧树脂的26.25kJ/m2提高到39.58kJ/m2,提高了 50.78%,拉伸强度提高了 62.28%,弯曲强度增加了 52.96%,热分解温度提高了 25°C。
[0025]实施例3:
(I)称取0.8g端羧基茈酰亚胺(PB1-C00H)、30ml N1Nr -二甲基甲酰胺及5ml氢化钠水溶液(质量百分比浓度为15%),于70°C下混合搅拌反应2h,再缓慢滴加3ml环氧丙醇,继续反应12h,然后沉淀,过滤,沉淀物烘干,制得超支化茈酰亚胺,即为PB1-HPG。
[0026](2)称取0.07g经高温还原处理的石墨烯,将其分散在8ml N,N' -二甲基甲酰胺中超声分散5h制得混合液,然后向混合液中加入0.8g步骤⑴制得的PB1-HPG,并在80°C下反应24h,再离心分离,所得产物在60°C下烘干,制得石墨烯基超支化茈酰亚胺,即为 PB1-HPG-g-RGO。
[0027](3)取0.05g步骤(2)制得的PB1-HPG-g-RGO加入到26g环氧树脂中,减压抽气,再加入7.Sg固化剂4,4' - 二氨基二苯砜,混合均匀后一起倒入涂有硅脂的钢模具中于140°C /2h + 160°C /2h + 180°C/2h下固化成型,即制得石墨烯基超支化茈酰亚胺/环氧复合材料。
[0028]本实施例制得的石墨烯基超支化茈酰亚胺/环氧复合材料的冲击强度由纯环氧树脂的26.25kJ/m2提高到34.95kJ/m2,提高了 33.14%,拉伸强度提高了 48.85%,弯曲强度增加了 47.67%。热分解温度提高了 21°C。
【主权项】
1.一种石墨烯基超支化茈酰亚胺/环氧复合材料的制备方法,其特征在于具体步骤为: (1)称取0.l~0.8g端羧基茈酰亚胺、20~40ml N1Nr -二甲基甲酰胺及5~8ml碱性溶液,于70~100°C下混合搅拌反应l~3h,再缓慢滴加2~3ml环氧丙醇,继续反应8~12h,然后沉淀,过滤,沉淀物烘干,制得超支化茈酰亚胺,即为PB1-HPG ; (2)称取0.05~0.08g经高温还原处理的石墨烯,将其分散在5~8ml N1Nr -二甲基甲酰胺中超声分散5~6h制得混合液,然后向混合液中加入0.5~lg步骤⑴制得的PB1-HPG,并在80~100°C下反应20~24h,再离心分离,所得产物在60°C下烘干,制得石墨烯基超支化茈酰亚胺,即为PB1-HPG-g-RGO ; (3)取0.026-0.08g步骤(2)制得的PB1-HPG-g-RGO加入到26g环氧树脂中,减压抽气,再加入7.Sg固化剂4,4' - 二氨基二苯砜,混合均匀后一起倒入涂有硅脂的钢模具中于140°C /2h + 160°C /2h + 180°C /2h下固化成型,即制得石墨烯基超支化茈酰亚胺/环氧复合材料; 所述碱性溶液为氢化钠水溶液、氢化钾水溶液和甲醇钾水溶液中的一种或几种。
【专利摘要】本发明公开了一种石墨烯基超支化苝酰亚胺/环氧复合材料的制备方法。取端羧基苝酰亚胺、N,N′-二甲基甲酰胺及碱性溶液,于70~100℃下搅拌反应1~3h,再滴加环氧丙醇,反应8~12h,然后沉淀,过滤,沉淀物烘干得超支化苝酰亚胺;取经高温还原处理后的石墨烯,超声分散在N,N′-二甲基甲酰胺中5~6h后加入超支化苝酰亚胺,在80~100℃下反应20~24h后,离心分离,产物在60℃下烘干得石墨烯基超支化苝酰亚胺,加入到环氧树脂中,以4, 4′-二氨基二苯砜为固化剂,倒入模具中固化成型,制得石墨烯基超支化苝酰亚胺/环氧复合材料。本发明提供的制备方法工艺简单,生产成本低,污染小,适用性广。
【IPC分类】C08K9/04, C08K3/04, C08L63/00
【公开号】CN104893246
【申请号】CN201510262030
【发明人】陆绍荣, 潘露露, 虞锦洪, 杨瑾, 罗启云, 徐旭
【申请人】桂林理工大学
【公开日】2015年9月9日
【申请日】2015年5月21日

最新回复(0)