纳米晶-石墨烯复合材料、其制备方法及应用

xiaoxiao2020-10-23  5

纳米晶-石墨烯复合材料、其制备方法及应用
【技术领域】
[0001] 本发明涉及吸波材料领域,特别涉及一种β -LiFe5O8纳米晶-石墨稀复合材料、其 制备方法及应用。
【背景技术】
[0002] 近年来,迅速发展的无线电通讯技术正广泛地应用于军事、民用和工业领域。在军 事上,雷达探测技术的迅猛发展,对军事目标的生存构成了严重威胁,因此发展隐身技术屏 蔽军舰、飞机等目标的雷达信号,成了军事技术的重要发展方向。另外,在民用和工业上,无 线电通讯技术给人们的生活带来了便利的同时也产生了大量的电磁辐射。恶化的电磁环境 产生的电磁干扰(EMI)不仅对人们日常的通信、计算机与各种电子系统造成危害,而且会 对人们身体健康带来威胁。因此,对于电磁波具有高吸收容量、宽吸收范围、抗氧化能力好、 质量轻的吸波材料的研宄引起了人们的高度重视。
[0003] 目前锂铁氧体作为典型的铁基材料,无毒,环境友好,且低价易得,因此被认为 是非常有潜力的吸波材料。其中,作为锂铁氧体之一的β-LiFeA,由于其密度小,仅为 4. 82g/cm3,因此作为吸波材料比较有利。但是,β -LiFe5O8纳米晶比较容易团聚,难以控制 其大小和分散性,所以吸波性能受到影响。

【发明内容】

[0004] 为解决上述问题,本发明实施例公开了一种β-LiFe5O8纳米晶-石墨稀复合材料, 所述I^-LiFe 5O8纳米晶-石墨稀复合材料解决了 IB-LiFe5O8纳米晶比较容易团聚的问题, 生成了单分散的P-LiFe 5O8纳米晶-石墨烯复合材料。技术方案如下:
[0005] -种β -LiFe5O8纳米晶-石墨稀复合材料,由β -LiFe 508纳米晶和石墨稀复合而 成,所述石墨烯呈片状且作为所述复合材料的基底,所述β -LiFe5O8纳米晶分散在所述石 墨稀上。
[0006] 在本发明的一些优选实施方式中,所述P-LiFe5O8纳米晶为尖晶石型的面心立方 结构,在(220)、(311)、(400)、(440)面有衍射峰。
[0007] 在本发明的一些优选实施方式中,所述β -LiFe5O8纳米晶的粒径为1~15nm。
[0008] 在本发明的一些优选实施方式中,反射损耗值为-3. 60~-27. OOdB。
[0009] -种上述的β -LiFe5O8纳米晶-石墨稀复合材料的制备方法,包括以下步骤: [0010] a)将氧化石墨加入到N-甲基吡咯烷酮中,进行分散,得到第一分散液;
[0011] b)将乙酰丙酮铁、一水合氢氧化锂及十八胺加入至所述第一分散液中,形成第一 混合液,在搅拌状态下将第一混合液加热至第一预设温度后,进行第一次保温处理,然后继 续在搅拌状态下,加热至第二预设温度,进行第二次保温处理,得到第一反应液,对第一反 应液进行骤停处理;
[0012] c)对骤停处理后的第一反应液进行分离得到β -LiFe5O8纳米晶-石墨烯复合材 料初产物,对β -LiFe5O8纳米晶-石墨稀复合材料初产物进行洗绦、离心及干燥处理,得到 β -LiFe5O8纳米晶-石墨稀复合材料。
[0013] 在本发明的一些优选实施方式中,所述氧化石墨的克数与所述乙酰丙酮铁的摩尔 数之比为10~50,所述N-甲基吡咯烷酮的升数与所述乙酰丙酮铁的摩尔数之比为10~ 50 〇
[0014] 在本发明的一些优选实施方式中,所述一水合氢氧化锂与所述乙酰丙酮铁的摩尔 比为2~10,所述十八胺的克数与所述乙酰丙酮铁的摩尔数的比为0. 25~4。
[0015] 在本发明的一些优选实施方式中,所述第一预设温度为90°C~160°C,所述第一 次保温处理的时间为5min以上,所述第二预设温度为160°C以上,所述第二次保温处理的 时间为30min以上。
[0016] 在本发明的一些优选实施方式中,所述对第一反应液进行骤停处理通过向第一反 应液中加入乙醇或丙酮来实现。
[0017] 上述的β -LiFe5O8纳米晶-石墨稀复合材料在吸收电磁波领域的应用。
[0018] 本发明实施例具有以下优点:
[0019] 1)制备的β -LiFe5O8纳米晶-石墨烯复合材料中,β -LiFe 508纳米晶有序地"镶 嵌"在二维石墨烯纳米片上,避免了团聚现象。
[0020] 2)制备的β-LiFe5O8纳米晶-石墨稀复合材料,相比于β-LiFe 508纳米晶,表现 出了更好的吸波性能。
[0021] 3)采用热分解"一锅法",一步合成了 β-LiFe5O8纳米晶-石墨稀复合材料,简便、 快速、节省成本。
[0022] 当然,实施本发明的任一产品或方法并不一定需要同时达到以上所述的所有优 点。
【附图说明】
[0023] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以 根据这些附图获得其他的附图。
[0024] 图1是氧化石墨(GO)、石墨烯(GN)和β -LiFe5O8纳米晶-石墨烯复合材料的XRD 图,其中图1(a)是氧化石墨(GO)的XRD图,图1(b)是石墨烯(GN)的XRD图,图1(c)是 β-LiFe5O8纳米晶-石墨稀复合材料的XRD图,图I (d)是将β-LiFe 508纳米晶-石墨稀复 合材料在700 °C进行煅烧而得到的a -LiFe5O8的XRD图;
[0025] 图2是氧化石墨(GO)、石墨烯(GN)和β -LiFe5O8纳米晶-石墨烯复合材料的拉 曼谱图,其中图2(a)是氧化石墨(GO)的拉曼谱图,图2(b)是石墨烯(GN)的拉曼谱图,图 2(c)是IB-LiFe 5O8纳米晶-石墨稀复合材料的拉曼谱图;
[0026] 图3是β-LiFe5O8纳米晶-石墨稀复合材料的透射电镜和AFM图,其中图3 (a)是 β-LiFe5O8纳米晶-石墨稀复合材料的透射电镜图,图3(b)、(c)是β-LiFe 508纳米晶-石 墨烯复合材料的高分辨透射电镜图,图3(d)是P-LiFe 5O8纳米晶-石墨烯复合材料的选区 电子衍射图,图3(e)是P-LiFe5O 8纳米晶-石墨烯复合材料的AFM图、图3(f)是P-LiFe5O8 纳米晶-石墨稀复合材料的AFM图对应的高度分析图;
[0027] 图4是β-LiFe5O8纳米晶-石墨稀复合材料的微波反射率损耗值与样品厚度、频 率的关系图。
【具体实施方式】
[0028] 石墨烯因具有大的表面积,质量轻,极好的导电性,柔韧性和耐腐蚀性而成为完美 基底,将石墨稀作为基底材料与P-LiFe 5O8纳米晶进行复合所得的材料,能够使IB-LiFe5O8 纳米晶能够很好地分散,并且由于石墨烯是介损耗材料,因此,通过石墨烯与磁损耗材料 IB-LiFe5O8纳米晶构筑的IB-LiFe5O8纳米晶-石墨稀复合材料,具有优于IB-LiFe 5O8纳米 晶的电磁波吸收性能。基于上面的分析,本发明提供了 P-LiFe5O8纳米晶-石墨烯复合材 料、其制备方法及应用。
[0029] β-LiFe5O8纳米晶-石墨稀复合材料由β-LiFe 508纳米晶和石墨稀(GN)复合而 成,上述石墨烯呈二维片状且作为所述复合材料的基底,上述β -LiFe5O8纳米晶分散在上 述石墨稀上。其中,上述P-LiFe5O 8纳米晶为尖晶石型的面心立方结构,在(220)、(311)、 (400)、(440)面有衍射峰,粒径为1~15nm,平均粒径为5nm。上述β -LiFe5O8纳米晶-石 墨烯复合材料的反射损耗值为-3. 60~-27. OOdB。
[0030] 上述β -LiFe5O8纳米晶-石墨稀复合材料的制备方法,包括以下步骤:
[0031] a)将氧化石墨(GO)加入到N-甲基吡咯烷酮中,进行分散,得到第一分散液。氧化 石墨和N-甲基吡咯烷酮的量根据下述的乙酰丙酮铁为基准来选择,因此在步骤b)后进行 描述。上述分散的分散方式可以为超声分散、振荡分散或其组合,优选为超声分散。分散的 时间本发明在此不作具体限定,以能得到分散均匀的分散液 为准,一般来说,可以分散1~ 3小时。
[0032] b)将乙酰丙酮铁、一水合氢氧化锂及十八胺加入至上述第一分散液中,形成第一 混合液,在搅拌状态下将第一混合液加热至第一预设温度后,进行第一次保温处理,然后继 续在搅拌状态下,加热至第二预设温度,进行第二次保温处理,得到第一反应液,对第一反 应液进行骤停处理。
[0033] 在本发明的一些优选方式中,上述氧化石墨的克数(g)与上述乙酰丙酮铁的摩尔 数(mol)之比为10~50,更优选为20。
[0034] 在本发明的一些优选方式中,上述N-甲基吡咯烷酮的升数与上述乙酰丙酮铁的 摩尔数之比为10~50,更优选为20~40。
[0035] 在本发明的一些优选方式中,上述一水合氢氧化锂与上述乙酰丙酮铁的摩尔比为 2~10,更优选为4。
[0036] 在本发明的一些优选方式中,上述十八胺的克数与上述乙酰丙酮铁的摩尔数的比 为0. 25~4。在本发明中加入十八胺,将其作为限域剂使用来限制纳米晶生长不均匀,有利 于形成单分散的β -LiFe5O8纳米晶,同时十八胺也是一种还原剂,如果含量过多的话,会将 Fe3+还原为Fe 2+,不利于目标产物的生成。因此,更优选上述十八胺的克数与上述乙酰丙酮 铁的摩尔数的比为0. 5~2,进一步优选为1。
[0037] 在本发明的一些优选方式中,上述第一预设温度为90 °C~160 °C,更优选为 120°C。在本发明的一些优选方式中,上述第一次保温处理的时间为5min以上。加热到第一 预设温度并进行第一次保温处理的目的是因为在该环境下,β -LiFe5O8纳米晶易成核,并能 够缓慢地生长,因此有利于形成单分散的纳米晶,另外还可除去反应体系中的水分,因此上 述第一指定时间越长效果越好,但是考虑时间成本,更优选上述第一指定时间为15min~ 60min,进一步优选为30min。在本发明的一些优选方式中,在搅拌状态下可以为在磁力搅拌 状态下。
[0038] 在本发明的一些优选方式中,上述第二预设温度为160°C以上。由于N-甲基吡 咯烷酮的沸点是202°C,因此可以考虑将第二预设温度在160°C和N-甲基吡咯烷酮的沸点 之间进行选择,即,更优选上述第二预设温度为160~202°C,进一步上述第二预设温度为 180~202°C。在本发明的一些优选方式中,上述第二次保温处理的时间为30min以上,时 间越长效果越好,但是考虑时间成本,更优选上述第二次保温处理的时间为60~180min, 进一步优选为120min。
[0039] 为了使第一反应液降温并停止反应而对第一反应液进行骤停处理。对第一反应 液进行骤停处理可以采用本领域技术人员的公知方法,在此不做具体限定。在本发明的一 些优选方式中,上述对第一反应液进行骤停处理通过向第一反应液中加入乙醇或丙酮来实 现。
[0040] C)对骤停处理后的第一反应液进行分离得到β -LiFe5O8纳米晶-石墨烯复合材 料初产物,对β -LiFe5O8纳米晶-石墨稀复合材料初产物进行洗绦、离心及干燥处理,得到 β -LiFe5O8纳米晶-石墨稀复合材料。
[0041] 上述分离可以采用本领域技术人员的公知方法,在此不做具体限定。在本发明的 一些优选方式中,可采用离心的方式进行分离,该离心可以采用本领域技术人员常规的离 心方法,在此不做具体限定。进行分离的目的是为了从第一反应液中分离出P-LiFe5O8纳 米晶-石墨烯复合材料初产物。
[0042] 上述洗涤可以采用本领域技术人员公知的常规方法进行,在此不做具体限定。在 本发明的一些优选方式中,采用正己烷和丙酮交替洗涤的方式。
[0043] 上述对β-LiFe5O8纳米晶-石墨稀复合材料初产物进行洗绦、离心及干燥处理步 骤中的离心可以采用本领域技术人员常规的离心方法,在此不做具体限定。该步骤中采用 离心的方式进行分离的目的是为了将经过洗涤处理后的β -LiFe5O8纳米晶-石墨烯复合材 料初产物与洗涤剂分离。
[0044] 上述干燥可以采用本领域技术人员常规的干燥方法,在此不做具体限定,例如采 用真空干燥的方式。
[0045] 根据上述方法得到的P-LiFe5O8纳米晶-石墨烯复合材料可以用于吸收电磁波。
[0046] 进一步需要说明的是,本发明实施例采用的所有原料,对其来源没有特殊的限制, 在市场上购得或自制均可。例如,在本发明中,石墨粉购自青岛南墅石墨有限公司;N-甲基 吡咯烷酮购自北京市通广精细化工公司,分析纯;乙酰丙酮铁购自上海晶纯生化科技股份 有限公司(阿拉丁),分析纯;一水合氢氧化锂购自国药集团化学试剂有限公司,分析纯; 十八胺购自国药集团化学试剂有限公司,分析纯。
[0047] 另外,本发明实施例在制备β -LiFe5O8纳米晶-石墨烯复合材料的过程中所采用 的实验设备,均为本领域通用的设备,均可在市场上购得。发明人相信,本领域技术人员完 全可以通过本发明技术方案的描述来选择适当的实验设备,本发明在此不对实验设备进行 具体限制与说明。
[0048] 进一步需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作 之间存在任何这种实际的关系或者顺序。而且,术语"包括"、"包含"或者其任何其他变体 意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括 那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或 者设备所固有的要素。
[0049] 为了进一步说明本发明,下面将结合具体实施例对本发明的技术方案进行描述, 所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施 例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于 本发明保护的范围。
[0050] 氧化石墨的制备
[0051] 本发明的原料用到了氧化石墨(GO)。对于氧化石墨的制备方法属于现有技术,本 领域技术人员可以根据需要采用适当的制备方法。本发明采用了如下制作方法,采用该方 法制作的氧化石墨,氧化程度高,在有机溶剂中的分散效果好。
[0052] 本发明采用改进的Hummers方法制备氧化石墨,作为实施例1~实施例5制备 β -LiFe5O8纳米晶-石墨稀复合材料的原料。
[0053] 称取5g石墨粉、5gNaN0jP 230mL浓H 2S04,置于冰水浴中,边搅拌边缓慢加入 30gKMn04〇
[0054] 大约45min后,撤去冰水浴,放入35°C水浴中,缓慢加入460mL蒸馏水,此过程约 30min,产物由黑色渐渐变为褐色。
[0055] 之后放于98°C油浴中保温15min。
[0056] 撤出油浴后,加入HOOmL温水,搅拌,加入IOOmLH2O2,此时产物变为金黄色。过滤, 用质量分数为5%的稀HCl溶液洗涤,再用蒸馏水洗涤4次,至滤液中无 S0,为止。所得产 物于70°C空气中干燥,制得4. Sg氧化石墨。
[0057] 实施例1
[0058] a)将自制的40mg氧化石墨(GO)加入到40mLN-甲基吡咯烷酮中,进行超声分散2 小时,得到第一分散液;
[0059] b)将 2mmol (0· 7063g)乙酰丙酮铁 Fe (acac) 3、8mmol (0· 3357g) -水合氢氧化锂 (LiOH · H2O)及2g十八胺加入至上述第一分散液中,在保持磁力搅拌状态下加热至120°C, 保温30min,然后继续在保持磁力搅拌状态下加热至202°C,保温120min,得到第一反应液, 加入20mL乙醇来对第一反应液进行骤停处理。
[0060] C)对骤停处理后的第一反应液进行以10000转/分的转速离心分离5min得到 β -LiFe5O8纳米晶-石墨烯复合材料初产物,然后用正己烷和丙酮对β -LiFe 508纳米晶-石 墨烯复合材料初产物进行交替洗涤3次,接着以10000转/分的转速离心5min,最后在40°C 于条件下进行干燥,得到β -LiFe5O8纳米晶-石墨稀复合材料。
[0061] 实施例2
[0062] a)将自制的20mg氧化石墨(GO)加入 到20mLN-甲基吡咯烷酮中,进行超声分散2 小时,得到第一分散液;
[0063] b)将 2mmol (0· 7063g)乙酰丙酮铁 Fe (acac) 3、4mmol (0· 1678g) -水合氢氧化锂 (LiOH · H2O),0. 5g十八胺加入至上述第一分散液中,在保持磁力搅拌状态下加热至160°C, 保温5min,然后继续在保持磁力搅拌状态下加热至202°C,保温60min,得到第一反应液,加 入20mL乙醇来对第一反应液进行骤停处理。
[0064] c)对骤停处理后的第一反应液进行以10000转/分的转速离心分离5min得到 β -LiFe5O8纳米晶-石墨烯复合材料初产物,然后用正己烷和丙酮对β -LiFe 508纳米晶-石 墨烯复合材料初产物进行交替洗涤3次,接着以10000转/分的转速离心5min,最后在40°C 于真空条件下进行干燥,得到β -LiFe5O8纳米晶-石墨稀复合材料。
[0065] 实施例3
[0066] a)将自制的40mg氧化石墨(GO)加入到60mLN-甲基吡咯烷酮中,进行超声分散2 小时,得到第一分散液;
[0067] b)将 2mmol (0· 7063g)乙酰丙酮铁 Fe (acac) 3、9mmol (0· 3776g) -水合氢氧化锂 (LiOH · H2O)及3g十八胺加入至上述第一分散液中,在保持磁力搅拌状态下加热至90°C, 保温60min,然后继续在保持磁力搅拌状态下加热至160°C,保温180min,得到第一反应液, 加入20mL乙醇来对第一反应液进行骤停处理。
[0068] c)对骤停处理后的第一反应液进行以10000转/分的转速离心分离5min得到 β -LiFe5O8纳米晶-石墨烯复合材料初产物,然后用正己烷和丙酮对β -LiFe 508纳米晶-石 墨烯复合材料初产物进行交替洗涤3次,接着以10000转/分的转速离心5min,最后在40°C 于真空条件下进行干燥,得到β -LiFe5O8纳米晶-石墨稀复合材料。
[0069] 实施例4
[0070] a)将自制的50mg氧化石墨(GO)加入到80mLN-甲基吡咯烷酮中,进行超声分散2 小时,得到第一分散液;
[0071] b)将 2mmol (0. 7063g)乙酰丙酮铁 Fe (acac) 3、12mmol (0. 5035g) -水合氢氧化锂 (LiOH · H2O)及3g十八胺加入至上述第一分散液中,在保持磁力搅拌状态下加热至KKTC, 保温15min,然后继续在保持磁力搅拌状态下加热至180°C,保温120min,得到第一反应液, 加入20mL乙醇来对第一反应液进行骤停处理。
[0072] c)对骤停处理后的第一反应液进行以10000转/分的转速离心分离5min得到 β -LiFe5O8纳米晶-石墨烯复合材料初产物,然后用正己烷和丙酮对β -LiFe 508纳米晶-石 墨烯复合材料初产物进行交替洗涤3次,接着以10000转/分的转速离心5min,最后在40°C 于真空条件下进行干燥,得到β -LiFe5O8纳米晶-石墨稀复合材料。
[0073] 实施例5
[0074] a)将自制的IOOmg氧化石墨(GO)加入到IOOmLN-甲基吡咯烷酮中,进行超声分散 2小时,得到第一分散液;
[0075] b)将 2mmol (0. 7063g)乙酰丙酮铁 Fe (acac) 3、20mmol (0. 8392g) -水合氢氧化锂 (LiOH · H2O)及Sg十八胺加入至上述第一分散液中,在保持磁力搅拌状态下加热至140°C, 保温15min,然后继续在保持磁力搅拌状态下加热至190°C,保温120min,得到第一反应液, 加入40mL乙醇来对第一反应液进行骤停处理。
[0076] c)对骤停处理后的第一反应液进行以10000转/分的转速离心分离5min得到 β -LiFe5O8纳米晶-石墨烯复合材料初产物,然后用正己烷和丙酮对β -LiFe 508纳米晶-石 墨烯复合材料初产物进行交替洗涤3次,接着以10000转/分的转速离心5min,最后在40°C 于真空条件下进行干燥,得到β -LiFe5O8纳米晶-石墨稀复合材料。
[0077] 由于实施例1~5所制得的β -LiFe5O8纳米晶-石墨烯复合材料的样貌近似,所 以对其进行表征和分析的图也近似,考虑到文件篇幅,以实施例1所制得的β -LiFe5O8纳米 晶-石墨烯复合材料为例,来进行表征和分析。
[0078] 表征及分析
[0079] 1、XRD (X-ray diffraction,X 射线衍射)分析
[0080] 采用荷兰PANalytical公司生产的X射线粉末衍射仪(型号:X Pert PRO MPD)对 本发明自制的原料氧化石墨、石墨烯以及本发明制备的β -LiFe5O8纳米晶-石墨烯复合材 料(β -LiFe508/GN)进行XRD表征,XRD图如图1所示。
[0081] 在图1中,(a)、(b)、(c)分别是氧化石墨(GO),石墨烯(GN)和制备的β -LiFe5O8 纳米晶-石墨烯复合材料的XRD图。在图I (a)中,通过对石墨进行氧化而得到的GO的层 间距为8.04λ (原始石墨约为3.35A),同时在2Θ =10.9°位置有一个典型的衍射峰,而 原始石墨的典型衍射峰消失(2 Θ =26.5° ),说明获得的GO已经被有效的氧化,因此可验 证本发明的自制原料氧化石墨符合要求。图1(b)中,在20-30°范围内出现了一个明显的 衍射晕,同时43. 2°有一个弱的衍射峰,分别对应GN的(002)和(100)面,表明无定形碳存 在,并且GO被还原为GN。图I (c)中,制备的β-LiFe5O8纳米晶-石墨稀复合材料,在2 Θ为 30. 5°、35· 9°、43· 4°、63· 0° 处的衍射峰,分别对应(220)、(311)、(400)、(440)面,同时 没有产生图I (a)和图I (b)对应的衍射峰,说明在β -LiFe5O8纳米晶-石墨烯复合材料中, 不存在G0,可能是GO被还原为了无定形的GN,且GN没有叠加的情况(没有GN的峰)。进一 步指标化,对应尖晶石型的面心立方结构(空间群Fd3m,a=8.2.92A )。由于Fe304、γ -Fe2O3 和β -LiFe508/GN的XRD衍射锋一致,为了证明我们获得的是尖晶石型的β -LiFe508/GN, 将其在700°C煅烧lh,得到的是a -LiFe5O8,如图1(d)所示,从而表明我们制备的是纯相的 0-LiFe 5O8/GN(JCPDS card no. 76_159〇),不含 Fe304、y-Fe203杂质。因为 β-LiFe5O8在 700°C转化为 a-LiFe5O8,Fe3O4和 Y-Fe2O3分别在 600°C,400_500°C会转变为 a-Fe 203。图 中β -LiFe5O8纳米晶-石墨烯复合材料的XRD衍射峰明显宽化,推测得到的纳米颗粒尺寸 较小。
[0082] 2、拉曼光谱分析
[0083] 采用拉曼光谱仪(Horiba JobinYvon公司生产,型号LavRAMAramis)来证明在合 成β -LiFe5O8纳米晶-石墨烯复合材料的过程中,GO被还原的程度。
[0084] 图2是氧化石墨、石墨烯和β -LiFe5O8纳米晶-石墨烯复合材料的拉曼谱图。从 天然石墨到氧化石墨再渐变到石墨烯,发生了巨大的结构变化,而这种变化能够从拉曼图 中表现出来。我们用拉曼图谱来证明在合成P-LiFe 5O8纳米晶-石墨烯复合材料的过程 中,GO被还原的程度。在碳材料的拉曼光谱中,分别把1345(^^570(3!^ 1附近的峰,称为D 带、G带,它们是C原子晶体的Raman特征峰。通常认为G带是二维六方晶格中C原子Sp2 的E2g面内弯曲振动引起的,也与材料的堆垛结果有关。而D带是Alg型对称的K-点的振 动,对应无序的SP 3杂化碳原子振动,和C原子晶格缺陷与混乱度有关。如图2(a)所示,氧 化石墨的D带和G带的强度比,即ID/I eS〇.93 :1,已报道的石墨的ID/Ie约为0.27 :1,可见 随着含氧官能团的引入和SP2杂化碳原子区域被破坏,氧化石墨晶格缺陷增大,所以其ID/ 1<;比石 墨的I d/I。大。如图2(b)所示,所示石墨烯的I/!。为1.31 :1,与氧化石墨相比,石 墨烯的ID/Ie有所增大,可能是因为还原过程中,石墨烯的片层变小所致。如图2(C)所示, β -LiFe5O8纳米晶-石墨烯复合材料的I D/I$ 1. 15 :1,表明在复合材料中氧化石墨已经 被还原了。
[0085] 3、透射电镜图像分析
[0086] 透射电镜:HRTEM,an acceleration voltage of 200kV,FEI Technai G2F20 进行 电镜图像分析。
[0087] 图3为β -LiFe5O8纳米晶-石墨烯复合材料的透射电镜和AFM图。从图3(a)、(b) 图可见,石墨烯和纳米晶的轮廓清晰,制备的β -LiFe5O8纳米晶-石墨烯复合材料呈球形颗 粒,粒径在5nm左右,纳米晶有序地"镶嵌"在石墨烯中,没有团聚现象。图3(c)呈现了清 晰的晶格,晶格间距为〇. 251和0. 298nm,与β -LiFe5O8纳米晶-石墨烯复合材料的(311) 和(220)面对应。同时,没有分散在石墨烯外的纳米晶,也没有大面积裸露的石墨烯,表明 已经成功地制得石墨烯和P-LiFe 5O8纳米晶的复合材料。图3(d)是选区电子衍射图,表明 β -LiFe5O8纳米晶-石墨稀复合材料是多晶结构,与XRD图谱一致。由于石墨稀比较薄,容 易出现褶皱和团聚。但是多次实验的过程中没有发现大面积裸露的石墨烯及石墨烯团聚的 现象,表明β -LiFe5O8纳米晶生长在石墨稀上,同时起到了阻止石墨稀团聚的作用,这也与 XRD图中没有石墨烯重叠的峰是一致的。图3(e)、(f)是P-LiFe5O8纳米晶-石墨烯复合 材料的AFM图及其对应的高度分析图。测试时是将P-LiFe 5O8纳米晶-石墨烯复合材料分 散在乙醇中,经过长时间超声,形成均匀的分散液,并且将其悬涂在新剥开的云母片上。如 图3(e)所示,由于超声时间过长,纳米晶散落,石墨烯上形成凹陷的小孔。同时,石墨烯的 厚度也能很好地被表征,如图3(f),随意选取石墨稀上的几个凹陷处测量其高度,即为石墨 烯的厚度,测量结果分别为I. 〇21nm、l. 251nm和0. 975nm、l. 989nm,表明纳米晶可以生长在 一层或者双层的石墨烯上。
[0088] 4、吸波性能结果
[0089] 为比较和评价β -LiFe5O8纳米晶-石墨烯复合材料的微波吸收性能,把 β -LiFe5O8纳米晶-石墨稀复合材料与石赌均勾混合(β -LiFe 508纳米晶-石墨稀复合材 料的重量分数是60%,石蜡没有电磁波吸收),组装成一个电磁波吸收装置,外径和内径分 别是7. OOmm和3. 04mm,采用Agilent Ε8362Β矢量网络分析仪,测试在固定的频率和样品厚 度下进行,反射损耗值(RL)根据微波传输理论进行计算,公式如下:
[0090] Ziu = Z0tanh[/(2#//c)7//,f,.]
[0091] RL (dB) = 201og| (Zin-Z0) / (Zin+Z〇)
[0092] 其中f代表的是微波频率,d代表的是吸收剂厚度,c代表的是光速,Zin表示吸收 剂的输入抗阻。
[0093] 在I. 0-18. OGHz频率范围内测了不同样品厚度的反射损耗值随频率的变化关系。 图4(a)、(b)分别表示的是β -LiFe5O8纳米晶和β -LiFe5O8纳米晶-石墨稀复合材料的反射 损耗值随频率的变化关系。从图4(a)、(b)可见,随着样品厚度的增加,出现最小损耗值的 吸收频率稍微移向低频,同时吸收强度增加。对比复合材料和β -LiFe5O8纳米晶的反射损 耗值,可以看到复合材料的反射损耗值比β -LiFe5O8纳米晶的反射损耗值大。β -LiFe5O8纳 米晶的最小反射损耗值是在9mm、17GHz时达到-14. 9dB,而在3、4、5mm处的最大吸收值分别 在 9. 9GHz、-3. 6dB ;7. 8GHz、-3. 8dB ;18. 0GHz、-16. 7dB。最小反射损耗值是在 9mm、16. 5GHz 时达到-27dB。从以上分析可以看出,IB-LiFe5O8纳米晶-石墨稀复合材料表现出了更好的 吸波性能,同时样品厚度会影响其电磁吸波性能。
[0094] 本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部 分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
[0095] 以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在 本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围 内。
【主权项】
1. 一种|3-LiFe508纳米晶-石墨稀复合材料,其特征在于:由|3-LiFe508纳米晶和石 墨烯复合而成,所述石墨烯呈片状且作为所述复合材料的基底,所述0 -LiFe5O8纳米晶分 散在所述石墨烯上。2. 如权利要求1所述的0-LiFe508纳米晶-石墨稀复合材料,其特征在于:所述 0 -LiFe5O8纳米晶为尖晶石型的面心立方结构,在(220)、(311)、(400)、(440)面有衍射峰。3. 如权利要求1或2所述的|3-LiFe508纳米晶-石墨稀复合材料,其特征在于:所述 0 -LiFe5O8纳米晶的粒径为1~15nm。4. 如权利要求1所述的0-LiFe508纳米晶-石墨稀复合材料,其特征在于:反射损耗 值为-3. 60 ~-27.OOdB。5. -种如权利要求1~4所述的|3-LiFe508纳米晶-石墨稀复合材料的制备方法,其 特征在于,包括以下步骤: a) 将氧化石墨加入到N-甲基吡咯烷酮中,进行分散,得到第一分散液; b) 将乙酰丙酮铁、一水合氢氧化锂及十八胺加入至所述第一分散液中,形成第一混合 液,在搅拌状态下将第一混合液加热至第一预设温度后,进行第一次保温处理,然后继续在 搅拌状态下,加热至第二预设温度,进行第二次保温处理,得到第一反应液,对第一反应液 进行骤停处理; c) 对骤停处理后的第一反应液进行分离得到D-LiFe5O8纳米晶-石墨烯复合材料 初产物,对0-LiFe5O8纳米晶-石墨烯复合材料初产物进行洗涤、离心及干燥处理,得到 |3 -LiFe5O8纳米晶-石墨稀复合材料。6. 如权利要求5所述的制备方法,其特征在于:所述氧化石墨的克数与所述乙酰丙酮 铁的摩尔数之比为10~50,所述N-甲基吡咯烷酮的升数与所述乙酰丙酮铁的摩尔数之比 为10~50。7. 如权利要求5所述的制备方法,其特征在于:所述一水合氢氧化锂与所述乙酰丙酮 铁的摩尔比为2~10,所述十八胺的克数与所述乙酰丙酮铁的摩尔数的比为0. 25~4。8. 如权利要求5所述的制备方法,其特征在于:所述第一预设温度为90°C~160°C,所 述第一次保温处理的时间为5min以上,所述第二预设温度为160°C以上,所述第二次保温 处理的时间为30min以上。9. 如权利要求5所述的制备方法,其特征在于:所述对第一反应液进行骤停处理通过 向第一反应液中加入乙醇或丙酮来实现。10. 如权利要求1~4的任一项所述的|3-LiFe508纳米晶-石墨稀复合材料在吸收电 磁波领域的应用。
【专利摘要】本发明实施例公开了一种β-LiFe5O8纳米晶-石墨烯复合材料,由β-LiFe5O8纳米晶和石墨烯复合而成,石墨烯呈片状且作为复合材料的基底,β-LiFe5O8纳米晶分散在石墨烯上。本发明实施例还公开了上述的β-LiFe5O8纳米晶-石墨烯复合材料的制备方法和其在吸收电磁波领域的应用。本发明实施例制备的β-LiFe5O8纳米晶-石墨烯复合材料中,β-LiFe5O8纳米晶有序地“镶嵌”在二维石墨烯纳米片上,避免了团聚现象,且相比于β-LiFe5O8纳米晶,表现出了更好的吸波性能,另外由于采用热分解“一锅法”,一步合成了β-LiFe5O8纳米晶-石墨烯复合材料,简便、快速、节省成本。
【IPC分类】C09K3/00
【公开号】CN104893659
【申请号】CN201510289079
【发明人】杨晓晶, 吴红, 孙根班
【申请人】北京师范大学, 北京师大科技园科技发展有限责任公司
【公开日】2015年9月9日
【申请日】2015年5月29日

最新回复(0)