一种基于远程端补偿的光纤光学频率传递方法

xiaoxiao2020-10-23  41

一种基于远程端补偿的光纤光学频率传递方法
【技术领域】
[0001] 本发明属于光纤传输技术领域,设及一种光纤光学频率传递方法,尤其是一种基 于远程端补偿的光纤光学频率传递方法。
【背景技术】
[0002] 利用光纤可W高保真地传输光学载波频率信号,目前光学频率传递的稳定度达到 lE-15/s量级,千秒稳可W达到1E-19量级。传递精度在现有所有频率传递技术中最高。利 用光纤传递光学频率信号不仅可W满足时间频率领域的需求,还可W广泛应用于精密物理 常数测量、甚长基线干设仪(VLBI)、深空探测等科学及工程应用领域。
[0003]当激光信号在光纤中传输时,各种环境因素如温度和振动等,会导致传输光场的 相位波动,等效于激光的频率噪声。上述光纤噪声会造成传输激光的线宽展宽,降低光学频 率的传递精度。为补偿光纤传输路径的相位噪声,1994年马龙生等人提出了多普勒噪声抑 制的方法,如图1所示的多普勒噪声抑制方法的原理示意图。
[0004] 传输光纤位相噪声主要是由光学路径长度和折射率变化引起的,与传输方向无 关,因此可认为正向传输时引入的相位变化自与反向传输时的&&自是近似相等的,该正 是多普勒消除方法的主要依据。通过在远程端使部分激光原路径返回,在本地发送端可得 到返回光与参考光的拍频信号,其包含的相位差正是:
[000引 4邮+4反向 >2<1)1恤,(1)
[0006] 据此可W参照拍频信号上解调出的相位差利用发送端的相位补偿器件(如声光 调制器A0M)对激光进行相位/频率噪声的预补偿,该样就可W消除传输光纤噪声的影响, 在光纤远端得到与发送端相同的光学频率信号。
[0007]W上述多普勒噪声消除方法为基础,多国研究小组开展了光纤光学频率传输研 究,并取得了一定的进展。目前,德国建立了点到点式的光学频率传输光纤链路,总长约 1840km,传输精度在1E-19量级。此外,有少数工作报道了频率传递组网方法研究,主要是 关于点到点传输路径上实现频率信号下载,也有树形结构的组网方案研究。
[0008] 在实际应用中,城市间的远距离传递一般采用菊花链结构,而城区内或者园区内 适合采用星形网络结构。但是,在目前的光纤频率传递系统中,控制部分主要集中在本地 端,包括光纤噪声的探测和补偿都是在本地端进行。将现有光频传递技术应用到星形网络 结构时,本地端设备数量与用户数有关。随着用户的增多,本地端不可避免地变得复杂,不 利于大规模组网。
[0009] 针对现有光纤光学频率传递技术在星形网络结构中扩网的困难,提出一种远程端 补偿传递技术,降低本地端系统复杂度,便于大规模组网。

【发明内容】

[0010] 本发明的目的在于克服上述现有技术的缺点,提供一种基于远程端补偿的光纤光 学频率传递方法,其在保证相同传输精度的条件下,光频传输装置可使发送装置大大简化, 有利于扩展为单点对多点传输,w及进一步构造拓扑网络。
[0011] 本发明的目的是通过W下技术方案来实现的:
[0012] 该种基于远程端补偿的光纤光学频率传递方法,其首先使光信号从本地端出发, 经过传输光纤A传输到远程端,然后利用另一根连接本地端和远程端的光纤B,将本地端 的拍频探测光传输到远程端,在远程端实现光纤噪声的准确测量。
[0013] 进一步,W上方法具体为:
[0014] 光信号E从本地端出发,该光信号E的初始位相为物,经过传输光纤A传输到远 程端,光纤A导致的激光相位延迟为(p/,光信号记为CPoi%;该光信号在远程端被光学接收 装置反射,并再次沿着光纤A原路返回到本地端,返回至本地端的光信号记为cpo+2柳此返 回光信号与本地参考光信号q>〇在合束器处混合,并从合束器的另一端口输出混合光;
[0015] 然后采用另一根光纤B将该混合光传输到远程接收端,在光纤B传输时,混合光 的两成分斬和巧〇+2(|)/感受到相似的光纤相位噪声q>'/,两光分别记为(p〇+(p'j和 柳+邹/坤'/,利用光电探测器仰)测量两束光的拍频信号((p〇+2(p/Hp'/)-(巧〇+私'), 得到光纤相位噪声信号2((V,在远程端利用伺服控制系统实现光纤噪声补偿。
[0016] 进一步,上述光学接收装置为法拉第旋转镜或部分反射镜。
[0017] 进一步,在本地端利用声光频移器和法拉第旋转镜为核屯、器件,组成本地端迈克 尔逊干设仪式光学装置的参考臂,消除本地端参考光与光纤传输路径的反向杂散光同频的 影响。具体为:首先将激光信号分束为两束,其中一束信号光经由传输光纤A传输到 远程端并被法拉第旋转镜(FM1)反射回本地端;其中,光纤传输路径的杂散光记为U〇t+恥, 远程端回传信号光相位记为其中,U。为激光频率,t是时间,斬为光纤路径上杂 散光的随机相位噪声,9/是光纤导致的相位延迟;另外一束信号光则依次经过声光频移器 偏移激光信号的频率,在法拉第旋转镜(FM0)处反射并旋转激光的偏振态,再经过A0M0 移频后,与从远程端的反射光在合束器BS处拍频;拍频信号包括[(1)0+2/0)1-(1)0什2暫化和 两项,通过主动或被动的滤波方式消除光纤路径杂散光的干 扰。
[0018] 进一步,上述在远程端利用伺服控制系统实现光纤噪声补偿具体为;首先对传输 到远端的拍频光进行光电探测得到频率为的射频拍频信号,其中f。为射频驱动频 率,为工作频率,对该拍频信号进行滤波和功率稳定信号调理后再进行模拟鉴相或者数 字鉴相得到其位相噪声,即为光纤链路引入的传输噪声,再经过环路滤波器后反馈给远程 端声光调制器A0M1的驱动VC0,通过A0M1对激光的位相进行细微调节实现光纤噪声的补 偿。
[0019] 与现有技术相比,本发明具有W下有益效果:
[0020] 本发明中光纤光频传输装置远程端补偿方案,是不同于目前常见的本地补偿式光 学频率传输装置的一种新方案。该方案在多普勒噪声消除方法的基础上,利用两束激光在 同一光纤中传输时光纤引入的噪声是共模成分的原理,创造性的将返回信号光与参考光的 混合光用另一束光纤发送到远端进行噪声探测和补偿,实现了光纤噪声的远程补偿。相比 于本地补偿方案,本发明的本地端装置大大简化,有利于星形光学频率传输网络的扩展。
[0021] 进一步,本发明在光纤干设仪参考臂加入了声光频移器A0M0,可将拍频参考光频 率从V"(v。为激光初始频率)移频为V。+2片,避免光纤杂散光的干扰。此外,将声光频移 器移到参考臂,减小了光纤传输路径上的光功率需求。具体如下,激光在光纤A中传输时, 由于散射、反射等因素引起的杂散光在激光初始频率V。处有较大的成分。如果没有参考 光没有频率移动,则远程反射光既可W与参考光拍频,也可W与杂散光拍频,而且两个拍频 信号的频率一致。而杂散光部分的拍频信号不能准确反映光纤噪声,不利于光纤噪声的准 确测量。为防止V。频率附近的反向杂散光在拍频时混入参考激光中成为噪声,通过在参 考臂加入声光频移器(A0M0)可W改变参考光的频率,将参考光的拍频信号与杂散光的拍 频信号在频域上进行了分离,从而提高了光纤噪声测量的精度。法拉第旋转镜FM0的作用 是与远程端的另一个FM1-起消除传输过程中激光偏振变化对拍频信号的不良影响。
【附图说明】
[0022] 图1为多普勒噪声抑制方法的原理示意图;
[0023] 图2为本发明光纤远程端噪声测量方案原理示意图;
[0024] 图3为本发明光频传输远程端补偿方案本地装置信号流图;
[00巧]图4为本发明光频传输远程端补偿方案远程端装置信号流图;
[0026] 图5为光纤光频传输远程端补偿装置原理示意图。
【具体实施方式】
[0027] 本发明基于远程端补偿的光纤光学频率传递方法:首先,使光信号从本地端出发, 经过传输光纤A传输到远程端,然后利用另一根连接本地端和远程端的光纤B,将本地端的 拍频探测光传输到远程端,在远程端实现光纤噪声的准确测量。该方法具体为:
[0028] 光信号E从本地端出发,该光信号E的初始位相为9〇,经过传输光纤A传输到远 程端,光纤A导致的激光相位延迟为%,光信号记为斬+暫;该光信号在远程端被光学接收 装置反射,并再次沿着光纤A原路返回到本地端,返回至本地端的光信号记为90+2带1此 返回光信号与本地参考光信号斬在合束器处混合,并从合束器的另一端口输出混合光;然 后采用另一根光纤B将该混合光传输到远程接收端,在光纤B传输时,混合光的两成分斬 和(p()+2 (()/'感受到相似的光纤相位噪声护/,两光分别记为(po+cp/和柳+邸片9'/,利用 光电探测器(PD)测量两束光的拍频信号(90+29/坤>)-(斬+9>),得到光纤相位噪声信 号2斬',在远程端利用伺服控制系统实现光纤噪声补偿。法拉第旋转镜或反射镜与声光频 移器一起构成本地端核屯、器件,组成本地端迈克尔逊干设仪式光学装置的参考臂,消除本 地端参考光与光纤传输路径的反向杂散光同频的影响。
[0029] 下面结合附图对本发明做进一步详细描述:
[0030]关键点1,利用另一根连接本地端和远程端的光纤B,将本地端的拍频探测光传输 到远程端,在远端实现光纤噪声的准确测量。
[003。具体如下姻图2所示,光信号巧=E,初始位相为斬,简记为斬0从本地端出 发,经过传输光纤(光纤A)传输到远程端,考虑到光纤导致的激光相位延迟9/',光信号可记 为cpo+cp/。该光信号在远程端被光学接收装置(如法拉第旋转镜Ml或部分反射镜等)反射, 并再次沿着光纤A原路返回到本地端,光信号可记为90+2斬。此返回光与本地参考光(po 在合束器(如禪合器B巧处混合,并从合束器的另一端口输出混合光。与传统光纤频率传 递方法不同,本专利提出采用另外一根光纤(如光纤B)将该混合光传输到远程接收端。在 光纤B传输时,混合光的两成分(p0和(p0+2qy感觉到相似的光纤相位噪声9'/,两光分别 记为cpo+cp'/和90+2聲/坤'/。利用光电探测器仰)测量两束光的拍频信号((p0+2q>/坤>) -(cpo+cp'P,可得到光纤相位噪声信号2qy,测得的信号与传统光纤噪声抑制技术相同。基 于此,可W在远程端利用伺服控制系统实现光纤噪声补偿(如图2所示)。
[0032] 技术效果是,将拍频探测光传输到远程端,从而可W在远程端实现光纤噪声的探 测和补偿。具体如下;将携带光纤A噪声的返回光和 拍频参考光合束后用光纤B传输到远 程端。由于光纤B上的路径噪声对两束光基本为共模成分,因此在用PD测量光纤噪声时, 光纤B引入的该部分光纤噪声可W抵消,PD探测到的信号仍主要反映了光纤A上的噪声。 利用该一信号,可W在远程端通过声光调制器A0M1进行噪声补偿,接近本地补偿方案的传 输精度。而且,通过拍频光纤噪声远程端补偿的光学频率传输,比常见的本地补偿方式具有 本地端装置结构更简单的优点,更易于构造各种传输拓扑网络。
[0033] 关键点2,在本地端利用声光频移器和法拉第旋转镜为核屯、器件,组成本地端迈克 尔逊干设仪式光学装置的参考臂,消除本地参考光与光纤传输路径的反向杂散光同频的影 响。具体如下;如图3所示,首先将激光信号分束为两束,其中一束信号光经由传输 光纤A传输到远程端并被法拉第旋转镜(FM1)反射回本地端。其中,光纤传输路径的杂散 光可记为l)〇t+(ps,远程端回传信号光相位可记为为柳t+2cp户其中,U。为激光频率,t是时 间,化为光纤路径上杂散光的随机相位噪声,9/'是光纤导致的相位延迟。另外一束信号 光则依次经过声光频移器(A0M0,射频驱动频率为f。)偏移激光信号的频率,在法拉第旋转 镜(FM0)处反射并旋转激光的偏振态,再经过A0M0移频后,与从远程端的反射光在合束器 BS处拍频。拍频信号包巧[脚什端)t-(1)01+29別和[(l)0t+化)-知0什两项,不仅包含参 考光与远程反射光的拍频成分,还包括光纤路径杂散光与远程反射光的拍频成分。但是,两 拍频成分的信号频率不同,因此可W通过主动或被动的滤波方式消除光纤路径杂散光的干 扰。
[0034] 如果没有频移项,则光电探测器PD测量到拍频信号为[柳t-(l)0t+2(p/)]和
[(i)0t+化)-(i)0t+2q)/')],且两成分的信号频率一致,无法滤除光纤路径杂散光的干扰,不利 于实现高精度的频率传递。
[0035] 在本地端采用声光频移器,可W将本地参考光频率移动到某一频点,光电探测器 测到的两种拍频信号频率不一致,可W通过主动或被动的滤波方式消除光纤路径杂散光的 干扰。
[0036] 技术效果,在光纤干设仪参考臂加入了声光频移器A0M0,可将拍频参考光频率从 Va(v。为激光初始频率)移频为V。+2片,避免光纤杂散光的干扰。此外,将声光频移器移 到参考臂,减小了光纤传输路径上的光功率需求。具体如下,激光在光纤A中传输时,由于 散射、反射等因素引起的杂散光在激光初始频率V。处有较大的成分。如果没有参考光没有 频率移动,则远程反射光既可W与参考光拍频,也可W与杂散光拍频,而且两个拍频信号的 频率一致。而杂散光部分的拍频信号不能准确反映光纤噪声,不利于光纤噪声的准确测量。 为防止V。频率附近的反向杂散光在拍频时混入参考激光中成为噪声,通过在参考臂加入 声光频移器(A0M0)可W改变参考光的频率,将参考光的拍频信号与杂散光的拍频信号在 频域上进行了分离,从而提高了光纤噪声测量的精度。法拉第旋转镜FM0的作用是与远程 端的另一个FM1-起消除传输过程中激光偏振变化对拍频信号的不良影响。
[0037] 关键点3,在远程端利用声光频移器和法拉第旋转镜为核屯、器件,组成远程端迈 克尔逊干设仪式光学装置的信号臂。具体如下;如图4所示,从本地端经过传输光纤到 达远程端的信号光首先经过声光频移器(A0M1,工作频率为fi)再次移频,再由法拉第旋 转镜(FM1)反射并经原路返回到本地端。进入远程端的信号光可记为1)〇1+9户经过A0M1 两次移频并返回本地端的信号光为f(t)〇+2/l)t+2q);?,由于光纤路径中的各种散射作用, 存在杂散光U〇t+化。与本地参考光((u"+2fa)t)在合束器BS处拍频后,拍频信号包括 脚0什2/;什2皆(。〇+2/日X 和两项,不仅包含参考光与远程反射光的拍频成分,还包括 光纤路径杂散光与本地参考光的拍频成分。但是,两拍频成分的信号频率不同,因此可W通 过主动或被动的滤波方式消除光纤路径杂散光的干扰。;
[0038] 如果没有频移项,则光电探测器PD测量到拍频信号为[Cu0t+2(p/Kv0+2/0)t].和
[(1)矿坤,)-(!)<,t-巧0川,频率为2f。和2f。,两成分的信号频率一致,无法滤除光纤路径杂 散光的干扰,不利于实现高精度的频率传递。远程端有A0M1移频后,两成分频率分别为 2fi-2fn和2f。,可通过滤波的方式消除第二项杂散光的影响。
[0039] 此外声光频移器A0M1在此处还起到在远程端补偿光纤噪声的作用。
[0040] 技术效果,在远程端加入声光频移器A0M1,不仅在远程端提供了光纤噪声补偿的 技术途径,还可W将返回信号光的频率从〇。(〇。为激光初始频率)移频为0c+2fi,避免了 光纤路径中杂散光的影响,有利于提高光纤噪声的探测精度。法拉第旋转镜FM1与本地端 FM0 -起消除激光偏振变化的不良影响。
[0041] 针对关键点1,如图5所示,激光从光频传输本地发送装置出发,经过光学分束器 BS分光后,一部分光经过传输光纤(如图5中的光纤A)传输到远程端,被远程端的接收装 置FM1 (可W采用法拉第旋转镜或部分反射镜等)反射并沿着光纤A原路返回到本地端,再 将此返回光与参考光在分束器炬巧处混合,并从合束器的输出端口输出,并经由另外一根 光纤(如图5中的光纤B)传输到远程接收端,利用光电探测器(PD)测得两束光的拍频信 号,再经伺服控制电路处理后反馈在接收端的声光调制器(A0M1)上W实现光纤噪声补偿 (如图5所示)。
[0042] 针对关键点2,如图5所示,在本地端利用声光频移器和法拉第旋转镜为核屯、器 件,组成本地端迈克尔逊干设仪式光学装置的参考臂。首先将窄线宽激光分束为两束,其中 一束直接入射到传输光纤A,另外一束则依次经过声光频移器(A0M0,射频驱动频率为f。) 移频,并经法拉第旋转镜(FM0)反射,再次经过A0M0移频后,与从远程端的反射光在分束器 BS处合束后进入光纤B。
[0043] 针对关键点3,在远程端利用声光频移器和法拉第旋转镜为核屯、器件,组成远程端 迈克尔逊干设仪式光学装置的信号臂。具体如下,远程端装置首先是将从光纤A中传输的 窄线宽激光经过声光频移器(A0M1,工作频率为fi)再次移频,再由法拉第旋转镜(FM1)反 射并经原路返回到本地端,而从光纤B传输来的激光为参考激光与远程端返回光的混合 光,利用光电探测器PD探测,即可得到频率为2fu-2fi或2fu-2fi的拍频信号。可W经过窄 带滤波、功率稳定等信号调理步骤后,由伺服控制系统通过A0M1实现光纤噪声的补偿。
【主权项】
1. 一种基于远程端补偿的光纤光学频率传递方法,其特征在于,首先,使光信号从本地 端出发,经过传输光纤A传输到远程端,然后利用另一根连接本地端和远程端的光纤B,将 本地端的拍频探测光传输到远程端,在远程端实现光纤噪声的准确测量。2. 根据权利要求1所述的基于远程端补偿的光纤光学频率传递方法,其特征在于,具 体为: 光信号E从本地端出发,该光信号E的初始位相为经过传输光纤A传输到远程端, 光纤a导致的激光相位延迟为φ/,光信号记为φ〇+φ/;该光信号在远程端被光学接收装置反 射,并再次沿着光纤A原路返回到本地端,返回至本地端的光信号记为φ〇+2φ/?此返回光信 号与本地参考光信号Φ〇在合束器处混合,并从合束器的另一端口输出混合光; 然后采用另一根光纤B将该混合光传输到远程接收端,在光纤B传输时,混合光的两成 分φ〇和φ〇+2φ,感受到相似的光纤相位噪声q/j,两光分别记为φ〇+φ)'和φ〇+2φ/Ηρ>,利 用光电探测器(PD)测量两束光的拍频信号(φο+Ζφ/Ηρ'Ρ - (φο+φ)·),得到光纤相位噪声 信号2φ/,在远程端利用伺服控制系统实现光纤噪声补偿。3. 根据权利要求2所述的基于远程端补偿的光纤光学频率传递方法,其特征在于,所 述光学接收装置为法拉第旋转镜或部分反射镜。4. 根据权利要求2所述的基于远程端补偿的光纤光学频率传递方法,其特征在于,法 拉第旋转镜或反射镜与声光频移器一起构成本地端核心器件,组成本地端迈克尔逊干涉仪 式光学装置的参考臂,消除本地端参考光与光纤传输路径的反向杂散光同频的影响。5. 根据权利要求4所述的基于远程端补偿的光纤光学频率传递方法,其特征在于,具 体为:首先将激光信号%t分束为两束,其中一束信号光经由传输光纤A传输到远程端并 被法拉第旋转镜(FMl)反射回本地端;其中,光纤传输路径的杂散光记为O〇t+(ps,远程端 回传信号光相位记为υ〇?+2φ'其中,U(1为激光频率,t是时间,(ps为光纤路径上杂散光 的随机相位噪声,W是光纤导致的相位延迟;另外一束信号光则依次经过声光频移器偏 移激光信号的频率,在法拉第旋转镜(FMO)处反射并旋转激光的偏振态,再经过AOMO移 频后,与从远程端的反射光在合束器BS处拍频;拍频信号包括 [(υο?+φ.,ΚυΜ+Ζφ/)]两项,其中f(l为射频驱动频率,通过主动或被动的滤波方式消除光纤 路径杂散光的干扰。6. 根据权利要求2所述的基于远程端补偿的光纤光学频率传递方法,其特征在于,在 远程端利用伺服控制系统实现光纤噪声补偿具体为:首先对传输到远端的拍频光进行光电 探测得到频率为2&-2&的射频拍频信号,其中f ^为射频驱动频率,f i为工作频率,对该拍 频信号进行滤波和功率稳定信号调理后再进行模拟鉴相或者数字鉴相得到其位相噪声,即 为光纤链路引入的传输噪声,再经过环路滤波器后反馈给远程端声光调制器AOMl的驱动 VC0,通过AOMl对激光的位相进行细微调节实现光纤噪声的补偿。
【专利摘要】本发明公开了一种基于远程端补偿的光纤光学频率传递方法,其特征在于,首先,使光信号从本地端出发,经过传输光纤A传输到远程端,然后利用另一根连接本地端和远程端的光纤B,将本地端的拍频探测光传输到远程端,在远程端实现光纤噪声的准确测量。本发明在保证相同传输精度的条件下,光频传输装置可使发送装置大大简化,有利于扩展为单点对多点传输,以及进一步构造拓扑网络。
【IPC分类】H04B10/071, H04B10/2537, H04B10/2507
【公开号】CN104901743
【申请号】CN201510221740
【发明人】刘杰, 刘涛, 董瑞芳, 张首刚
【申请人】中国科学院国家授时中心
【公开日】2015年9月9日
【申请日】2015年5月4日

最新回复(0)