一种α非高斯噪声下chirp信号的参数估计方法
【技术领域】
[0001] 本发明属于信号检测与信息处理领域,更进一步设及信号检测与参数估计领域。
【背景技术】
[0002] 化i巧信号即线性调频信号,chi巧信号被广泛地应用于通信、医学和声纳等信息 系统中,尤其是现代新体制雷达系统。由于chirp信号具有低截获概率特性,对chirp信号 参数检测和估计的研究受到广泛关注。近年来,对chirp信号的检测与估计多是在高斯噪 声情况下,目前常用的方法有分数阶傅里叶变换(PractionalFourierTransform,RrFT) 法,Wigner-Ville分布(WVD)时频分析方法,Wigner-Hou曲变换(WHT)法等,其中化FT是 传统傅里叶变换的推广,其实质是一种信号的时频变换。化irp信号在适当的分数阶变换域 中具有能量聚集特性。该种聚集性有利于化irp信号的非相干解调.目前已知的理论及仿 真均表明,在基于chirp信号的通信系统中,利用分数阶傅里叶变换特有的性质在变换域 中处理chirp信号比时域更方便,且系统也往往能获得较好的误码性能。
[0003] 然而,S化ck等人已经证明了在电话线路中的噪声可W有效地利用a稳定分布来 描述;Nikias等人也证明出a稳定分布是描述大气噪声的非常理想的模型;Ilow等人的 研究表明,a稳定分布与无线网络中的多径干扰和雷达系统的反向散射回波是相一致的。 因此研究a非高斯噪声下chirp信号的检测与估计具有十分重要的意义。
[0004] 在现有的方法中很难对a非高斯噪声背景下的chirp信号进行参数估计,该是 由于非高斯噪声具有脉冲特性,其概率密度函数比高斯分布的概率密度函数具有更厚的拖 尾,使得大多数的估计方法在对非高斯噪声中的信号进行估计时发生性能退化,甚至失效。
【发明内容】
[0005] 本发明提供一种a非高斯噪声下chirp信号的参数估计方法,目的在于利用a 稳定分布来描述一些工程中常见噪声的同时,可W快速准确的估计出chirp信号的参数。
[0006] 本发明采取的技术方案是,包括下列步骤:
[0007] 步骤一:采集含有噪声信号
[000引含有加性噪声的chirp信号数学模型为;
[0009]
(2)
[0010] 其中s(t)表示发射的chi巧信号,其数学模型表示为:
[0011]
化
[0012] 其中t表示时间,T表示时宽,f。表示初始频率,k表示调频率;
[001引A表示chirp信号在传输过程中的衰减因子,n(t)表示a非高斯噪声;
[0014] 步骤二:对信号进行限幅预处理
[0015] 限幅处理后的信号如式(3)所示: (3)[0016]
[0017] 其中p是发射的chi巧信号功率的1~1. 5倍;
[0018] 步骤S;量纲归一化
[0019] 设信号X(t)的时域区间戈
,将时域和频域都 转换成量纲统一的域,引入一个量纲归一化因子S,
[0020] (4)
[002U其中T表示时宽,F表示带宽;
[0022] 并定义量纲归一化坐标为
[0023]
[0024] 其中f表示频率;
[0025] 新坐标系(t',f')实现了量纲归一化;
[0026] 时域和频域2个区间都归一化关
(6)
[0027] 其中Ay= (77^)^,AX为采样频率;
[002引信号采样间隔变为
[0029] 步骤四:化FT
[0030] 通过对含噪声chirp信号进行分数阶化urier变换,可W估计出参数f(i和k,具体 算法如下:
[0031] 首先对含噪声chi巧信号进行化FT得到X,(u),
[0032] 函数X(t)的a阶分数阶化urier变换(化FT)定义如下:
[0033]
(7)
[0034] a是分数阶阶次,U表示采样点,
[00对设年=心1-./.CC邸,则核函数
[0036]
(8)
[0037] 其中,界=口f为时频平面的旋转角度,5W单位脉冲函数,n= 1,2,...的正整 数;
[003引根据式(7)和式巧),化FT的定义式改写为;
[0039]
[0040] 采样型离散分数阶化urier变换值化FT)可分解为W下步骤:
[0041] 步骤1 ;用chi巧信号cxp(-/对2uui^)与信号X(t)相乘,即
[0042]
(10)
[0043] 步骤2;g(t)与chi巧信号樹p(./兀CSC W做卷积,即[0044]
[0045] 步骤3 ;用chi巧信号tan'!)与信号h(U)相乘,即 (11 )
[0046]
(12)
[0047] 然后捜索IX。(U) 12最大值对应的和旋转角参,
[0048] 通过式(蝴可^估计出参数义巧完':
[0049]
(13)
[0化0] 步骤五尺度变换,得到参数估计值/。和义':
[0051]
( 14)
[0化引/。和就是a非高斯噪声下chi巧信号的参数f0、k的估计值。
[0化3] 在高斯噪声背景下,化FT法对chirp信号具有十分理想的参数估计结果,但是当 信号被a非高斯噪声污染时,由于其具有脉冲特性,而且它的概率密度函数比高斯分布的 概率密度函数具有更厚的拖尾,使得化FT法的估计性能退化。因此本发明针对非高斯噪 声的脉冲特性提出了一种基于限幅预处理的化FT的参数估计方法,该方法通过对含有a 非高斯噪声的信号进行限幅预处理,可W消除大部分干扰,特别是脉冲式干扰,再利用化FT 对chirp信号处理时的能量聚集特性,可W有效的对chirp信号的初始频率和调频率进行 估计。
[0化4] 通过仿真实验可W看出,本发明方法在a非高斯噪声下对chirp信号的初始频率 和调频率进行参数估计时,表现出良好的抗噪性能,而且估计结果与无噪声时一致。
[0055]本发明对chirp信号的初始频率和调频率参数进行精确的估计,在雷达信号处理 等系统中有着十分重要的作用,而信号在传输过程中不可避免地出现能量衰减W及受到噪 声的污染。当信号被非高斯噪声污染时,化FT法的估计性能退化。因此本发明针对非高斯 噪声的脉冲特性提出了一种基于限幅预处理的化FT的参数估计方法,该方法通过对含有 a非高斯噪声的信号进行限幅,再利用化FT对chirp信号处理时的能量聚集特性,可W有 效的对chirp信号的初始频率和调频率进行估计。仿真实验证明,本发明方法在对chi巧 信号进行参数估计时具有良好的抗噪性能,其估计结果与无噪声时一致。
[0化6] 本发明具有W下优点:通过限幅预处理可W消除大部分干扰,特别是脉冲式干扰, 再用分数阶化urier变换对信号进行处理,能够得到高精度的估计值;该方法计算复杂度 低,运算量小,适用于工程实际中;限幅预处理的实现简单,适用范围广,能够有效克服偶然 因素引起的脉冲干扰;在判别准确度上更有优势,同时该方法具有很好的稳定性,最重要是 精度高,和无噪声时一致。
【附图说明】
[0057]图1是chi巧信号时序图;
[0化引图2是无信号衰减和噪声的chi巧信号化FT ;
[0化9]图3是含a非高斯噪声的chi巧信号;
[0060] 图4是本发明方法流程图;
[0061] 图5是限幅处理后的chi巧信号;
[006引图6是限幅后的chi巧信号的化FT ;
[0063] 图7(a)是a噪声不同参数下对f。估计误差,具体为当P= 0, 5 = 0. 1,y= 0,曰取0. 1~1. 9时的估计误差;
[0064] 图7(b)是a噪声不同参数下对f。估计误差,具体为当a= 1,5 = 0. 1,y= 0,e取0~1时的估计误差;
[00化]图7(C)是a噪声不同参数下对f。估计误差,具体为当a= 1,P= 0,y= 0, 5取0.1~2.5时的估计误差;
[0066] 图7(d)是a噪声不同参数下对f。估计误差,具体为当a= 1,P= 0, 5 = 0. 1, y取-1~1时的估计误差;
[0067] 图8 (a)是a噪声不同参数下对k估计误差,具体为当0 = 0,5 = 0. 1,y= 0,曰取0. 1~1. 9时的估计误差;
[0068] 图8化)是a噪声不同参数下对k估计误差,具体为当a= 1,5 = 0. 1,y= 0,e取0~1时的估计误差;
[0069] 图8(c)是a噪声不同参数下对k估计误差,具体为当a= 1,P= 0,y= 0, 5取0.1~2. 5时的估计误差;
[0070] 图8(d)是a噪声不同参数下对k估计误差,具体为当a=1,P=0, 5=0. 1, y取-1~1时的估计误差。
【具体实施方式】
[0071] 本发明的具体步骤如下。
[0072] 步骤一:采集含有噪声信号
[00
73] 含有加性噪声的chirp信号数学模型为:
[0074]
(2)
[0075] 其中s(t)表示发射的chi巧信号,其数学模型表示为:
[0076]
(1)
[0077] 其中t表示时间,T表示时宽,f。表示初始频率,k表示调频率;
[0078] A表示chirp信号在传输过程中的衰减因子,n(t)表示a非高斯噪声;
[0079] 步骤二:对信号进行限幅预处理
[0080] 如果含有a非高斯噪声的chirp信号的幅值超过给定的值,给定的值由发射的 chirp信号的功率决定,就认为该值处存在干扰,将该值用给定值代替,如果没超过给定的 值,就无需对其进行限制,此值不变,即为限幅;
[0081] 限幅处理后的信号如式(3)所示:
[0082] (3)
[0083] 其中P是发射的chi巧信号功率的1~1. 5倍;
[0084] 步骤S;量纲归一化
[0085] 必须对信号X(t)进行量纲归一化处理后才能对其进行FrFT数值计算,具体过程 如下:
[0086] 设信号X(t)的时域区间天
将时域和频域都 转换成量纲统一的域,引入一个量纲归一化因子S,
[0087] (4)
[0088] 其中T表示时宽,F表示带宽;
[0089] 并定义量纲归一化坐标为
[0090]
[0091] 其中f表示频率;
[0092] 新坐标系(t',f')实现了量纲归一化;
[0093] 时域和频域2个区间都归一化式
(6)
[0094] 其中At=仍' ,AX为采样频率;
[0095] 信号采样间隔变为 Ax
[0096] 步骤四:化FT
[0097] 通过对含噪声chirp信号进行分数阶化urier变换,可W估计出参数fci和k,具体 算法如下:
[009引首先对含噪声chi巧信号进行化FT得到X>),
[0099] 函数X(t)的a阶分数阶化urier变换(化FT)定义如下:
[0100] A'"(") =F'W〇] =J'/Y(/)人'"(/,"脚 (7)
[0101] a是分数阶阶次,U表示采样点,
[01 0引 4,=小-J说、巧,则核函数
[0103]
(8)
[0104] 其中,界=0^为时频平面的旋转角度,5W单位脉冲函数,n= 1,2,...的正整 数;
[0105] 根据式(7)和式巧),化FT的定义式改写为:
[0106]
[0107] 采样型离散分数阶化urier变换值化FT)可分解为W下步骤:
[010引步骤1;用chi巧信号exp(-/对2Um^)与信号X(t)相乘,即
[0109]
(10)
[0110] 步骤2 ;gW与chi巧信号cxp(./对2CSC如做卷积,即
[0111] (11)
[011引步骤3 ;用chi巧信号exp(-y;r/'.'2Um^)巧信号h(u)相乘,即 [011 引
[0114] 然后捜索IX。(U) 12最大值对应的而和旋转角参; (12)
[0115] 通过式(I3)可W估计出参数/〇'和户:
[0116]
(13)
[0117] 步骤五尺度变换,得到参数估计值/。:和A.
[01化]
(14)
[0119] /。和《就是a非高斯噪声下chi巧信号的参数f〇、k的估计值。
[0120] 下面结合仿真图对本发明做进一步的描述如下:
[0121] 1、仿真条件
[0122] 设chi巧信号的初始频率片二lOOMHz,调频率k=lOOMHz/us,采样频率f,= 800MHz,时宽为化S,如图1所示。
[0123]2、对比实验仿真内容与结果分析
[0124] 在无信号衰减和噪声的情况进行参数估计,得到而=4.85,^a=1.156x^,如图2 所示。根据式(13)和式(14)计算得=99.987, ;1: = 100.0279,误差ef=0. 013, 6k= 0.0279。 此时的误差完全是由信号离散化和在计算化FT时阶次的捜索无法连续造成的。
[0125] 在被a稳定分布的非高斯噪声淹没的情况下,对回波信号进行参数估计,如图3 所示,采用本文提出的方法对此chirp信号的参数f。和k进行估计,具体流程如图4所示。 其中a非高斯噪声的参数a=1.5,0=0,5=1,]i= 0,信号衰减因子为60%。 [01%] 首先对回波信号进行限幅预处理,P是发射的chirp信号功率的1~1. 5倍,得到 新的信号如图5所示,再对其进行分数阶化urier,如图6所示,得到<;"=4.85,知= 1.156x!. 根据式(1扣和式(14)计算得./';,:=99為87,;^=100.0279,误差 6f= 0. 013,ek= 0. 0279。
[0127] 估计结果与无噪声和衰减时一致,由此可见,改进后的化FT可W有效地对a噪声 下的chirp信号进行参数估计。
[0128] 在不同参数的a非高斯噪声背景下对图1中的chirp信号进行参数估计,结果如 图7、图8所示,其中efl和ekl表示采用本文方法对f。和k估计的误差,ef2和ek2表示 直接采用化FT法对f。和k估计的误差。
[0129] 通过图7、图8的实验对比结果可知,该方法比直接采用化FT法能更有效地对a 非高斯噪声下的chirp信号进行参数估计。该方法根据非高斯噪声的脉冲特性对化FT进行 了改进,对不同参数的a非高斯噪声均有良好的参数估计效果,而且估计结果十分理想。
【主权项】
1. 一种α非高斯噪声下chirp信号的参数估计方法,其特征在于包括下列步骤: 步骤一:采集含有噪声信号 含有加性噪声的chirp信号数学模型为:(2) 其中s (t)表示发射的chirp信号,其数学模型表示为:(1) 其中t表示时间,T表示时宽,&表示初始频率,k表示调频率; A表不chirp信号在传输过程中的衰减因子,n(t)表不α非高斯噪声; 步骤二:对信号进行限幅预处理 限幅处理后的信号如式(3)所示:(3) P是限幅值; 步骤三:量纲归一化 设信号X(t)的时域区间为对应的频域区间戈将时域和频域都转换 成量纲统一的域,引入一个量纲归一化因子S,(4) 其中T表示时宽,F表示带宽; 并定义量纲归一化坐标为其中f表示频率; 新坐标系(t',f')实现了量纲归一化; 时域和频域2个区间都归一化为(6) 其中Av = (FF)I Λ X为采样频率; 信号采样间隔变为 步骤四:FrFT 通过对含噪声chirp信号进行分数阶Fourier变换,可以估计出参数fQ和k,具体算法 如下: 首先对含噪声chirp信号进行FrFT得到Xa(U), 函数X (t)的a阶分数阶Fourier变换(FrFT)定义如下:(7) a是分数阶阶次,u表示采样点, 设,则核函数(8) 其中:为时频平面的旋转角度,S (t)单位脉冲函数,η = 1,2,...的正整数; 根据式(7)和式(8),FrFT的定义式改写为:采样型离散分数阶Fourier变换DFrFT可分解为以下步骤: 步骤1 :用chirp信号与信号X⑴相乘,即(10) 步骤2 :g⑴与chirp信号exp(_/;r/_ cscp)做卷积,即(11) 步骤3 :用chirp信号与信号h (U)相乘,即(12) 然后搜索|Xa(u) 12最大值对应的和旋转角彡; 通过式(13)可以估计出参数又'和f :(13) 步骤五尺度变换,得到参数估计值和L(14) 尤和L就是α非高斯噪声下chirp信号的参数fpk的估计值。2.如权利要求1所述的一种α非高斯噪声下chirp信号的参数估计方法,其特征在 于:所述步骤二中限幅值P是发射的chirp信号功率的1~1. 5倍。
【专利摘要】本发明涉及一种α非高斯噪声下chirp信号的参数估计方法,属于信号检测与信息处理领域,更进一步涉及信号检测与参数估计领域。通过对含有α非高斯噪声的信号进行限幅预处理,可以消除大部分干扰,特别是脉冲式干扰,再利用FrFT对chirp信号处理时的能量聚集特性,可以有效的对chirp信号的初始频率和调频率进行估计。优点:通过限幅预处理可以消除大部分干扰,特别是脉冲式干扰,再用分数阶Fourier变换对信号进行处理,能够得到高精度的估计值;该方法计算复杂度低,运算量小,适用于工程实际中;限幅预处理的实现简单,适用范围广,能够有效克服偶然因素引起的脉冲干扰;在判别准确度上更有优势,同时该方法具有很好的稳定性,最重要是精度高,和无噪声时一致。
【IPC分类】H04L25/02, H04L25/03
【公开号】CN104901909
【申请号】CN201510264123
【发明人】王春阳, 刘雪莲, 陈宇, 孙敬雪
【申请人】长春理工大学
【公开日】2015年9月9日
【申请日】2015年5月21日