一种基于背景边缘模型的摄像机异常检测方法及系统的制作方法
【技术领域】
[0001] 本发明设及视频监控领域,尤其是一种基于背景边缘模型的摄像机异常检测方法 及系统。
【背景技术】
[0002] 近年来,随着经济社会快速发展W及科技的不断进步,视频监控已经深入人们日 常生活的各个领域。视频监控对构建和谐社会有着重要的意义。在安全领域,随着城市人 口的快速增长及城市环境的日益复杂,各种犯罪案件、群体性事件、骚乱、恐怖袭击等日益 增多。视频监控系统在有效控制各种事件中发挥着重要作用。我国公安部组织了 "3111" 工程,在全国范围内推动城市报警与监控建设。构建视频监控网络是目前大中型城市进行 社会公共安全事件检测与预警的主要手段之一。据有关数据显示,广州市已安装完毕25万 个监控摄像头,遍布道路、桥梁、公共场所、公共交通系统和案件多发区域;在北京已将ATM 机、大中型商场、加油站、中小学幼儿园的内保监控系统全部与警方监控网联网;上海2010 年已在马路上安装了 20多万个监控摄像头,全面建立"社会防控体系";在英国,全国范围 内已经安装摄像头420多万个。在经济领域,视频监控可用于工业控制,可W大量节约人力 资源,有效保障工业生产的安全进行;也可用于特殊地段的远程监控可W有效防止自然灾 害的发生,减少损失。在交通领域,视频监控能及时提供各路段的车辆流量和路况信息,给 管理部口提供生动清晰的图像,及时进行正确的决策;同时可W记录违章车辆,处理交通事 故、车道拥塞等意外事件,W便实现准确快速的交通指挥调度,保障道路的安全畅通,是保 证现代社会公共安全的重要高科技手段与技术。然而随着视频监控的普及,一方面一些可 疑人员为了躲避监控,会对摄像头做出各种干扰,如遮挡、转动、移动、黑帖W及过饱和等; 另一方面由于各种意外事件使监控摄像设备受到干扰破坏,因此计算机自动准确及时地识 别该些干扰,即进行摄像机异常检测(cameratamperingdetection)具有重要的实际应 用意义。
[000引 目前,已有的摄像机异常检测技术主要存在W下缺点:
[0004] (1)主要在人少的静止场景中分析,无法对在光照条件复杂和有大量人群活动的 场景中进行正确检测,对噪声敏感,抗干扰能力弱;
[0005] (2)在分析运行时会占用大量内存,并消耗服务器的大量CPU资源;
[0006] (3)容易将监控画面中出现一群人的正常情况误报为摄像机异常,不够准确。
【发明内容】
[0007] 为了解决上述技术问题,本发明的目的是;提供一种抗干扰能力强、消耗CPU资源 少和准确的,基于背景边缘模型的摄像机异常检测方法。
[0008] 本发明的另一目的是:提供一种抗干扰能力强、消耗CPU资源少和准确的,基于背 景边缘模型的摄像机异常检测方法系统
[0009] 本发明解决其技术问题所采用的技术方案是;
[0010] 一种基于背景边缘模型的摄像机异常检测方法,包括:
[0011] A、获取视频灰度图像;
[0012]B、采用PBAS前景检测方法提取出前景图,并结合视频帖的灰度图像,得到每一帖 视频序列的背景图;
[0013] C、根据得到的背景图采用加权法对背景样本图进行随机更新;
[0014] D、对每一帖的灰度图和背景样本图分别进行边缘检测,然后根据边缘检测的结果 进行边缘变化率计算,从而得出背景边缘模型;
[0015]E、根据背景边缘模型采用自适应的边缘阔值,初步检测摄像机是否可能有异常情 况发生,若是,则发出预报警信号并执行步骤F,反之,则表明摄像机处于正常情况下,不进 行预报警;
[001引 F、提取出视频帖的SU计角点特征,并采用角点阔值法判断摄像机是否确实有异 常情况发生,若是,则发出报警信号,反之,则表明摄像机处于正常情况下,不进行报警。
[0017] 进一步,所述步骤B,其具体为:
[0018] 采用PBAS前景检测方法提取出前景图,然后结合视频帖的灰度图像,得到每一帖 视频序列的背景图,所述每一帖视频序列的背景图Bi(x,y)的表达式为:
[0019]
[0020] 其中,(X,y)为视频帖的像素点,。(X,y)为第i帖的前景检测结果,Bi(X,y)为第 i帖提取到的背景值,li(X,y)表示第i帖中像素点(X,y)的像素灰度值。
[0021] 进一步,所述步骤C,其具体为:
[0022] 根据得到的背景图和设定的更新策略,采用加权法对背景样本图进行随机更新, 所述设定的更新策略为:
[0023]
[0024] 其中,BSi(x,y)表示第i帖的背景样本图值,Bsw(x,y)表示第i+1帖的背景样本 图值,a为设定的更新权重,rand函数为求伪随机数函数,B为给定的随机数。
[00巧]进一步,所述步骤D,其包括:
[0026]D1、对背景样本图中的背景图与当前帖的灰度图像进行Canny边缘检测;
[0027]D2、将Canny边缘检测的结果由0-255矩阵转化为0-1矩阵,从而得到背景边缘特 征与当前边缘特征;
[0028]D3、根据背景边缘特征与当前边缘特征,计算出边缘变化率和平均边缘变化率,从 而建立背景边缘模型。
[0029] 进一步,所述步骤D3,其包括:
[0030]D31、根据背景边缘特征与当前边缘特征,计算出边缘变化率特征,所述边缘变化 率特征函数REd的表达式为:
[0031]
[0032] 其中,M和N分别表示视频图像的宽和高,Eb(i,j)表示像素点(x,y)的背景边缘 特征,Et(i,j)表示像素点(X,y)的当前边缘特征;
[0033] D32、在视频序列的第吨+1~2N。帖的训练时间段内,将边缘变化率特征函数Red的 值保存至大小为N。的特征序列中,并计算相应灰度图像的平均边缘变化率特征函数屏W, 所述平均边缘变化率特征函数京h/的计算公式为:
[0034]
[003引其中,为第i帖灰度图像的平均边缘变化率的值;
[0036]D33、根据边缘变化率特征函数和平均边缘变化率特征函数,得出背景边缘模型的 边缘特征函数,所述背景边缘模型的边缘特征函数Edi的计算公式为:
[0037]
[0038] 进一步,所述步骤E,其包括:
[0039]E1、根据自适应边缘阔值的调整策略和背景边缘模型计算视频帖的自适应边缘阔 值,所述自适应边缘阔值的调整策略为:
[0040]
[0041]其中,Thli为第i帖的自适应边缘阔值,且化1i还应满足;
[0042] 化1。贈<化1 i< Thupper,化聊e济化1。贈分别表示自适应边缘阔值更新率的上下限, Thin为第i-1帖的自适应边缘阔值,表示自适应边缘阔值的调整控制因子,Thi。。和 化i。。分别表示自适应边缘阔值更新率增加及减小的幅度;
[0043]E2、比较当前视频帖中背景边缘模型的边缘特征函数是否大于视频帖的自适应边 缘阔值,若是,则表示摄像机可能有异常情况发生,此时发出预报警信号并执行步骤F;反 么当随机数rand做等于0时,则将正常情况下的边缘变化率Rw的值随机更新到特征队 列中去,从而更新平均边缘变化率京Ed。
[0044] 进一步,所述步骤F,其包括:
[004引 F1、采用SURF算法提取出图像帖的SU计角点特征;
[0046] F2、将视频图像划分为多个图像子块,然后采用角点阔值法判断摄像机是否确实 有异常情况发生,若是,则发出报警信号,反之,则表明摄像机处于正常情况下,不进行报 警。
[0047] 进一步,所述步骤F1,其包括:
[0048]F11、获取视频灰度图像的SURF特征函数,所述视频灰度图像的SURF特征函数的 计算公式为:
[0049]
[0050]其中,S康示第i帖图像的SURF特征函数,Xu和Yu分别为在第i帖图像中角点 j的横坐标和纵坐标,W&.,)为在第i帖图像中角点j的角点响应值,n为提取的角点数;
[0051]F12、计算训练样本集中图像的标准SURF特征函数,所述训练样本集中图像的标 准SURF特征函数S,td的计算公式为:
[0052]
[0053]F13、计算视频灰度图像与训练样本集中图像的比较函数,所述视频灰度图像与训 练样本集中图像的比较函数町的计算公式为:
[0054] Di= |Si-SstdL
[00巧]进一步,所述步骤巧,其包括:
[0056] 巧1、将视频图像划分为32X32大小的图像子块;
[0057] 巧2、统计所有图像子块中比较函数町大于图像子块角点阔值的总个数,所述图像 子块角点阔值化2的计算公式为:
[0058]化2 =M曰+ 0V曰'
[005引其中,M为2N。帖的视频训练期间内所有图像子块SURF特征的均值,0为设定的 方差权重系数,V,为2N。帖的视频训练期间内所
有图像子块SURF特征的方差;
[0060] 巧3、判断统计的总个数是否大于设定的异常图像子块个数阔值,若是,则表示摄 像机确实有异常情况发生,此时发出报警信号,反之,则表明摄像机处于正常情况下,不进 行报警。
[0061] 本发明解决其技术问题所采用的另一技术方案是:
[0062] 一种基于背景边缘模型的摄像机异常检测系统,包括:
[0063] 获取模块,用于获取视频灰度图像;
[0064] 前景检测与背景提取模块,用于采用PBAS前景检测方法提取出前景图,并结合视 频帖的灰度图像,得到每一帖视频序列的背景图;
[0065] 样本随机更新模块,用于根据得到的背景图采用加权法对背景样本图进行随机更 新;
[0066] 边缘检测与计算模块,用于对每一帖的灰度图和背景样本图分别进行边缘检测, 然后根据边缘检测的结果进行边缘变化率计算,从而得出背景边缘模型;
[0067] 初步异常检测模块,用于根据背景边缘模型采用自适应的边缘阔值,初步检测摄 像机是否可能有异常情况发生,若是,则发出预报警信号并执行步骤F,反之,则表明摄像机 处于正常情况下,不进行预报警;
[0068] 角点阔值判断模块,用于提取出视频帖的sud角点特征,并采用角点阔值法判断 摄像机是否确实有异常情况发生,若是,则发出报警信号,反之,则表明摄像机处于正常情 况下,不进行报警;
[0069] 所述获取模块的输出端依次通过前景检测与背景提取模块、样本随机更新模块、 边缘检测与计算模块和初步异常检测模块进而与角点阔值判断模块的输入端连接。
[0070] 本发明的方法的有益效果是:采用PBAS前景检测方法提取出前景图,并通过加权 随机更新得到背景样本图,能在光照条件复杂和大量人群活动的场景下进行正确检测,对 噪声不敏感,抗干扰能力强;通过边缘检测提取边缘特征,并结合自适应的边缘阔值初步判 断摄像机的异常情况,可W快速地初步判断摄像机的所有异常情况,消耗CPU和内存资源 均较少;采用sud角点特征来排除将监控画面中出现一群人的正常情况误报为摄像机异 常的现象,增加了异常检测的准确性。
[0071] 本发明的系统的有益效果是:前景检测与背景提取模块采用PBAS前景检测方法 提取出前景图,并通过样本随机更新模块加权随机更新得到背景样本图,能在光照条件复 杂和大量人群活动的场景下进行正确检测,对噪声不敏感,抗干扰能力强;通过边缘检测与 计算模块进行边缘检测提取边缘特征,并结合初步异常检测模块的自适应的边缘阔值初步 判断摄像机的异常情况,可W快速地初步判断摄像机的所有异常情况,消耗CPU和内存资 源均较少;角点阔值判断模块采用sud角点特征来排除将监控画面中出现一群人的正常 情况误报为摄像机异常的现象,增加了异常检测的准确性。
【附图说明】
[0072] 下面结合附图和实施例对本发明作进一步说明。
[0073] 图1为本发明一种基于背景边缘模型的摄像机异常检测方法的整体流程图;
[0074] 图2为本发明步骤D的流程图;
[00巧]图3为本发明步骤D3的流程图;
[0076] 图4为本发明步骤E的流程图;
[0077] 图5为本发明步骤F的流程图;
[0078] 图6为本发明步骤F1的流程图;
[0079] 图7为本发明步骤巧的流程图;
[0080] 图8为本发明一种基于背景边缘模型的摄像机异常检测系统的整体结构框图;
[0081] 图9为本发明实施例一基于背景边缘模型的摄像机异常检测方法的具体步骤流 程图。
【具体实施方式】
[0082] 参照图1,一种基于背景边缘模型的摄像机异常检测方法,包括:
[0083] A、获取视频灰度图像;
[0084] B、采用PBAS前景检测方法提取出前景图,并结合视频帖的灰度图像,得到每一帖 视频序列的背景图;
[0085] C、根据得到的背景图采用加权法对背景样本图进行随机更新;
[0086]D、对每一帖的灰度图和背景样本图分别进行边缘检测,然后根据边缘检测的结果 进行边缘变化率计算,从而得出背景边缘模型;
[0087]E、根据背景边缘模型采用自适应的边缘阔值,初步检测摄像机是否可能有异常情 况发生,若是,则发出预报警信号并执行步骤F,反之,则表明摄像机处于正常情况下,不进 行预报警;
[0088]F、提取出视频帖的311计角点特征,并采用角点阔值法判断摄像机是否确实有异 常情况发生,若是,则发出报警信号,反之,则表明摄像机处于正常情况下,不进行报警。
[0089] 进一步作为优选的实施方式,所述步骤B,其具体为:
[0090] 采用PBAS前景检测方法提取出前景图,然后结合视频帖的灰度图像,得到每一帖 视频序列的背景图,所述每一帖视频序列的背景图Bi(x,y)的表达式为:
[0091]
[0092] 其中,(X,y)为视频帖的像素点,。(X,y)为第i帖的前景检测结果,Bi(X,y)为第 i帖提取到的背景值,li(X,y)表示第i帖中像素点(X,y)的像素灰度值。
[0093] 进一步作为优选的实施方式,所述步骤C,其具体为:
[0094] 根据得到的背景图和设定的更新策略,采用加权法对背景样本图进行随机更新, 所述设定的更新策略为:
[0095]
[0096] 其中,BSi(x,y)表示第i帖的背景样本图值,Bsw(x,y)表示第i+1帖的背景样本 图值,a为设定的更新权重,rand函数为求伪随机数函数,B为给定的随机数。
[0097] 参照图2,进一步作为优选的实施方式,所述步骤D,其包括:
[009引 D1、对背景样本图中的背景图与当前帖的灰度图像进行Canny边缘检测;
[0099]D2、将Canny边缘检测的结果由0-255矩阵转化为0-1矩阵,从而得到背景边缘特 征与当前边缘特征;
[0100] D3、根据背景边缘特征与当前边缘特征,计算出边缘变化率和平均边缘变化率,从 而建立背景边缘模型。
[0101] 参照图3,进一步作为优选的实施方式,所述步骤D3,其包括:
[0102] D31、根据背景边缘特征与当前边缘特征,计算出边缘变化率特征,所述边缘变化 率特征函数REd的表达式为:
[0103]
[0104] 其中,M和N分别表示视频图像的宽和高,Eb(iJ)表示像素点(x,y)的背景边缘 特征,Et(i,j)表示像素点(X,y)的当前边缘特征;
[0105] D32、在视频序列的第吨+1~2N。帖的训练时间段内,将边缘变化率特征函数Red的 值保存至大小为N。的特征序列中,并计算相应灰度图像的平均边缘变化率特征函数, 所述平均边缘变化率特征函数哀W的计算公式为:
[0106]
[0107] 其中,为第i帖灰度图像的平均边缘变化率的值;
[0108] D33、根据边缘变化率特征函数和平均边缘变化率特征函数,得出背景边缘模型的 边缘特征函数,所述背景边缘模型的边缘特征函数Edi的计算公式为:
[0109]
[0110] 参照图4,进一步作为优选的实施方式,所述步骤E,其包括:
[0111] E1、根据自适应边缘阔值的调整策略和背景边缘模型计算视频帖的自适应边缘阔 值,所述自适应边缘阔值的调整策略为:
[0112]
[011引其中,Thli为第i帖的自适应边缘阔值,且Thli还应满足;
[0114]化1。贈<Thli< Thupper,化聊er和Th1。贈分别表示自适应边缘阔值更新率的上下限, Thin为第i-1帖的自适应边缘阔值,表示自适应边缘阔值的调整控制因子,Thi。。和 化i。。分别表示自适应边缘阔值更新率增加及减小的幅度;
[0115] E2、比较当前视频帖中背景边缘模型的边缘特征函数是否大于视频帖的自适应边 缘阔值,若是,则表示摄像机可能有异常情况发生,此时发出预报警信号并执行步骤F;反 么当随机数rand做等于0时,则将正常情况下的边缘变化率Rw的值随机更新到特征队 列中去,从而更新平均边缘变化率衣h/。
[0116] 参照图5,进一步作为优选的实施方式,所述步骤F,其包括:
[0117]F1、采用SURF算法提取出图像帖的SU计角点特征;
[0118] F2、将视频图像划分为多个图像子块,然后采用角点阔值法判断摄像机是否确实 有异常情况发生,若是,则发出报警信号,反之,则表明摄像机处于正常情况下,不进行报 警。
[0119] 参照图6,进一步作为优选的实施方式,所述步骤F1,其包括:
[0120] F11、获取视频灰度图像的SURF特征函数,所述视频灰度图像的SURF特征函数的 计算公式为:
[0121]
[0122] 其中,Si表示第i帖图像的SURF特征函数,Xu和Yu分别为在第i帖图像中角点 j的横坐标和纵坐标,K巧,)为在第i帖图像中角点j的
角点响应值,n为提取的角点数;
[0123]F12、计算训练样本集中图像的标准SURF特征函数,所述训练样本集中图像的标 准SURF特征函数S,td的计算公式为:
[0124]
[0125]F13、计算视频灰度图像与训练样本集中图像的比较函数,所述视频灰度图像与训 练样本集中图像的比较函数町的计算公式为:
[0126] Di= |Si-Sstdl。
[0127] 参照图7,进一步作为优选的实施方式,所述步骤巧,其包括:
[012引巧1、将视频图像划分为32X32大小的图像子块;
[0129] 巧2、统计所有图像子块中比较函数Di大于图像子块角点阔值的总个数,所述图像 子块角点阔值化2的计算公式为:
[0130] Th2 = Ms+eVs,
[0131] 其中,M为2N。帖的视频训练期间内所有图像子块SURF特征的均值,0为设定的 方差权重系数,V,为2N。帖的视频训练期间内所有图像子块SURF特征的方差;
[0132] 巧3、判断统计的总个数是否大于设定的异常图像子块个数阔值,若是,则表示摄 像机确实有异常情况发生,此时发出报警信号,反之,则表明摄像机处于正常情况下,不进 行报警。
[0133] 参照图8,一种基于背景边缘模型的摄像机异常检测系统,包括:
[0134] 获取模块,用于获取视频灰度图像;
[0135] 前景检测与背景提取模块,用于采用PBAS前景检测方法提取出前景图,并结合视 频帖的灰度图像,得到每一帖视频序列的背景图;
[013引样本随机更新模块,用于根据得到的背景图采用加权法对背景样本图进行随机更新;
[0137] 边缘检测与计算模块,用于对每一帖的灰度图和背景样本图分别进行边缘检测, 然后根据边缘检测的结果进行边缘变化率计算,从而得出背景边缘模型;
[0138] 初步异常检测模块,用于根据背景边缘模型采用自适应的边缘阔值,初步检测摄 像机是否可能有异常情况发生,若是,则发出预报警信号并执行步骤F,反之,则表明摄像机 处于正常情况下,不进行预报警;
[0139]角点阔值判断模块,用于提取出视频帖的sud角点特征,并采用角点阔值法判断 摄像机是否确实有异常情况发生,若是,则发出报警信号,反之,则表明摄像机处于正常情 况下,不进行报警;
[0140]所述获取模块的输出端依次通过前景检测与背景提取模块、样本随机更新模块、 边缘检测与计算模块和初步异常检测模块进而与角点阔值判断模块的输入端连接。
[0141] 下面结合说明书附图和具体实施例对本发明作进一步详细说明。
[0142] 实施例一
[0143] 参照图9,本发明的第一实施例:
[0144] 本发明一种基于背景边缘模型的摄像机异常检测方法包括W下步骤:
[0145]A.通过摄像头获取视频灰度图像;
[0146]B.采用PBAS前景检测方法提取出前景图,并结合视频帖的灰度图像,得到每一帖 视频序列的背景图;
[0147] 具体的方法如下;首先由基于像素的无参数模型检测(即PBAS检测)方法提取出 前景。(X,y),当像素点(X,y)为前景点时,保存灰度值0为背景值;否则,保存其灰度值1 为背景值,如下式所示:
[014引
(1)
[0149] 其中,Fi(x,y)表示第i帖的前景检测结果,当其值为1时,表示点(x,y)为前景 点;当值为0时,表示点(X,y)为背景点。
[0150] 由PBAS检测方法对视频序列的前N。帖图像进行训练后,再提取每一帖图像的背 景图,然后保存第吨+1帖图像的背景图为背景样本图。
[0151] C.根据得到的背景图采用加权法对背景样本图进行随机更新;
[0152] 当前景发生变化时,背景也会相应地发生改变,为减少出现错误判断的概率,所W 需要对背景样本图进行更新。本实施例采用加权法随机更新背景,随机选择背景样本图中 的像素集合更新。其更新策略如下式所示:
[0153]
[0154] 其中;a为更新权重,本实施例设定为a= 0. 1。B为给定的随机数,且B= 50, rand炬)表示一个在0到50之间的随机整数。
[0155]D.对每一帖的灰度图和背景样本图分别进行Canny边缘检测,并将结果都转化为 0-1矩阵,得到当前边缘特征和背景边缘特征,然后计算出边缘变化率和平均边缘变化率, 从而建立起背景边缘模型;
[0156] 当发生摄像机异常干扰时,视频图像的边缘信息将会大大减少,所W采用边缘特 征可W很好地表征摄像机正常与异常时的不同情况,具体过程为:
[0157] (1)在视频序列的第Nc+1~2N。帖的训练时间段内,对背景样本图中的背景图与 当前帖(特指灰度图)进行Canny边缘检测,并将0-255矩阵结果转化为0-1矩阵,得到背 景边缘特征Eb与当前边缘特征E再根据背景边缘特征Eb与当前边缘特征E。,计算出边缘 变化率特征Rcd,如下式所示:
[01则
(3)
[015引 似在视频序列的第Nu+1~2N。帖训练时间段内,保存边缘变化率Rw的值到大小 为N。的特征队列中,并计算相应灰度图像的平均边缘变化率屏/,,,
[0160]
(4)
[0161] (3)根据边缘变化率特征函数和平均边缘变化率特征函数,得出背景边缘模型的 边缘特征函数,所述背景边缘模型的边缘特征函数Edi的计算公式为:
[0162]
(5)
[0163]E.使用自适应的边缘阔值,检测摄像机是否有异常情况发生:若有,则发出预报 警信号;反之,则不进行预报警;
[0164]当前环境越复杂,检测的前景数目越多,则背景图模型与当前帖的边缘信息差异 就越大,其边缘阔值也应该越大,才能保证当前帖不被误判为异常帖;当前环境越简单,前 景变化就越小,则背景图模型与当前帖的边缘信息差异较小,边缘阔值也应该越小,调整策 略如下式(6)和(7)所示:
[0165]
[016引化。贈<化11<化聊6, (7)
[0167]其中,IKaie用于控制前景复杂度对判断阔值的调整,化1。的取值为0. 5。当Edi>化11时,表示摄像机可能有异常发生,此时发出预报警信息;否则,当随机数rand炬)等 于0时,则将正常情况下的边缘变化率Rw的值随机更新到特征队列中去,从而更新平均边 缘变化率巧。
[016引 F.若有预报警信号发生,则提取出当前帖的SU计角点特征,W排除误报的现象;
[0169] 当画面中出现一群人或是大目标的运动时,前景会发生突变,但背景图样本还没 来得及更新,导致边缘检测的结果也变化大,所W容易造成误报。本实施例需要考虑根据前 景和光照变化不明显的特征来去除误报,而角点是最好的选择。角点的定义为二维图像亮 度变化剧烈的点或图像边缘曲线上具有曲率极大值的点。目前已有多种角点检测的方法, 相较而言,SURF在亮度变化下匹配效果最好,在模糊方面优于SIFT,且速度比SIFT更快。所 W本发明采用SURF方法提取出角点特征,来去除因画面中出现一群人运动而引起的误报。
[0170] 定义图像的SURF特征函数为:
[0171]
(8)
[0172] 函数Si反映了图像的角点位置及尖锐程度等综合信息。因此当图像发生变化时, Si会发生明显的变化,而照明光线和前景等的变化不会引起Si值的变化。
[0173] 定义两幅图像的比较函数为:
[0174] Di= |Si-SstJ (9)
[01巧]其中,Sstd表示在图像训练集中的标准SURF特征函数,定义如下:
[017引
(10)
[0177]G.采用角点阔值法判断摄像机是否确实有异常情况发生;若有,则发出报警信 号,反之,则不进行报警。
[0178]当由边缘特征检测摄像机的异常发出预报警信息时,需要由SURF特征检测来排 除误报。具体过程为:
[017引将图像分为32X32大小的子图像块,当Di= >化2时,则认为子图像块 的图像画面真的发生了变化,此时异常子图像块个数加1 ;当异常子图像块的总个数〉异常 图像子块个数阔值A胃时,则发出相机异常的报警信号;否则,就认为是正常情况或是光照 引起的变化。
[0180] 在2N。帖的视频训练期间内,分别提取每帖图像子块的SURF特征,并分别计算在 2N。帖内该些特征的均值M及方差V,,则定义图像子块角点阔值为:
[0181] Th2 = Ms+0Vs (10)
[018引其中,0是一个比较小的数,但当其过小时,容易造成误检,反之则容易造成漏检。 本实施例则根据先验知识令0 = 2。
[0183] 为了解决现有技术在有大量人群活动的场景中进行摄像机异常检测的不准确性, 同时也无法在监控系统的多通道中快速地分析出摄像机是否有异常发生,本发明提出了一 种基于背景边缘模型的摄像机异常检测系统,本发明具有W
下优点:
[0184] (1)采用PBAS前景检测方法提取到前景图,并结合视频序列的灰度图,得到背景 图;然后使用加权法随机更新背景样本图,能在光照条件复杂和大量人群活动的场景下进 行正确检测,对噪声不敏感,抗干扰能力强;
[0185] (2)充分利用背景样本图和当前灰度图,提取出边缘变化特征,建立背景边缘模 型,并结合自适应的边缘阔值,能够根据不同的监控场景自主选择阔值进行摄像机异常检 巧。,并快速地初步判断摄像机的所有异常情况,消耗CPU和内存资源均较少;
[0186] (3)提取sud角点特征用来比较当前帖与标准帖在复杂环境下的变化差异,并结 合经验阔值判断摄像机是否确实有异常,排除了因画面中出现一群人或是大目标的运动而 引起的误报问题,增加了摄像机异常检测的准确性。
[0187]W上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施 例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替 换,该些等同的变形或替换均包含在本申请权利要求所限定的范围内。
【主权项】
1. 一种基于背景边缘模型的摄像机异常检测方法,其特征在于:包括: A、 获取视频灰度图像; B、 采用PBAS前景检测方法提取出前景图,并结合视频帧的灰度图像,得到每一帧视频 序列的背景图; C、 根据得到的背景图采用加权法对背景样本图进行随机更新; D、 对每一帧的灰度图和背景样本图分别进行边缘检测,然后根据边缘检测的结果进行 边缘变化率计算,从而得出背景边缘模型; E、 根据背景边缘模型采用自适应的边缘阈值,初步检测摄像机是否可能有异常情况发 生,若是,则发出预报警信号并执行步骤F,反之,则表明摄像机处于正常情况下,不进行预 报警; F、 提取出视频帧的surf角点特征,并采用角点阈值法判断摄像机是否确实有异常情 况发生,若是,则发出报警信号,反之,则表明摄像机处于正常情况下,不进行报警。2. 根据权利要求1所述的一种基于背景边缘模型的摄像机异常检测方法,其特征在 于:所述步骤B,其具体为: 采用PBAS前景检测方法提取出前景图,然后结合视频帧的灰度图像,得到每一帧视频 序列的背景图,所述每一帧视频序列的背景图Bi (X,y)的表达式为:其中,(X,y)为视频帧的像素点,Fi (X,y)为第i帧的前景检测结果,Bi (X,y)为第i帧 提取到的背景值,IiU, y)表示第i帧中像素点(x,y)的像素灰度值。3. 根据权利要求2所述的一种基于背景边缘模型的摄像机异常检测方法,其特征在 于:所述步骤C,其具体为: 根据得到的背景图和设定的更新策略,采用加权法对背景样本图进行随机更新,所述 设定的更新策略为:其中,Bsi (X,y)表示第i帧的背景样本图值,Bsi+1(x,y)表示第i+Ι帧的背景样本图值, α为设定的更新权重,rand函数为求伪随机数函数,B为给定的随机数。4. 根据权利要求3所述的一种基于背景边缘模型的摄像机异常检测方法,其特征在 于:所述步骤D,其包括: D1、对背景样本图中的背景图与当前帧的灰度图像进行Canny边缘检测; D2、将Canny边缘检测的结果由0-255矩阵转化为0-1矩阵,从而得到背景边缘特征与 当前边缘特征; D3、根据背景边缘特征与当前边缘特征,计算出边缘变化率和平均边缘变化率,从而建 立背景边缘模型。5. 根据权利要求4所述的一种基于背景边缘模型的摄像机异常检测方法,其特征在 于:所述步骤D3,其包括: D31、根据背景边缘特征与当前边缘特征,计算出边缘变化率特征,所述边缘变化率特 征函数REd的表达式为:其中,M和N分别表示视频图像的宽和高,Eb(i,j)表示像素点(x,y)的背景边缘特征, EcQ, j)表示像素点(X,y)的当前边缘特征; D32、在视频序列的第队+1~2队帧的训练时间段内,将边缘变化率特征函数REd的值保 存至大小为Ntl的特征序列中,并计算相应灰度图像的平均边缘变化率特征函数%.,所述 平均边缘变化率特征函数!@的计算公式为:其中,为第i帧灰度图像的平均边缘变化率的值; D33、根据边缘变化率特征函数和平均边缘变化率特征函数,得出背景边缘模型的边缘 特征函数,所述背景边缘模型的边缘特征函数计算公式为:6.根据权利要求5所述的一种基于背景边缘模型的摄像机异常检测方法,其特征在 于:所述步骤E,其包括: E1、根据自适应边缘阈值的调整策略和背景边缘模型计算视频帧的自适应边缘阈值, 所述自适应边缘阈值的调整策略为:其中,Thli为第i帧的自适应边缘阈值,且Thl i还应满足: Th^/Thl'Thu^,ThuppOT和Th 1()_分别表示自适应边缘阈值更新率的上下限,Thl η为 第i-Ι帧的自适应边缘阈值,Thseale表示自适应边缘阈值的调整控制因子,Th in。和Th ^分 别表示自适应边缘阈值更新率增加及减小的幅度; E2、比较当前视频帧中背景边缘模型的边缘特征函数是否大于视频帧的自适应边缘阈 值,若是,则表示摄像机可能有异常情况发生,此时发出预报警信号并执行步骤F ;反之,当 随机数rand (B)等于O时,则将正常情况下的边缘变化率REd的值随机更新到特征队列中 去,从而更新平均边缘变化率。7. 根据权利要求6所述的一种基于背景边缘模型的摄像机异常检测方法,其特征在 于:所述步骤F,其包括: Fl、采用SURF算法提取出图像帧的surf角点特征; F2、将视频图像划分为多个图像子块,然后采用角点阈值法判断摄像机是否确实有异 常情况发生,若是,则发出报警信号,反之,则表明摄像机处于正常情况下,不进行报警。8. 根据权利要求7所述的一种基于背景边缘模型的摄像机异常检测方法,其特征在 于:所述步骤Fl,其包括: F11、获取视频灰度图像的SURF特征函数,所述视频灰度图像的SURF特征函数的计算 公式为:其中,Si表示第i帧图像的SURF特征函数,X i;j和y i;j分别为在第i帧图像中角点j的 横坐标和纵坐标,为在第i帧图像中角点j的角点响应值,n为提取的角点数; F12、计算训练样本集中图像的标准SURF特征函数,所述训练样本集中图像的标准 SURF特征函数Sstd的计算公式为:F13、计算视频灰度图像与训练样本集中图像的比较函数,所述视频灰度图像与训练样 本集中图像的比较函数Di的计算公式为: Di= Isi-SstdU9. 根据权利要求8所述的一种基于背景边缘模型的摄像机异常检测方法,其特征在 于:所述步骤F2,其包括: F21、将视频图像划分为32X32大小的图像子块; F22、统计所有图像子块中比较函数01大于图像子块角点阈值的总个数,所述图像子块 角点阈值Th2的计算公式为: Th2 = Μ3+β Vs, 其中,2Ν。帧的视频训练期间内所有图像子块SURF特征的均值,β为设定的方差 权重系数,1为2Ν ^帧的视频训练期间内所有图像子块SURF特征的方差; F23、判断统计的总个数是否大于设定的异常图像子块个数阈值,若是,则表示摄像机 确实有异常情况发生,此时发出报警信号,反之,则表明摄像机处于正常情况下,不进行报 警。10. -种基于背景边缘模型的摄像机异常检测系统,其特征在于:包括: 获取模块,用于获取视频灰度图像; 前景检测与背景提取模块,用于采用PBAS前景检测方法提取出前景图,并结合视频帧 的灰度图像,得到每一帧视频序列的背景图; 样本随机更新模块,用于根据得到的背景图采用加权法对背景样本图进行随机更新; 边缘检测与计算模块,用于对每一帧的灰度图和背景样本图分别进行边缘检测,然后 根据边缘检测的结果进行边缘变化率计算,从而得出背景边缘模型; 初步异常检测模块,用于根据背景边缘模型采用自适应的边缘阈值,初步检测摄像机 是否可能有异常情况发生,若是,则发出预报警信号并执行步骤F,反之,则表明摄像机处于 正常情况下,不进行预报警; 角点阈值判断模块,用于提取出视频帧的surf角点特征,并采用角点阈值法判断摄像 机是否确实有异常情况发生,若是,则发出报警信号,反之,则表明摄像机处于正常情况下, 不进行报警; 所述获取模块的输出端依次通过前景检测与背景提取模块、样本随机更新模块、边缘 检测与计算模块和初步异常检测模块进而与角点阈值判断模块的输入端连接。
【专利摘要】本发明公开了一种基于背景边缘模型的摄像机异常检测方法及系统,采用PBAS前景检测方法提取出前景图,并通过加权随机更新得到背景样本图,能在光照条件复杂和大量人群活动的场景下进行正确检测,对噪声不敏感,抗干扰能力强;通过边缘检测提取边缘特征,并结合自适应的边缘阈值初步判断摄像机的异常情况,可以快速地初步判断摄像机的所有异常情况,消耗CPU和内存资源均较少;采用surf角点特征来排除将监控画面中出现一群人的正常情况误报为摄像机异常的现象,增加了异常检测的准确性。本发明可广泛应用于视频监控领域。
【IPC分类】G06T7/00, H04N17/00
【公开号】CN104902265
【申请号】CN201510266956
【发明人】陈雁, 匡慈维, 贺振钟
【申请人】深圳市赛为智能股份有限公司
【公开日】2015年9月9日
【申请日】2015年5月22日