连续碳纤维增强热塑性预浸料的制造方法

xiaoxiao2020-10-23  22

连续碳纤维增强热塑性预浸料的制造方法
【技术领域】
[0001]本发明涉及一种连续碳纤维增强热塑性预浸料的制造方法,更具体地,涉及将碳纤维层铺展并排布在多层热塑性树脂膜之间并通过粘合工艺来制造连续碳纤维增强热塑性预浸料的方法,以取代用熔融的热塑性树脂直接浸渍碳纤维。
【背景技术】
[0002]通常,通过在具有相对低的机械强度的塑料中连续地嵌入增强纤维(如玻璃纤维或碳纤维),形成连续碳纤维增强热塑性塑料。与具有Imm或更短的纤维长度的短纤维增强热塑性塑料(SFT)或具有约5_至约50_的纤维长度的长纤维增强热塑性塑料(LFT,如玻璃毡增强热塑性塑料(GMT))相比,这种连续碳纤维增强热塑性塑料具有非常优异的机械强度、刚度和耐冲击性。
[0003]此外,由于连续碳纤维增强热塑性塑料具有优异的挠度,连续碳纤维增强热塑性塑料能够被单向地或双向地编织,并且编织的连续碳纤维增强热塑性材料能够用于要求各种机械性能的许多产品中。
[0004]通常,连续碳纤维增强热塑性塑料可由诸如挤出法、混合或热压法制造。
[0005]在挤出法中,通过使被铺展的连续纤维束穿过盛有液体或熔融树脂的槽或模具,从而用塑性树脂浸渍连续纤维束。尽管通过优化挤出加工的加工条件可提高浸渍度,但是难以控制增强纤维(如连续纤维)和被混合的塑性树脂的含量,并且由挤出法加工的连续纤维由于其挠度降低而不易于编织。另外,如果使用现有技术的加热方法,存在膜从表面熔融并且因此在熔融的表面容易弯曲的问题。
[0006]因此,有必要提供一种能够克服上述问题的连续碳纤维增强热塑性预浸料的制造方法,以使该方法能够被有用地用于相关领域。

【发明内容】

[0007]技术问题
[0008]本发明的一方面提供一种高强度连续碳纤维增强热塑性预浸料的制造方法,其中,通过对膜和被铺展的碳纤维束进行重复的堆叠加工、熔融加工和包括微浸渍的浸渍加工,而不实施使用高黏性的热塑性聚合物颗粒熔融树脂的浸渍加工,从而改善树脂对于高集束率(例如,12K、24K或48Κ等)碳纤维束的浸渍性,使连续碳纤维增强热塑性预浸料中的连续碳纤维的体积分数最大化,减少空隙的形成,并且使连续碳纤维增强热塑性预浸料容易制造。
[0009]技术方案
[0010]根据本发明的一个方面,连续碳纤维增强热塑性预浸料的制造方法包括:提供被铺展(被扩展)的多个碳纤维的步骤;通过将热塑性膜置于被铺展的碳纤维的上侧和下侧的至少一部分上而形成堆叠体的步骤;以及通过将构成所述堆叠体的热塑性膜和碳纤维粘合而形成复合材料(bonded material)的步骤。
[0011]优选地,所述复合材料的形成可通过照射微波来实施。
[0012]优选地,所述复合材料的形成可通过使用选自由卤素灯和红外线灯组成的组中的至少一个热源在100°C至450°C的温度范围内实施。
[0013]优选地,所述被铺展的多个碳纤维以规律的间隔排布。
[0014]优选地,在提供所述被铺展的多个碳纤维的步骤中,包括采用具有比热塑性膜的熔点更低的熔点的粘合用树脂涂覆所述碳纤维。
[0015]优选地,所述热塑性膜由选自以下的材料形成:聚丙烯(PP)、聚酰胺(PA)、聚醚醚酮(PEEK)和聚乙二醇对苯二甲酸酯(PET)。
[0016]优选地,所述热塑性膜具有10 μπι至100 μm的厚度。
[0017]优选地,本发明的制造方法进一步包括使用一对辊在真空或大气压条件下按压所述复合材料。
[0018]优选地,所述复合材料的按压在100°C至450°C的温度范围内实施。
[0019]优选地,本发明的制造方法进一步包括:加热所述复合材料;以及使用一对辊在真空或大气压条件下额外地按压所述复合材料。
[0020]优选地,加热所述复合材料在100°C至450°C的温度范围内实施。
[0021]优选地,额外地按压所述复合材料在100°C至450°C的温度范围内实施。
[0022]优选地,加热所述复合材料使用选自卤素灯和红外线灯中的至少一个热源来实施。
[0023]优选地,所述堆叠体包括被堆叠的热塑性膜和置于热塑性膜之间的碳纤维。
[0024]有益效果
[0025]根据本发明的方法,在将含有或浸渍了热塑性树脂膜的连续碳纤维增强预浸料(含有连续碳纤维的带)以单向排布或双轴向排布(0°和90° )之后,不需要额外的树脂浸渍步骤。此外,将通过本发明得到的热塑性预浸料以单向排布或编织之后,对其进行热压加工,以获得高强度、轻质量的具有各种形状的连续碳纤维增强热塑性板。根据本发明,可容易地实施编织加工,并且可以使用各种热塑性膜,从而可得到高度均匀的连续碳纤维增强热塑性预浸料(含有连续碳纤维的带)。此外,通过使与热固性树脂相比具有更高粘性的热塑性树脂的浸渍碳纤维最大化,使成型体内部的空隙最小化,且使碳纤维的体积分数最大化,从而能够制造具有高强度的碳纤维增强热塑性产品。
【附图说明】
[0026]图1为示意性地示出根据本发明的制造方法的流程图。
[0027]图2(a)至(C)示意性地示出可用于提供本发明的被铺展的碳纤维的步骤中的碳纤维束铺展设备(由日本Harmoni公司制造)。
[0028]图3示意性地示出由被铺展的碳纤维束和热塑性膜形成的本发明的堆叠体的图。
[0029]图4示意性地示出根据本发明制造的碳纤维增强热塑性膜的立体图。
[0030]图5(a)和5(b)为分别以不同比例示出根据本发明制造的连续碳纤维增强热塑性预浸料的截面的图。
[0031]图6示出使用根据本发明的热塑性预浸料(含有连续碳纤维的带)制造单向的连续碳纤维增强热塑性复合材料(CFRTP)板的示例性过程。
[0032]图7示出使用根据本发明的热塑性预浸料(含有连续碳纤维的带)制造编织型连续碳纤维增强热塑性复合材料(CFRTP)板的示例性过程。
[0033]图8(a)示出挠曲性能测试机,图8(b)示出用于挠曲性能测试的试样。
[0034]图9示出对通过使用本发明的热塑性预浸料来制造的单向的连续碳纤维增强热塑性复合材料(CFRTP)板进行挠曲性能测试的结果。
[0035]图10为根据本发明制造的一个示例性板的截面的扫描电子显微(SEM)图。
【具体实施方式】
[0036]下面,参照附图详细描述本发明的实施方式。然而,本发明的实施方式可以变形为许多不同的形式,且不应理解为本发明被限制于在此描述的实施方式中。
[0037]本发明提供一种连续碳纤维增强热塑性预浸料的制造方法,其中,将碳纤维排布在热塑性膜的一侧或多层热塑性膜之间并将碳纤维粘合至所述膜,以取代用熔融的热塑性树脂直接浸渍碳纤维。
[0038]详细地,本发明的制造方法包括:提供被铺展的多个碳纤维的步骤;通过将热塑性膜置于所述被铺展的碳纤维的上侧和下侧的至少一部分上而形成堆叠体的步骤;以及通过将构成所述堆叠体的热塑性膜和碳纤维粘合而形成复合材料的步骤。
[0039]如上所述,本发明可得到将连续碳纤维粘合或融合至热塑性膜的预浸料,并且在本发明中,该预浸料可被称作“复合材料”或“半预浸料”。此外,通过对上述“半预浸料”实施如按压或加热等后续加工可获得碳纤维被插入热塑性膜中的最终预浸料。
[0040]本发明的预浸料是指包括带(tape)或片(sheet)等形状的预浸料。
[0041]图1为示意性地示出本发明的制造方法的流程图,参照图1,制备所述多个碳纤维的步骤可包括解旋( unwinding)碳纤维束(tow)的步骤、及铺展(spreading)碳纤维束的步骤。
[0042]更详细地,多个连续碳纤维束通过碳纤维解旋辊从卷绕的状态解旋,并且可随后沿着多个铺展辊被均匀地铺展,从而连续碳纤维束的单丝可以预期的横向间隔被排布(放宽)。
[0043]例如,通过使连续碳纤维束穿过纤维分离设备的各个孔可铺展所述碳纤维,从而以一个方向排布碳纤维而不会缠结。
[0044]图2示意性地示出可用于提供被铺展的碳纤维的步骤中的碳纤维束铺展设备(由日本Harmoni公司制造)。
[0045]图2 (a)和2 (b)分别从左侧和右侧示出示例性的碳纤维铺展设备,图2 (c)为示出铺展的连续碳纤维束的照片。优选地,使用12K的碳纤维束(一捆12,000根的集束丝,其纤维直径为5-7 μm)可被铺展至约5mm-50mm的宽度;使用24K的碳纤维束(一捆24,000根的集束丝,其纤维直径为5-7 μπι)可被铺展至约5mm-70mm的宽度;以及使用48K的碳纤维束(一捆48,000根的集束丝,其纤维直径为5-7 μπι)可被铺展至约5mm-100mm的宽度。
[0046]被铺展的所述碳纤维能够以规律的间隔配置,但并不限定于此,根据需要,也能够以不规律的间隔配置。此外,被铺展的所述碳纤维束可单向地排布,也可根据需要,以各种编织图案(如平面、斜纹或缎纹)制成编织物。
[0047]将热塑性膜置于以如上方式制成的被铺展的多碳纤维的上侧和下侧的至少一部分上从而形成堆叠体,然后通过使构成所述堆叠体的热塑性膜与碳纤维粘合,以制作复合材料,也就是半预浸料。图3示意性地示出由被铺展的碳纤维束和热塑性膜形成的堆叠体。
[0048]此时,所述堆叠体可主要包括一个热塑性膜和一个碳纤维层,进一步地,可在碳纤维层的上侧和下侧包括热塑性膜,或在热塑性膜的上侧和下侧包括碳纤维层,根据需要,堆叠体可具有连续堆叠上述复合层的结构。
[0049]另一方面,所述热塑性膜的各自厚度优选在10-100 μπι的范围内,更优选在15-30 μ m的范围内。如果热塑性膜的厚度小于10 μ m,实施制造工艺时不会存在问题,但成本可能会增加;相反,如果热塑性膜的厚度大于100 μπι,则难以实施均匀的浸渍加工。
[0050]考虑到热塑性粘合层和树脂层的熔点,可通过照射微波、或照射选自卤素灯和红外线灯中的至少一个热源,以制造所述复合材料。
[0051]所述微波的照射可由微波装置实施。通过所述微波的照射,所述碳纤维比热塑性膜更早吸收微波并产生热,由此碳纤维的热量使与碳纤维接触的热塑性膜熔融,从而热塑性膜在与所述碳纤维的接触点首先熔接,从而可稳定地堆叠。
[0052]如果卤素灯或红外线灯被用于形成复合材料,构成所述堆叠体的热塑性膜与碳纤维之间的接触面可被牢固地融合并粘合在一起。
[0053]选择性地,在提供被铺展的多个碳纤维的步骤中,所述碳纤维优选被具有比热塑性膜的熔点更低熔点的粘合用树脂涂覆。即,所述碳纤维可根据基体树脂的种类而不同,但优选用具有低于基体树脂熔点温度的低熔点的选自热塑性树脂中的粘合用树脂来涂覆。
[0054]在此情况下,当通过将热塑性膜置于被铺展的碳纤维的上侧和下侧中的至少一部分上而形成堆叠体时,即使不使用额外的热源,热塑性膜和碳纤维也可由于粘合用树脂而被粘合成复合材料。
[0055]这种粘合用树脂在种类上类似于浸渍膜树脂,但是与浸渍膜树脂相比,其在相对低的温度下熔融。也就是说,粘合用树脂可以是在浸渍膜树脂熔融之前熔融并粘合至浸渍膜的任何热塑性树脂。
[0056]所述热塑性膜优选由选自包括聚丙烯(PP)、聚酰胺(PA)、聚醚醚酮(PEEK)和聚乙二醇对苯二甲酸酯(PET)的材料形成,但并不限制于此。
[0057]另一方面,所述粘合用树脂优选选自低温下使用的热塑性树脂,如共聚酰胺基树脂或共聚酯基树脂等。
[0058]在本发明中,如上所述碳纤维和热塑性膜被粘合或融合在一起的材料称为“半预浸料”或“复合材料”,这种复合材料在随后的加工如从热压辊之间穿过等,仍可保持碳纤维束和热塑性膜的堆叠结构。
[0059]此后,可进行使用一对辊在真空或大气压条件下按压复合材料的步骤,通过上述步骤能够制造热塑性膜熔融而使树脂渗入碳纤维内部的预浸料。
[0060]在此情况下,根据用于形成热塑性膜的热塑性树脂的种类,优选地,按压加工可在100°C至450°C的温度范围内实施,更优选地在150°C至300°C的温度范围内,以使热塑性膜熔融而使其容易渗入碳纤维。如果所述按压加工在低于100°C的温度下实施,则存在热塑性膜被不充分地熔融而难以渗入碳纤维的问题;相反,如果所述按压加工在高于450°C的温度下实施,则存在任何热塑性树脂或热塑性膜会被损坏或烧毁的问题,从而可根据热塑性树脂或热塑性膜的种类而选择最适温度。
[0061]此外,在使用一对辊在真空或大气压条件下实施按压加工之后,可进一步实施加热步骤、以及使用一对辊在真空或大气压条件下实施额外地按压加工,此时,碳纤维将更加完整地插入热塑性膜中。
[0062]在此情况下,优选地,根据热塑性树脂和热塑性膜的种类,所述加热步骤可在100°C至450°C的温度范围内实施,以及所述额外地按压步骤可在100°C至450°C的温度范围内实施。但是,所述加热步骤的温度设定为上述范围内的、高于加热步骤之前和之后实施的按压加工的温度。
[0063]也就是说,尽管加热步骤和按压加工的加工温度范围是等同的,但实际情况下加热步骤是在高于按压加工的加工温度的温度下实施。即,如果实施这种额外的按压加工,则通过按压法,将气泡从热塑性膜和被铺展的碳纤维的堆叠体中容易地且完全地去除。此外,这种气泡在真空条件下更易于被去除,并且可使残留的气泡的数量最小化。
[0064]可使用选自卤素灯和红外线灯中的至少一个热源来实施所述加热步骤,但并不限制于此。
[0065]由于碳纤维的温度在上述步骤中升高,本发明的制造方法可进一步包括自然冷却步骤以在室温下自然冷却碳纤维。这种冷却步骤可通过注入空气来实现,但并不限制于此。
[0066]在上述自然冷却步骤中,在进行冷却的同时,将被制造的膜或带缠绕在卷绕辊。
[0067]另一方面,根据本发明的方法而制造的连续碳纤维增强热塑性预浸料是由堆叠体构成的,所述堆叠体以包括多个热塑性膜和置于各热塑性膜之间的碳纤维层的方式制造,或者以包括多个碳纤维层和置于各碳纤维层之间的热塑性膜的方式制造。所述堆叠体优选包括以两层以上堆叠的热塑性膜和置于热塑性膜之间的碳纤维层。
[0068]图4示意性地示出包括三层热塑性膜和压在热塑性膜之间的两层碳纤维层的连续碳纤维增强热塑性预浸料。
[0069]根据本发明,如图1所示,用于制造连续碳纤维增强热塑性预浸料的方法可进一步包括使用张力辊来支撑连续碳纤维增强热塑性预浸料的同时,将该连续碳纤维增强热塑性预浸料缠绕到卷绕辊的步骤。
[0070]根据本发明的连续碳纤维增强热塑性预浸料的制造方法,可制造具有各种厚度及宽度的连续碳纤维增强热塑性半预浸料或全预浸料,被制造的带及/或由带制成的片可被用作高速成型用碳纤维增强塑料(CFRP)的半成品。图5(a)和5(b)为分别以不同比例示出的根据本发明制造的碳纤维增强热塑性预浸料的截面的图。
[0071]通常,由于用于制造膜的高粘度热塑性树脂或熔融树脂过粘,因此使用一般方法这种树脂难以顺利地浸渍到约有24,000或48,000根的、直径为约7 μπι的碳纤维束(24Κ、48Κ)中。因此,通过用这类树脂高度浸渍 连续碳纤维来制造具有高强度热塑性CFRP在技术上是存在困难的。
[0072]然而,根据本发明,通过将具有10-100 μπι的厚度的热塑性树脂膜嵌入具有数十微米(ym)厚度的被铺展的碳纤维束层之间并粘合该热塑性树脂膜和碳纤维束层来制造堆叠体,从而可得到半预浸料或预浸料。也就是说,在用于制造最终成型体的热压加工中,在使高粘度的熔融树脂的流动最小化的同时,用所述高粘度的树脂使碳纤维束浸渍率达到最大化,从而获得带或片的形状的半预浸料或预浸料以用作制造被树脂完全浸渍的高强度CFRP产品所必需的半成品。
[0073]根据本发明的连续碳纤维增强热塑性预浸料的制造方法,所述碳纤维可被用来取代通常的增强纤维,如玻璃纤维、芳族聚酰胺纤维、陶瓷纤维、金属纤维和其他有机、无机或金属纤维。
[0074]通过本发明获得的预浸料经由图6中示出的示例性过程可被制为单向的连续碳纤维增强热塑性复合材料(CFRTP)板。详细地,在通过铺展碳纤维束并将铺展的碳纤维束粘合至热塑性膜而形成半预浸料或预浸料之后,将其排布成型后可制造单向的CFRTP板。
[0075]根据需要,通过将排布图案排布成各种图案如双轴图案(O度和90度)或多轴图案(O度、45度、90度、-45度和O度),从而制造具有所需物理特性的CFRTP板。
[0076]另外,通过本发明获得的预浸料经由图7中示出的示例性过程可被制成编织型CFRTP板。详细地,在通过铺展碳纤维束并将铺展的碳纤维束粘合至热塑性膜而形成半预浸料之后,经由编织步骤可制造编织型CFRTP板。若必要,可使用各种编织图案(如平面、斜纹或缎纹)来形成编织型CFRTP板。
[0077]如上所述,使用本发明的预浸料所制造的CFRTP板具有优异的挠度性能。
[0078]下文将通过具体实施例对本发明进行更具体地描述。以下实施例仅以助于本发明的理解为目的示出,并不旨在于限定本发明的范围。
[0079]发明实施例
[0080]实施例
[0081]1.CFRTP 板的制造
[0082]通过对被铺展的/涂覆的碳纤维(CF)和热塑性树脂膜进行堆叠、熔融和浸渍来形成连续碳纤维(CF)带,堆叠所述连续碳纤维带,并将其嵌入大小为100mm*180mm的钢模中,之后,以270°C的温度加热所述钢模以熔融树脂,在连续碳纤维带之间产生粘合力之后,施加高达1Mpa的压力,此后以进行冷却的热轧压缩成型方法来制造单向的CFRTP板试样。
[0083]2.挠度性能评价
[0084]在上述I部分中所制成的CFRTP板被切割成如图8 (b)中示出的具有12.7mm(w)X127mm(d)的尺寸的试样,并且使用如图8 (a)中示出的挠度性能测试机(Instron UTM 5569A)按照ASTM D790标准测量方法测量CFRTP试样的挠度性能。
[0085]测量结果示于图9的图表中。从图9可知,具有各种碳纤维体积分数的CFRTP板由碳纤维束和膜层的不同组合来制造,并且评价了 CFRTP板的挠度强度值。CFRTP板的碳纤维体积分数和挠度强度值具有线性比例关系。
[0086]当比较具有相同的碳纤维体积分数的CFRTP板时,本发明的CFRTP板的挠度强度与相关领域中的领先企业(Ticona公司)生产的含有48vol%碳纤维的PA6复合材料(产品名称:Celstran CFT-TP PA6CF60-01)的挠度强度相比,挠度强度提高了 10MPa以上。
[0087]也就是说,与同样具有48vol%碳纤维(CF)的PA6复合材料产品相比,本发明在降低相对昂贵的碳纤维的量的同时,可制造具有优异物理特性的CFRTP。
[0088]3.微观结构的分析
[0089]图10为为根据本发明制造的一个示例性板的截面的扫描电子显微(SEM)图。
[0090]本领域普通技术人员应知,尽管以上对本发明作出详细的说明,但本发明的权力范围不限定于此,在权利要求书中所记载的不脱离本发明技术构思的范围内,可做各种修改及变形。
【主权项】
1.一种连续碳纤维增强热塑性预浸料的制造方法,该方法包括: 提供被铺展的多个碳纤维的步骤; 通过将热塑性膜置于所述被铺展的碳纤维的上侧和下侧的至少一部分上而形成堆叠体的步骤;以及 通过将构成所述堆叠体的热塑性膜和碳纤维粘合而形成复合材料的步骤。2.根据权利要求1所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,形成所述复合材料的步骤可通过照射微波来实施。3.根据权利要求1所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,形成所述复合材料的步骤可通过使用选自卤素灯和红外线灯中的至少一个热源在100°c至450 °C的温度范围内实施。4.根据权利要求1所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,所述被铺展的多个碳纤维以规律的间隔排布。5.根据权利要求1所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,在提供所述被铺展的多个碳纤维的步骤中,采用具有比所述热塑性膜的熔点更低的熔点的粘合用树脂涂覆所述碳纤维。6.根据权利要求1所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,所述热塑性膜选自以下材料:聚丙烯(PP)、聚酰胺(PA)、聚醚醚酮(PEEK)和聚乙二醇对苯二甲酸酯(PET) ο7.根据权利要求1所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,所述热塑性膜具有10 μπι-100 μπι的厚度。8.根据权利要求1所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,该方法进一步包括使用一对辊在真空或大气压条件下按压所述复合材料的步骤。9.根据权利要求8所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,所述按压复合材料的步骤在100°c至450°C的温度范围内实施。10.根据权利要求8所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,该方法进一步包括: 加热所述复合材料的步骤;以及 使用一对辊在真空或大气压条件下额外地按压所述复合材料的步骤。11.根据权利要求10所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,所述加热复合材料的步骤在100°C至450°C的温度范围内实施。12.根据权利要求10所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,所述额外地按压复合材料步骤在100°C至450°C的温度范围内实施。13.根据权利要求10所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,所述加热复合材料的步骤使用选自卤素灯和红外线灯中的至少一个热源来实施。14.根据权利要求1所述的连续碳纤维增强热塑性预浸料的制造方法,其特征在于,所述堆叠体包括被堆叠的热塑性膜和置于所述热塑性膜之间的碳纤维。
【专利摘要】本发明涉及一种连续碳纤维增强热塑性预浸料的制造方法,更具体地,涉及连续碳纤维增强热塑性半预浸料或预浸料的制造方法,该方法包括以下步骤:提供被铺展的多个碳纤维的步骤;通过将热塑性膜置于所述被铺展的碳纤维的上侧和下侧的至少一部分上而形成堆叠体的步骤;以及通过将构成所述堆叠体的热塑性膜和碳纤维粘合而形成复合材料的步骤。
【IPC分类】B32B37/06, B32B27/12
【公开号】CN104903104
【申请号】CN201380068419
【发明人】裴一骏, 洪翼杓, 朴世敏, 李晟宁
【申请人】Posco公司, 浦项产业科学研究院
【公开日】2015年9月9日
【申请日】2013年12月24日
【公告号】EP2939832A1, US20150336369, WO2014104730A1

最新回复(0)