气体吸收分光装置以及气体吸收分光方法

xiaoxiao2020-10-23  19

气体吸收分光装置以及气体吸收分光方法
【技术领域】
[0001] 本发明涉及一种基于测定对象气体的激光吸收光谱,对该气体的浓度、温度、压力 等进行测定的气体吸收分光装置以及方法。该气体吸收分光装置以及方法在汽车工业中能 够适用于气体浓度以及温度、压力的非接触、高速测定,此外还能够在工业炉内的燃烧气体 那样的高温?高压环境下的气体测量等多个领域适用。
【背景技术】
[0002] 采用激光的气体吸收分光法具有以下三个方法。
[0003] (1)DLAS(DirectLaserAbsorptionSpectroscopy,激光直接吸收光谱法)
[0004] (2)WMS(WavelengthModulatedSpectroscopy,波长调制光谱法)
[0005] (3)CRDS(CavityRingDownSpectroscopy,腔衰荡光谱法)
[0006] 在DLAS中,将激光照射至被测定气体,通过光检测器对激光进行测定。在此,具有 将照射于气体的激光的波长固定为特定的值来对气体中的吸收进行测定的方法,以及对激 光的波长进行扫描从而对气体的吸收光谱进行测定的方法。在前者的情况下,激光的波长 固定为气体的吸收波长,对该波长处的吸光度进行测定。在扫描波长的情况下,使激光的波 长在包含气体的吸收波长的范围内变化以对其光谱进行测定,从而对气体的吸收峰值的面 积进行测定(非专利文献1)。
[0007] 丽S与波长扫描型的DLAS相似,除了波长扫描之外,还以远短于扫描周期的周期 (充分高的频率。在此设为f。)呈正弦波状地对波长进行调制。采用检测器的话,能够通 过检测频率f的高次谐波(一般采用的是二次谐波),以比DLAS高的灵敏度对气体吸收进 行测定(专利文献1、非专利文献2、3、4)。高次谐波的检测通常采用锁相放大器(口 7夕 O7 > 7° ),但也提出有通过就这样对检测器信号进行数字采样来进行FFT分析以进行 2f?的同步检波的方法(非专利文献5)。
[0008] 在CRDS中,将被测定气体设置在至少由2块镜子构成的光学谐振腔中。在此,对采 用CW(连续振荡)激光的CRDS进行说明。入射至光学谐振腔的光在光学谐振腔中反射?谐 振,与两侧的镜子的反射率相应的能量的光被限制在谐振器内。另一方面,极少一部分的 能量的光漏到镜子之外。因此,在正常状态下,一定的光能被蓄积在谐振腔内部,一定强度 的光持续漏到镜子之外。因此如果断开激光器的话,谐振腔内的光能根据谐振腔的损失量 而衰减,漏到镜子外部的光强度也同时衰减。利用衰减时间按照存在于谐振腔内部的被测 定气体的吸收量而增减的现象对气体的吸收进行测定。本手法具有WMS以上的高灵敏度, 但对于谐振腔的污染敏感,而且如果吸收变大的话,谐振腔损耗会急速增加,而不能进行测 定,因此动态范围一般较小。而且还要求需要将谐振腔完全锁定在激光模式等非常神经质 的控制。
[0009] 基于以上概况,作为工业用气体吸收分光装置,在灵敏度?稳健性(测定容易性) 上取得平衡的WMS比较合适。根据通过WMS得到的吸收光谱的强度,容易地计算出气体浓 度。除此之外,还能够利用于如下的应用,即即使在温度?压力时常变化的环境下无法直接 测定压力或者温度的环境中,也能够通过采用2波长进行测定,来对气体浓度、温度进行测 定的应用(非专利文献4)。
[0010] 现有技术文献
[0011] 专利文献
[0012] 专利文献1日本特开2011-196832号公报
[0013] 非专利文献
[0014] 非专利文献 1 :E.D.HinkleyandP.LKelley,"DetectionofAirPollutants withTunableDiodeLasers,"Science19,635-639 (1971).
[0015] 非专利文献 2:Reid,J.andLabrie,D.,"Second-harmonicdetectionwith tunablediodelasers-comparisonofexperimentandtheory,"Appl.Phys.B 26, 203-210 (1981).
[0016] 非专利文献 3:J.A.Silver,''Frequency-modulationspectroscopyfortrace speciesdetection:theoryandcomparisonamongexperimentalmethods,〃Appl. Opt. 31 (1992) ,707-717.
[0017] 非专利文献 4:G.B.Rieker,J.B.Jeffries,andR.K.Hanson,"Calibration-free wavelengthmodulationspectroscopyformeasurementsofgastemperatureand concentrationinharshenvironments,〃Appl.Opt.,submitted2009.
[0018] 非专利文献 5:T.Fernholz,H.Teichert,andV.Ebert,"Digital,phase-sensi tivedetectionforinsitudiode-laserspectroscopyunderrapidlychanging transmissionconditions,"Appl.Phys.B75, 229-236 (2002).
[0019] 非专利文献 6:J.T.C.Liu,〃Near_infrareddiodelaserabsorption diagnosticsfortemperatureandspeciesinengines,〃Ph.D.dissertation,Dept. MechanicalEngineering,StanfordUniv. ,Stanford,CA, 2004.(Figure3. 12)
[0020] 非专利文献 7:"CalculationofmolecularspectrawiththeSpectral Calculator",[平成 25 年 1 月 7 日检索],因特网 <URL:http://www.spectralcalc.com/ info/CalculatingSpectra.pdf>
[0021] 非专利文献8:福里克彦,池田裕二,中島健,「半導体分光システ/^奁用 UC02气体?計測(第2報)」,日本機械学会論文集B編,2002, 68, 2901-2907.

【发明内容】

[0022] 发明要解决的问题
[0023] 如上所述,WMS稳健且高灵敏度,但存在以下问题点。
[0024] 1.为了进行高速测定,要缩短扫描周期且需要高的波长调制频率。但是,在采用 一般最普及的注入电流控制型波长可变二极管激光器作为波长可变型的激光器的情况下, 提高调制频率的话,相对于注入电流的波长变化率就降低,无法得到充分的波长调制深度 (modulationdepth)(非专利文献 6) 〇
[0025] 2.尤其对于超过MHz那样的高速的调制,难以对波长调制深度进行准确测定,在 高速测定中无法确定准确的波长调制深度。因此,根据测定结果计算出的气体浓度?温度 等信息的不确定性变高。
[0026] 由于以上的主要原因,在高速测定中,采用以往的WMS的话,存在精度良好的气体 浓度?温度等的测定的困难度显著增加这样的问题。
[0027] 本发明要解决的课题是提供一种即使在高速测定中也能够进行精度良好的气体 浓度等的测定的气体吸收分光装置以及气体吸收分光方法。
[0028] 用于解决课题的手段
[0029] 为了解决上述课题而做成的本发明所涉及的气体吸收分光装置的特征在于,具 有:
[0030] a)波长可变的光源;
[0031] b)光源控制部,其使由所述光源所生成的光的波 长变化;
[0032] c)光检测器,其对由所述光源生成、通过了测定对象气体的光的强度进行检测;
[0033] d)多项式近似部,其在波长的各点在规定的波长宽度的范围内利用近似多项式对 伴随着所述光源控制部所引起的波长的变化的、由所述光检测器检测到的光强度的变化的 曲线进行近似;
[0034] e)微分曲线制作部,其基于所述各点的近似多项式的各项的系数,制作所述曲线 的包含零阶的n阶微分曲线;以及
[0035] f)物理量决定部,其基于所述包含零阶的n阶微分曲线,决定所述测定对象气体 的温度、浓度、以及压力中的至少一个。
[0036] 另外,在此所说的"波长"与"波数"是唯一对应的,采用"波数"组成同样的构成当 然也是可能的。
[0037] 在本发明所涉及的气体吸收分光装置中,照射于测定对象气体的光(通常采用激 光,但也未必限定于此)虽然与DLAS同样地使波长变化(进行波长扫描),但是不会像WMS 那样对波长进行调制。另外,波长扫描可以在规定的最低频率和最高频率之间仅变化(扫 描)1次,也可以多次反复扫描。
[0038] 该光在通过了测定对象气体之后,通过光检测器被受光,从而对其强度变化进行 检测。进行波长扫描的波长范围预先被设为包含了测定对象气体的吸收波长的范围,所以 由光检测器检测到的光的光谱线型(上述"伴随着所述光源控制部所引起的波长的变化 的、由所述光检测器检测到的光强度的变化的曲线")中,出现以测定对象气体所固有的波 长为中心的吸收峰。
[0039] 在本发明所涉及的气体吸收分光装置中,对于包含该吸收峰值的光谱线型,进行 与丽S处理类似的数学运算。具体来说,以各波长点为中心,对于与丽S的波长调制深度相 当的区间的光谱线型进行n次多项式近似,基于傅里叶变换的原理,采用n次多项式的系 数,再现丽S信号振幅。该原理如下。
[0040] 在WMS处理中,一般都知道进行同步检波而得到的n阶高次谐波的光谱线型近似 变成为对吸收光谱n阶微分后的波形(非专利文献2Equation8)。因此,如果对通过波 长扫描得到的光谱进行n阶微分的话,则认为能够得到与n阶同步检波相当的光谱。但是, 进行n阶微分的话,测量数据的噪声的影响大,在实用上具有问题。因此,在本发明所涉及 的气体吸收分光装置中,对于以想要求得高次谐波信号的波长为中心的某范围进行m次多 项式近似。所得到的多项式的系数就成为通过WMS处理得到的高次谐波信号。此时,进行 多项式近似的范围与WMS处理中的调制振幅相当。
[0041] 该近似多项式的次数越高,越能进行精度高的近似,但是一般采用一次或者二次 多项式近似就足够了。
[0042] 又,也进行气体吸收以外的光遮断等光量变化校正处理。
[0043] 发明的效果
[0044] 在本发明所涉及的气体吸收分光装置中,由于光源仅进行数100kHz以下的波长 扫描,所以相对于光源的注入电流的振荡波长被准确地决定。而且,由于基于其波长信息通 过数学运算进行WMS处理,所以能够不受光源驱动电源?光源自身的非线性的影响地,以准 确的波长调制深度进行高阶同步检测。
[0045] 又,由于采用数学的处理,所以可以采用一个光源同时取得基于多个调制深度的 WMS光谱,采用一个光源实现以往不采用两个以上的光源就无法测定的温度测定也变得容 易。进一步地,在进行温度测定时,为了使测定温度的压力依存性为最小,需要事先将调制 深度调整为最佳,但是在本发明中,能够通过事后分析来对调制深度进行调整。
【附图说明】
[0046] 图1是本发明所涉及的气体吸收分光装置的一实施例的概略结构图。
[0047] 图2是通过本发明对测定对象气体的浓度等特性进行测定的情况下的步骤的流 程图。
[0048]图3是示出以往的丽S法(a)、本发明所涉及的方法(b)中的激光光源的波长变化 的形态的图表。
[0049] 图4是用于本发明的验证的气体的透射光谱的线型。
[0050] 图5是示意性地示出以多项式表示光谱线型的状态的说明图。
[0051] 图6是一阶同步检波线型(虚线)和通过本发明所涉及的方法(二次多项式使 用)算出的一阶微分线型(实线)的图表。
[0052] 图7是二阶同步检波线型(虚线)和通过本发明所涉及的方法(二次多项式使 用)算出的二阶微分线型(实线)的图表。
[0053] 图8是作为相对于波数I标绘系数b^的结果而作成的光谱线型。
【具体实施方式】
[0054] 在图1中示出本发明所涉及的气体吸收分光装置的一实施例的概略结构。夹着收 容有测定对象气体的、或者测定对象气体所通过的气室11,在一方配置激光光源12,在另 一方配置光检测器13。激光光源12是波长可变的光源,光源控制部14在规定的最低波长 至最高波长之间对其波长进行扫描(使波长变化)。从光检测器13输出的、表示光强度的 电信号由A/D转换器15数字采样,被发送至分析部16。
[0055] 对测定对象气体的浓度、温度、压力等进行测定的情况下的步骤如下所述(图2)。 光源控制部14使激光光源12发射规定的最低波长的激光(步骤S1),使其波长依次变化直 到扫描至最高波长为止(步骤S2)。另外,如前所述,以往的WMS法中,如图3的(a)所示, 在使波长变化(扫描)时以规定波长幅度对其波长进行调制,但在本发明所涉及的方法中, 如图3的(b)所示,不进行这样的调制。来自激光光源12的光通过气室11中的测定对象 气体,在与该测定对象气体相应的波长处在那受到吸收。通过了测定对象气体的激光的强 度由光检测器13来检测。光检测器13所输出的、表示光强度的电信号通过A/D转换器15 被数字化,并被输送给分析部16。该电信号的变化就成为所述光谱线型(步骤S3)。在分 析部16,基于表示该光谱线型的数据,进行后述的数学运算。
[0056] 关于分析部16所进行的、采用检测信号的多项式近似的数学运算,接下来与通过 以往的WMS进行的方法相比较地进行说明。首先,采用从HITRAN2008数据库得到的以C02 的吸收峰值为中心的光谱线型,作为当作处理对象的气体吸收光谱。当然,实际上对于如所 述那样得到的光谱线型进行以下的运算。
[0057] 对于该光谱,将基于作为以往方法的丽S模拟锁相放大器得到的结果、和通过本 发明所涉及的气体吸收分光装置的分析部16所进行的多项式近似运算得到的结果进行了 比较。
[0058] 在图4中示出在此所采用的透射光谱的线型。这是模拟C023%、压力latm、光路 长度5cm的气室而求出的,着眼于2ynKSOOOcnT1)附近的一条吸收线。
[0059] 已知的是,一般在大气压下的环境下,吸收峰值由以下的洛仑兹函数表示。
[0060] [数式 1]
[0062] 其中,v为波数,A为峰值面积,V。为峰值波数,a^为洛仑兹展宽的半高半宽。
[0063] 基于WMS法对入射激光赋予调制振幅a的调制,对于透过了具有上述吸收线型的 气体的光,利用锁相放大器进行同步检波的情况下,该n阶同步检波的光谱由下式得到(非 专利文献2)。
[0064] [数式 2]
[0066] X:波数(另外,在本申请的本文中,由于电子申请的限制,以下划线来表示上划 线。
[0067] t:透射光谱的线型,a:调制振幅。
[0068] 实际上,相对于图4的线型,分别在图6和图7中用虚线示出取a= 0.UcnT1]而 得到的一阶(n= 1。以下,也称为If。)和二阶(n= 2。以下,也称为2f。)时的同步检 波线型。
[0069] 即使保持数式(2)的原样也能够通过数学运算进行与WMS相当的处理,但是式子 的形态复杂,不实用。因此,在本发明中,通过采用多项式对其进行运算,高速且简便地进行 与WMS的高阶(包含零阶)检波处理相当的处理,从而对测定对象气体的各种物理量进行 测定。
[0070] 在本发明所涉及的方法中,首先,关于通过D LAS得到的光谱的线型的、以波数轴 的各点I为中心的宽度2a'的范围[i_a' <v<X+a' ],认为由下式表示的多项式表示。
[0071] [数式 3]
[0073] 在图5中示意性地示出该多项式。求出数式(3)的n阶微分的话,则为数式(4)。
[0074][数式 4]
[0076] 在此,已知通过WMS处理进行同步检波而得到的n阶高次谐波的光谱线型一般由 下式近似地示出(非专利文献2:Equation8)。
[0077][数式5]
[0079] 因此,根据数式(4)、(5),为数式(6)。
[0080] [数式 6]
[0082] 因此,为了针对DLAS光谱,计算出相对于波数丄的丽S信号,通过最小二乘法对 [X_a' <v<x+a']的波数的范围进行拟合(步骤S4),求出系数(步骤S5)。 通过逐次变更丄地进行拟合而求出的系数b:和b2的线型变得与If和2f的WMS线型相当 (步骤S6)。另外,表示拟合的范围的a'为相当于调制振幅的值。
[0083] 在此,示出了相对于图4的线型,将多项式截取为二次项的情况下的例子。分别在 图6、图7中用实线示出相对于波数I标绘系数131(^)和132(2〇的结果。另外,拟合范围 为a' = 0? 11 [cnT1]。
[0084] 对由数式⑵和数式⑶得到的线型进行比较后可知,虽然纵轴的刻度不同,但线 型的形状很一致,截取为二次项所导致的误差也充分小。另外,刻度不同由数式(6)可明 白。除此之外,在图8中示出相对于波数丄标绘系数h的结果。图8的线型基本与图4的 DLAS光谱一致。这根据如果在数式(3)中令v=1则能够得到t(丄)=1^可以明白。
[0085] 在实际的测定对象气体的测定中,基于这样制作的(包含零阶的)高阶微分曲线, 计算出测定对象气体的浓度、压力、温度等(步骤S7)。例如,测定对象气体的浓度可以根据 零阶微分曲线(图8)的吸收峰值的面积计算出。又,还可以根据二阶微分曲线(图7)的 峰值高度计算出。已知测定对象气体的压力P与零阶微分曲线(图8)的吸收峰值的半高 宽度(^具有如下的关系(非专利文献7)。
[0086] [数式 7]
[0088] 其中,aM为气压P。、温度I;下的洛仑兹展宽的半高半宽,P。是基准时的测定对象 气体的压力,T是测定时的测定对象气体的温度,I;是基准时的测定对象气体的温度,Y是 表示洛仑兹线宽的温度依存性的常数。
[0089] 根据该数式,可以求出测定对象气体的压力。
[0090] 又,关于测定对象气体的温度,已知2个吸收峰值的大小之比随着温度变化而变 化,通过采用该关系,可以对测定对象气体的温度进行检测(非专利文献8)。
[0091] 在实际的测定中,在被测定的DLAS光谱中包含有光检测器的散粒噪声、放大电路 的电噪声,但采用本发明所涉及的方法的话,由于以数学的运算进行拟合,所以能够在降低 了噪声的状态下得到If以及2f的丽S线型和DLAS光谱。
[0092] 接下来,对透射光强度的归一化处理进行说明。
[0093] 在气体吸光分光法中,光强度随着气室中使用的光学部件的污染或恶劣环境下的 振动所导致的光轴变化而变化是实用上的课题之一。因此,需要光强度的校正处理,但作为 校正方法之一,已知有将被同步检波了的2f信号除以If信号的归一化处理(非专利文献 4)。但是,采用该方法的话,则需要对激光进行调制,同步检波电路也还需要准备If用和2f 用两个种类。
[0094] 另一方面,在采用本发明所涉及的多项式近似的丽S相当处理中,也不需要激光 的调制、同步检波电路,能够在进行近似之时同时计算出If以及2f的检波信号,所以非常 简便的归一化处理是可能的。以下示出详细内容。
[0095] 如果将射入气体的光强度设为I。的话,则被检测的光强度为S(v) =GIQt(v)。 G表示相对于各光学部件的光强度的降低(以及变动)和检测到光强度的电增益。因此,在 实际的装置中,将基于数学运算的WMS处理适用于S(v),则变为如下的数式。
[0096] [数式 8]
[0098] 因此,在此得到的系数为
[0099] [数式 9]
[0100] b〇, =GI〇b〇 (9a)
[0101] b/ =Globi (9b)
[0102] b2' =GI0b2 (9c)
[0103] 因此,为了得到与光强度的变动不依存而仅依存于透射光谱的值,可以如以下那 样将b2'(2f信号)除以V(If信号)或者V。
[0104] [数式 10]
[0107] 另外,在吸光少的情况下为k~1(b^接近1),所以如式(10b)所示那样的近似是 可能的。以上,不依存于光强度的稳健的气体测量成为可能。
[0108] 符号说明
[0109] 11…气室
[0110] 12…激光光源
[0111] 13…光检测器
[0112] 14…光源控制部
[0113] 15",A/D转换器
[0114] 16…分析部。
【主权项】
1. 一种气体吸收分光装置,其特征在于,具有: a) 波长可变的光源; b) 光源控制部,其使由所述光源所生成的光的波长变化; c) 光检测器,其对由所述光源生成、通过了测定对象气体的光的强度进行检测; d) 多项式近似部,其在波长的各点在规定的波长宽度的范围内利用近似多项式对伴随 着所述光源控制部所引起的波长的变化的、由所述光检测器检测到的光强度的变化的曲线 进行近似; e) 微分曲线制作部,其基于所述各点的近似多项式的各项的系数,制作所述曲线的包 含零阶的n阶微分曲线;以及 f) 物理量决定部,其基于所述包含零阶的n阶微分曲线,决定所述测定对象气体的温 度、浓度、以及压力中的至少一个。2. 如权利要求1所述的气体吸收分光装置,其特征在于, 在所述多项式近似部中采用的近似多项式为二次多项式。3. 如权利要求1或2所述的气体吸收分光装置,其特征在于, 在所述多项式近似部以及所述微分曲线制作部中采用零阶微分曲线,在所述物理量决 定部中根据该零阶微分曲线的峰值面积来决定测定对象气体的浓度。4. 如权利要求1或2所述的气体吸收分光装置,其特征在于, 在所述多项式近似部以及所述微分曲线制作部中采用二阶微分曲线,在所述物理量决 定部中根据该二阶微分曲线的峰值高度来决定测定对象气体的浓度。5. -种气体吸收分光方法,其特征在于,包括如下步骤: a) 将波长变化的光照射于测定对象气体; b) 对于表示通过了测定对象气体的所述光的相对于波长的强度的变化的曲线,在波长 的各点在规定的波长宽度的范围内利用近似多项式进行多项式近似; c) 基于各点的所述近似多项式的各项的系数,制作所述曲线的包含零阶的n阶微分曲 线; d) 基于所述包含零阶的n阶微分曲线,决定所述测定对象气体的物理量。
【专利摘要】提供一种即使在高速测定时也能进行精度良好的气体浓度等的测定的气体吸收分光装置以及气体吸收分光方法。将波长变化的激光照射于测定对象气体,求出表示通过了测定对象气体的所述激光的相对于波长的强度的变化的光谱线型。对于该光谱线型,在波长的各点在规定的波长宽度的范围内利用近似多项式进行多项式近似,基于各点的所述近似多项式的各项的系数,制作该光谱线型的包含零阶的n阶微分曲线。基于这样作成的包含零阶的n阶微分曲线,决定测定对象气体的物理量。
【IPC分类】G01N21/39
【公开号】CN104903703
【申请号】CN201380069618
【发明人】村松尚, 森谷直司, 松田直树
【申请人】株式会社岛津制作所
【公开日】2015年9月9日
【申请日】2013年12月25日
【公告号】EP2942616A1, US20150338342, WO2014106940A1

最新回复(0)