无源密度确定设备、方法和系统的制作方法

xiaoxiao2020-10-23  20

无源密度确定设备、方法和系统的制作方法
【专利说明】无源密度确定设备、方法和系统
[0001] 发明背景
[0002] 在用于油气勘探的钻井中,了解地质岩层的结构和特性(包括其密度)可提供用 以帮助此类勘探的信息。测井是用以进行岩层特性的测量(经由位于井下的传感器)来提 供此信息的最常使用的过程。
[0003] 测井作业中所使用的一些传感器包括声波传感器和超声波传感器。虽然已尝试根 据声波测量来确定岩层密度,但结果是不可靠的,这是因为沿着发射器-接收器阵列的长 度的井孔不规则性可以很大地影响最终结果。
[0004] 附图简述
[0005] 图1是根据本发明的各种实施方案的设备的透视图。
[0006] 图2包括根据本发明的各种实施方案的超声波信号图,以及对应井孔大小和工具 位置的图表。
[0007] 图3包括根据本发明的各种实施方案的作为钻井流体与岩层之间的速度和密度 比率的函数的垂直入射反射系数的线性图和对数图。
[0008] 图4是根据本发明的各种实施方案的可用于确定地质岩层密度的工作流程图。
[0009] 图5是根据本发明的各种实施方案的设备和系统的框图。
[0010] 图6示出本发明的测井电缆系统实施方案。
[0011] 图7示出本发明的钻机系统实施方案。
[0012] 图8是示出根据本发明的各种实施方案的若干方法的流程图。
[0013] 图9是根据本发明的各种实施方案的物品的框图。
【具体实施方式】
[0014] 为处理上文所描述的一些挑战以及其它挑战,本文描述进行操作以使用在井孔内 进行的声波和超声波测量的组合来确定地质岩层的密度的设备、系统和方法。为了本文档 的目的,使用50kHz以下的频率来进行声波测量,且使用100kHz以上的频率来进行超声波 测量。
[0015] 声波频率测量指示岩层中的波速。超声波频率测量指示井孔流体(泥浆)速度和 岩层阻抗。由于阻抗等于密度乘以速度,所以获得速度和岩层的阻抗就能够计算出其密度。 因此,通过使用方位声波和超声波测量,可以确定方位密度。由于勘探深度较浅,所以阻抗 测量也较浅,且超声波与声波之间的速度色散应较小。
[0016] 图1是根据本发明的各种实施方案的设备100的透视图。在此情况下,设备100包 括附接到发射器102的外壳104 (例如,井下工具)、超声波传感器106和声波传感器108。 在一些实施方案中,发射器102包括声波发射器或超声波发射器,或两者。在一些实施方案 中,超声波传感器106包括超声波井径仪换能器,例如可以操作为超声波发射器和超声波 接收器两者的一发一收换能器或脉冲回波换能器。
[0017] 声波发射器102和传感器106、108可以分别包括发射器102和传感器106、108的 一维或二维阵列。举例来说,设备100中的传感器106可以包括四个超声波井径仪换能器 的一维阵列连同六个声波传感器108的四个一维线性阵列(或二十四个声波传感器108的 二维阵列),线性声波传感器阵列中的每一者与声波发射器102中的一者相关联。
[0018] 在许多实施方案中,设备100所提供的超声波和声波测量被组合且用以估计岩层 密度。通过使用每一声波传感器阵列或通过使用加总在一起的所有四个阵列来估计岩层纵 波慢度。针对所述过程的此部分,可以使用本领域技术人员已知的标准估计方法,例如相似 时间。这导致在声波发射器102与声波传感器108的阵列之间或者在声波传感器108的阵 列之间测量的平均岩层纵波速度。因此,使用声波传感器108来获取确定岩层密度的过程 中的一个测量集合。
[0019] 图2包括根据本发明的各种实施方案的超声波信号图210、220、230、240,以及对 应井孔大小和工具位置的图表250。此处可以看见通过包括超声波井径仪的传感器106 (参 见图1)中的每一者而获得的声学反射信号。图210、220、230、240对应于图表250中所指 出的换能器A、B、C、D提供的信号,其中展示所得井孔大小和工具位置估计。
[0020] 超声波井径仪换能器A、B、C、D经组配以测量来自井孔壁的超声波信号反射。反 射的传播时间用以估计井孔流体速度以及井孔的直径和形状,如图中所示。每一个别传感 器(例如,传感器106的阵列中的换能器A、B、C和D)处的反射的传播时间由穿越图210、 220、230、240中的每一者中的信号迹线的垂直线指示,如本领域技术人员已知的。接着使用 传播时间连同泥浆速度估计来提供井孔大小确定。
[0021] 泥浆速度可以通过操作在具有已知大小的壳体中的传感器106来估计,或者通过 直接测量地面处的泥浆特性来估计,从而可以据此而外推井下结果(虑及井下压力和温 度)。还可以使用单独的井下泥浆传感器来确定泥浆速度。
[0022] 除了传播时间之外,反射脉冲的振幅可用于估计井孔壁的反射系数。可以使用实 际的传播距离-经过的传播时间信息来针对传播路径衰减而校正脉冲的振幅。图210、220、 230、240中的脉冲振幅可以个别地使用或者在阵列中的所有接收器中或在若干获取循环中 进行平均,从而改进反射信号的信噪比。因此,使用超声波接收器106来获取确定岩层密度 的过程中的另一测量集合。
[0023] 图3包括根据本发明的各种实施方案的作为钻井流体与岩层之间的速度和密度 比率的函数的垂直入射反射系数RPP的线性图310和对数图320。当入射波具有单位振幅 且垂直于其撞击的界面时,垂直入射反射系数RPP是反射波的振幅。此处RPP值的范围是 从-0. 8 到 +0. 6。
[0024] 垂直入射反射系数RPP可以表达为钻井流体(下标1)与岩层(下标2)中的声学 阻抗(PV,密度乘以速度)的对比度,如以下方程式(1)中所示:
[0026] 因此,Pl是流体密度,且P2是岩层密度。Vi是流体速度,且V2是岩层速度。必 要时可以修改方程式(1)以包括非垂直入射,如本领域技术人员在阅读本发明的内容且审 阅相关联的图之后将了解。
[0027] 图4是根据本发明的各种实施方案的可用于确定地质岩层密度的工作流程图。此 处,与图1中所示的设备100类似或相同的设备100用以获得声波和超声波测量,如先前所 描述,分别作为用于方框410、420的活动的部分。确定泥浆速度和其它泥浆特性作为方框 430处的活动的部分。
[0028] 根据经由方框410中的声波接收器阵列进行的慢度测量,例如可以获得岩层的速 度。与来源于方框420中的超声波井径仪测量的声学阻抗相组合,在方框460处的反演之 后,可以作为方框470处的结果而获得岩层密度,这是因为密度等于阻抗除以速度。
[0029] 方框460处的反演是尝试将理论与已知值进行匹配,从而得到岩层密度P2。馈入 反演过程的中间值包括孔形状、工具位置、流体速度、入射角度、和从方框440获取的波形 (其可以来源于方框420所提供的超声波测量数据和方框430所提供的泥浆特性),连同来 自方框450的剪切波速度和压缩波速度(其可以来源于方框410所提供的声波阵列测量数 据),上述每一者可以个别地获得,如本领域技术人员所已知的。可以在插图480中看见基 于测量入射波和反射波的特性的反演性质关系。
[0030] 图5是根据本发明的各种实施方案的设备100和系统564的框图。设备100可与 图1中所示的设备100类似或相同。举例来说,参考图1和4,设备100可以包括附接到一 个或多个声波发射器102、一个或多 个声波传感器108和一个或多个超声波传感器106的 外壳104。传感器106、108操作以通过以信号的形式来提供井下测井数据570而测量岩层 和井孔特性。此数据570可以在电路逻辑540的控制下进行收集,也许作为数据获取系统 524的部分。逻辑540可以操作以将信号570变换为表示信号570的振幅和其它特性的数 据值。
[0031] 设备100可以还包括外壳104中的一个或多个处理器530。收发器544可用以接 收来自工作站556的命令,和发射数据570或数据570的处理版本(例如,数字数据值,或 估计岩层密度)到地面566。处理器530可以通过使用本文所描述方法的各种实施方案而 操作,以基于形成数据570的部分的测量值来计算地面566下方岩层的密度。存储器550 可以位于外壳104中,或在工作站556中,或在两者中,从而将作为原始测井数据570或测 井数据的处理版本或两者的测量值或许存储在数据库534中。
[0032] 因此,现在参考图1-5,可见可以实现许多实施方案。举例来说,系统564可以包括 外壳104、超声波传感器106和声波传感器108,和一个或多个处理器530。处理器530用以 基于传感器106、108所提供的信号来确定岩层密度。系统564可以还包括工作站556,其包 括一个或多个处理器530和存储器550。
[0033] 在一些实施方案中,系统564包括外壳104、附接到外壳104的声波传感器108、和 附接到外壳104的超声波传感器106。系统564包括至少一个处理器530以基于来源于声 波传感器108和超声波传感器106所提供的信号570的值来计算地质岩层的密度。此通过 以下操作来实现:根据与声波传感器108相关联的值来确定地质岩层的纵波速度(CV);根 据与超声波传感器106相关联的值来确定与地质岩层相关联的反射系数(RC);以及基于CV 和RC来确定地质岩层的密度。
[0034] 处理器530可以附接到外壳104,或位于地质岩层的地面566处的工作站556中, 或两者处。超声波传感器106可以包括井径仪传感器,其包括脉冲回波传感器或一发一收 传感器。声波传感器108可以包括声波接收器阵列。
[0035] 系统564可以包括多个声波传感器阵列。因此,在一些实施方案中,声波传感器 108包括安置在外壳104外围的周围的多个声波接收器阵列。在此情况下,声波接收器阵列 中的每一者可用于接收来自一个声波发射器102或多个声波发射器102的信号,从而确定 岩层CV。外壳104可以包括测井电缆工具或随钻测量/测井(MWD/LWD)工具。
[0036] 图6示出本发明的测井电缆系统664实施方案,且图7示出本发明的钻机系统764 实施方案。因此,系统664、764可以包括电缆式测井钻具主体670的部分作为电缆式测井 作业的部分,或包括井下工具724的部分作为井下钻井作业的部分。
[0037] 现参看图6,可看见在电缆式测井作业期间的井。在此情况下,钻井平台686装备 有支撑提升机690的井架688。
[0038] 油钻井和气钻井通常通过使用连接在一起以便形成钻柱的一连串钻杆来进行工 作,所述钻柱经由转盘610而下降到钻井孔或井孔612中。此处假定已从井孔612临时移 除钻柱以允许电缆式测井钻具主体670 (例如探针或探头)通过测井缆线或测井电缆674 下降到井孔612中。通常,电缆式测井钻具主体670下降到感兴趣的区域的底部,且随后以 实质上恒定速度向上拉。
[0039] 在向上行程期间,在一系列深度处,包括在钻具主体670中的各种仪器(例如,图1 和5中所示的设备100的部分或系统564)可用以对与井孔612 (和钻具主体670)相邻的 地下地质岩层614执行测量。可以将测量数据传达到地面测井设备692用于处理、分析和/ 或存储。测井设施692可以具备用于各种类型的信号处理的电子设备,所述电子设备可以 通过图1和5中的设备100或系统564的部件中的任一者或多者来实施。可以在钻井作业 期间(例如,在LWD作业期间,进而在随钻取样期间)收集和分析类似的岩层评估数据。
[0040] 在一些实施方案中,钻具主体670通过测井电缆674而悬挂在钻井孔中,测井电缆 674将工具连接到地面控制单元(例如,包括工作站556)。所述工具可以通过连续油管、分 节钻杆、硬连线钻杆或任何其它合适的部署技术而部署在井孔612中。
[0041] 现在转向图7,可以看见系统764如何还可以形成位于井706的地面704处的钻 机702的一部分。钻机702可以提供用于钻柱708的支撑。钻柱708可以操作以穿透转盘 610,用于对井孔612进行钻井而穿过地下岩层614。钻柱708可以包括方钻杆716、钻杆 718以及也许位于钻杆718的下部部分的底部钻具组件720。
[0042] 底部钻具组件720可以包括钻挺722、井下工具724和钻头726。钻头726可以操 作以通过穿透地面704和地下岩层614来产生井孔612。井下工具724可以包括若干不同 类型的工具中的任一者,包括MWD工具、LWD工具和其它工具。
[0043] 在钻井作业期间,钻柱708 (也许包括方钻杆716、钻杆718和底部钻具组件720) 可以通过转盘610来旋转。尽管未图示,但除此之外或替代地,底部钻具组件720还可以通 过位于井下的马达(例如,泥浆马达)来旋转。钻挺722可以用于将重量添加到钻头726。 钻挺722还可以操作以使底部钻具组件720变硬,从而允许底部钻具组件720将所添加重 量转移到钻头726,且继而以协助钻头726穿透地面704和地下岩层614。
[0044] 在钻井作业期间,泥浆泵732可以从泥浆坑734经过软管736将钻井流体(有时 被本领域的技术人员称为"钻井泥浆")抽吸到钻杆718中且向下到钻头726。钻井流体 可以从钻头726流出,且经由钻杆718与井孔612的侧边之间的环形区域740而返回到地 面704。钻井流体接着可以返回到泥浆坑734,在所述泥浆坑734中过滤此类流体。在一些 实施方案中,钻井流体可以用于冷却钻头726,以及在钻井作业期间提供用于钻头726的润 滑。另外,钻井流体可以用以移除通过操作钻头726所产生的地下岩层岩肩。
[0045] 因此,现在参考图1-7,在一些实施方案中可见,系统664、764可以包括钻挺722、 井下工具724和/或电缆式测井钻具主体670,从而安置与上文所描述和图1中示出的设备 100类似或相同的一个或多个设备100。图5中系统564的部件还可以通过工具724或钻 具主体670安放。
[0046] 因此,出于本文档的目的,术语"外壳"可以包括钻挺722、井下工具724或电缆式 测井钻具主体670中的任一者或多者(全部具有用以围绕或附接到磁力计、传感器、流体取 样装置、压力测量装置、温度测量装置、发射器、接收器、获取与处理逻辑和数据获取系统的 外表面)。工具724可以包括井下工具,例如LWD工具或MWD工具。测井电缆钻具主体670 可以包括电缆式测井工具,其包括例如耦接到测井电缆674的探针或探头。因此可以实现 许多实施方案。
[0047] 举例来说,在一些实施方案中,系统664、764可以包括用以也许按图形形式来呈 现信息的显示器696,例如经测量测井数据570和数据570的处理版本(例如,估计岩层密 度)以及数据库信息。系统664、764还可以包括也许作为地面测井设施692的部分或计算 机工作站556的计算逻辑,用以接收来自发射器的信号和发送信号到接收器,以及包括用 以确定岩层6 14的特性的其它仪器。
[0048] 因此,系统664、764可以包括井下钻具主体,例如电缆式测井钻具主体670或井下 工具724 (例如,LWD或MWD钻具主体),以及包括附接到钻具主体的一个或多个设备100的 部分,所述设备100如先前描述来经建构和操作。系统664、764中的处理器530可以附接 到外壳104或位于地面566处,作为地面计算机的部分(例如,在图5的地面测井设施556 中)。
[0049] 设备100 ;发射器102 ;外壳104 ;传感器106、108 ;数据获取系统524 ;处理器530 ; 数据库534 ;逻辑540 ;收发器544 ;存储器550 ;工作站556 ;系统564、664、764 ;地面566 ; 数据570 ;转盘610 ;井孔612 ;电缆式测井钻具主体670 ;测井电缆674 ;钻井平台686 ;井 架688 ;提升机690 ;测井设施692 ;显示器696 ;钻柱708 ;方钻杆716 ;钻杆718 ;底部钻具 组件720 ;钻挺722 ;井下工具724 ;钻头726 ;泥浆泵732 ;泥浆坑734 ;以及软管736可以全 部在本文表征为"模块"。
[0050] 此类模块可以包括硬件电路、和/或处理器和/或存储器电路、软件程序模块和对 象、和/或固件以及其组合,根据设备100和系统564、664、764的设计师所需要以及根据各 种实施方案的特定实现方式所适合的。举例来说,在一些实施方案中,此类模块可以包括在 设备和/或系统操作模拟封装中,例如软件电信号模拟封装、电力使用与分配模拟封装、电 力/热损耗模拟封装、和/或用以模拟各种潜在实施方案的操作的软件与硬体的组合。
[0051] 还应理解,各种实施方案的设备和系统可以用于不同于测井作业的应用中,且因 此,各种实施方案并不如此限制。设备100和系统564、664、764的说明意图提供各种实施 方案的结构的一般了解,且所述说明并不意图充当可能利用本文所描述结构的设备和系统 的所有元件和特征的完整描述。
[0052] 可以包括各种实施方案的新颖设备和系统的应用包括在高速计算机、通信与信号 处理电路、调制解调器、处理器模块、嵌入式处理器、数据交换机和专用模块中使用的电子 电路。可以还包括此类设备和系统作为多个电子系统内的子部件,其中例如电视机、蜂窝式 电话、个人计算机、工作站、无线电、视频播放器、车辆、用于地热工具和智能换能器接口节 点遥测系统的信号处理。一些实施方案包括若干方法。
[0053] 举例来说,图8是示出根据本发明的各种实施方案的若干方法811的流程图。举 例来说,一个方法811可以包括确定CV,确定RC,以及使用CV和RC两者来确定岩层密度。
[0054] 在一些实施方案中,用以在实行方法811的一个或多个处理器上执行的处理器实 施方法811在方框821处开始,其中激励一个或多个发射器以将声波和超声波投射到地质 岩层中。
[0055] 方法811可以继续到方框825以响应于方框821处的发射器的激励而包括接收信 号,包括声波和超声波信号。
[0056] 如果信号的接收是完整的,如方框829处所确定,那么方法811可以继续到方框 833。如果信号的接收尚未完成,那么方法811可以返回到方框825,从而继续接收过程。
[0057] 可以校正接收信号的脉冲振幅以用于衰减。因此,方法811可以在方框833处包 括校正所获取信号的脉冲振幅以用于沿着信号的传播路径衰减,其中所获取信号与RC相 关联。
[0058] 脉冲振幅校正可以涉及确定传播路径行进距离。因此,校正的活动可以包括确定 沿着传播路径行进的实际距离。
[0059] 传播路径行进距离可以使用信号传播时间来确定。因此,确定所行进的实际距离 可以包括确定信号传播时间。
[0060] 方法811可以继续到方框837而包括确定地质岩层的CV。时间相似估计可以用于 确定声波CV。因此,CV可以使用时间相似估计来获得。时间相似估计继而可以通过使用个 别或加总的声波阵列测量而获得。因此,时间相似估计可以基于来自个别阵列的测量或来 自所述阵列的测量的总和。在一些实施方案中,可以将声波CV确定为平均速度。因此,CV 可以包括声波源阵列与声波接收器阵列之间的或者跨越接收器阵列的平均岩层纵波速度。
[0061] 方法811可以继续到方框841,其中确定与地质岩层相关联的RC。RC可以使用井 孔中的反射脉冲振幅和传播时间来估计。因此,方框841处的活动可以包括基于井孔反射 脉冲振幅(经校正或未校正)和传播路径传播时间来估计RC。
[0062] 可以将反射脉冲振幅确定为平均振幅。因此,可以在若干获取循环中对反射脉冲 振幅求平均值。
[0063] RC可以使用阻抗比率函数来估计,例如速度与密度的乘积。阻抗比率可以包括针 对钻井流体和岩层两者的速度和密度的各种组合,例如速度与密度的乘积。
[0064] 举例来说,阻抗比率函数可具有A/B的形式,其中A包括密度与速度乘积的差,以 及B包括密度与速度乘积的总和。密度和速度乘积可以包括钻井流体密度和速度以及地质 岩层的密度和速度。
[0065] 可以若干方式来估计钻井流体速度。举例来说,钻井流体速度可以根据已知目标 距离或直接地面测量来进行估计。
[0066] 可以将估计RC反转从而匹配理论上确定的值。因此,方法811可继续到方框845 从而包括对RC反转,以减小RC与理论反射系数之间的变化。
[0067] 方法811可以继续到方框849而包括基于CV和RC来确定地质岩层的密度,如先 前所描述。
[0068] 在一些实施方案中,显示声波和超声波测量,所述测量校正脉冲振幅、CV、RC和密 度。因此,方法811可以继续到方框853从而包括也许在工作站的显示器上以图形形式显 示CV、RC和密度。
[0069] 应注意,本文所描述的方法不必按照所描述的次序或者按照任何特定次序来执 行。此外,可以按照迭代、连续或平行的方式来执行关于本文所识别方法而描述的各种活 动。举例来说,在一些实施方案中,方框841的活动可以在与方框837的活动大约相同时间 或甚至之前而发生。另外,每一方法(例如,图4和8中所示的方法)的各种元件可以在方 法内和方法之间彼此代替。可以按一个或多个载波的形式来发送和接收包括参数、命令、操 作数和其它数据的信息。
[0070] 在阅读和理解本公开的内容后,本领域的技术人员将了解可以从基于计算机的系 统中的计算机可读媒体启动软件程序以执行所述软件程序中限定的函式的方式。本领域的 技术人员将进一步了解各种编程语言,所述编程语言可被采用以产生经设计以实施和执行 本文公开的方法的一个或多个软件程序。举例来说,可以使用面向对象的语言(例如Java 或C#)来按照面向对象的格式而构造所述程序。在另一实例中,可以使用程序化语言(例 如汇编或C)来按照面向程序的格式而构造所述程序。所述软件部件可以使用本领域技术 人员众所周知的若干机制中的任一者来通信,例如应用程序接口或进程间通信技术,包括 远程程序调用。各种实施方案的教示并不限于任何特定编程语言或环境。因此,可以实现 其它实施方案。
[0071] 举例来说,图9是根据各种实施方案的制品900的框图,例如计算机、存储器系统、 磁盘或光盘、或某一其它存储装置。物品900可以包括耦接到例如存储器936的机器可访 问介质(例如,可移动存储介质,以及包括电气、光学或电磁导体的任何有形非暂时性存储 器)的一个或多个处理器916,所述介 质具有相关联的信息938 (例如,计算机程序指令和 /或数据),所述信息在被处理器916中的一或多者执行时导致机器(例如,物品900)执 行关于图4和8的方法、图1和5的设备和图5-7的系统所描述的任何动作。处理器916 可以包括英特尔公司(例如,Intel?CoreTMf处理器系列的成员)、高级微设备(例如,AMD Athlon?处理器)以及其它半导体制造商所出售的一个或多个处理器。
[0072] 在一些实施方案中,物品900可以包括耦接到用以显示通过处理器916和/或无 线收发器920 (例如,井下遥测收发器)处理的数据的显示器918的一个或多个处理器916, 从而接收和发射由所述处理器处理的数据。
[0073] 包括在物品900中的存储器系统可以包括存储器936,其包括易失性存储器(例 如,动态随机存取存储器)和/或非易失性存储器。可以使用存储器936来存储处理器916 所处理的数据940。
[0074] 在各种实施方案中,物品900可以包括通信设备922,所述通信设备继而可以包括 放大器926 (例如,前置放大器或功率放大器)和一个或多个天线924 (例如,发射天线和/ 或接收天线)。可以根据本文所描述的方法来处理通信设备922所接收或发射的信号942。
[0075] 物品900的许多变体是可能的。举例来说,在各种实施方案中,物品900可以包括 井下工具。在一些实施方案中,物品900与图5中所示的设备100或系统564类似或相同。
[0076] 总而言之,本文公开的设备、系统和方法使得能够基于声波和超声波岩层测量来 计算估计岩层密度,从而帮助优化油气储量的识别和恢复。可以产生提高的客户满意度。
[0077] 形成本文一部分的附图借助于说明且非限制的方式来展示其中可以实践本主题 的具体实施方案。充分详细地描述所示出的实施方案以使本领域技术人员能够实践本文公 开的教示。其它实施方案可被利用且由此导出,使得可在不偏离本公开的范围的情况下进 行结构和逻辑替代和改变。因此,不应以限制性意义来采用本【具体实施方式】,且各种实施方 案的范围仅通过随附权利要求书连同此类权利要求书授权的等效物的全部范围来限定。
[0078] 本发明主题的此类实施方案可在本文个别地和/或共同地通过术语"发明"来引 用,其仅仅为了方便且不意图将本申请的范围主动限制到任一单个发明或发明概念(如果 实际上公开一个以上的发明)。因此,尽管本文已说明和描述了具体的实施方案,但应了解, 计划来实现相同目的的任何布置可代替所展示的具体实施方案。本发明意图涵盖各种实施 方案的任何和所有改变或变体。本领域的技术人员将通过审阅以上描述而显而易见以上实 施方案和本文未特定描述的其它实施方案的组合。
[0079] 提供说明书摘要以符合37C.F.R. § 1. 72 (b)的要求,其要求应允许读者快速地确 定技术公开的性质的摘要。应理解摘要的提交不是用来解释或限制权利要求书的范围或含 义。此外,在以上【具体实施方式】中,可以看出,为达精简本公开的目的,各种特征被共同组合 在单个实施方案中。本公开的所述方法不应解释为反映以下意图:所要求的实施方案要求 比每项权利要求中明确叙述的特征更多的特征。相反,如随附权利要求书所反映,发明主题 在于比单个公开实施方案的所有特征更少的特征中。因此,随附权利要求书均在此并入具 体实施方式中,其中每项权利要求自身可作为单独的实施方案。
【主权项】
1. 一种系统,其包括: 外壳; 声波传感器,其附接到所述外壳; 超声波传感器,其附接到所述外壳;以及 处理器,其用以基于来源于所述声波传感器和所述超声波传感器所提供的信号的值通 过以下操作来计算地质岩层的密度:根据与所述声波传感器相关联的值来确定所述地质岩 层的纵波速度(CV);根据与所述超声波传感器相关联的值来确定与所述地质岩层相关联 的反射系数(RC);以及基于所述CV和所述RC来确定所述地质岩层的密度。2. 如权利要求1所述的系统,其中所述处理器附接到所述外壳,或位于所述地质岩层 的地面处的工作站中。3. 如权利要求1所述的系统,其中所述超声波传感器包括井径仪传感器、脉冲回波传 感器或一发一收传感器中的至少一者。4. 如权利要求1所述的系统,其还包括附接到所述外壳的至少一个声波发射器,其中 所述声波传感器包括声波接收器阵列。5. 如权利要求4所述的系统,其中所述声波接收器阵列包括安置在所述外壳外围的周 围的多个声波阵列中的一者。6. 如权利要求1至5中任一项所述的系统,其中所述外壳包括测井电缆工具、随钻测井 工具或随钻测量工具中的一者。7. -种处理器实施的方法,用以在实行所述方法的一个或多个处理器上执行,所述方 法包括: 确定地质岩层的纵波速度(CV); 确定与所述地质岩层相关联的反射系数(RC);以及 基于所述CV和所述RC来确定所述地质岩层的密度。8. 如权利要求7所述的方法,其中使用时间相似估计来获得所述CV。9. 如权利要求8所述的方法,其中所述时间相似估计是基于来自个别阵列的测量或来 自所述阵列的测量的总和。10. 如权利要求7至9中任一项所述的方法,其中所述CV包括在声波源阵列与声波接 收器阵列之间的平均岩层纵波速度。11. 如权利要求7所述的方法,其还包括: 使所述RC反转以减小所述RC与理论反射系数之间的变化。12. 如权利要求7或11中任一项所述的方法,其中确定所述RC包括: 基于井孔反射脉冲振幅和传播路径传播时间来估计所述RC。13. 如权利要求12所述的方法,其中使用阻抗比率函数来估计所述RC。14. 如权利要求13所述的方法,其中所述阻抗比率函数具有A/B的形式,其中A包括密 度与速度乘积的差,以及B包括密度与速度乘积的总和,且其中所述密度与速度乘积包括 钻井流体密度和速度以及所述地质岩层的密度和速度。15. 如权利要求14所述的方法,其中根据已知目标距离或直接地面测量来估计所述钻 井流体速度。16. 如权利要求12所述的方法,其还包括: 校正所述脉冲振幅用于沿着与所述RC相关联的所获取信号的传播路径而衰减。17. 如权利要求16所述的方法,其中所述校正包括: 确定沿着所述传播路径行进的实际距离。18. 如权利要求17所述的方法,其中确定所行进的所述实际距离包括确定信号传播时19. 如权利要求12所述的方法,其中在若干获取循环中对所述反射脉冲振幅求平均 值。20. -种包括机器可访问介质的物品,所述机器可访问介质具有存储在其中的指令,其 中所述指令在被存取时导致机器执行以下操作: 确定地质岩层的纵波速度(CV); 确定与所述地质岩层相关联的反射系数(RC);以及 基于所述CV和所述RC来确定所述地质岩层的密度。
【专利摘要】在一些实施方案中,一种设备和系统以及一种方法和物品可以进行操作以确定地质岩层的纵波速度(CV),确定与所述地质岩层相关联的反射系数(RC),以及基于所述CV和所述RC来确定所述地质岩层的密度。所述CV和RC可以根据与声波速度测量和超声波速度测量相关联的值来确定。描述额外的设备、系统和方法。
【IPC分类】G01V1/50, G01V1/44
【公开号】CN104903748
【申请号】CN201280077537
【发明人】M·巴塔克里什纳, A·程, N·克莱格, J·A·马尔凯特
【申请人】哈里伯顿能源服务公司
【公开日】2015年9月9日
【申请日】2012年12月31日
【公告号】CA2895025A1, EP2932309A1, WO2014105088A1

最新回复(0)