电化学元件及其电极的制造方法、锂化处理方法和锂化处理装置的制作方法

xiaoxiao2020-8-1  16

专利名称:电化学元件及其电极的制造方法、锂化处理方法和锂化处理装置的制作方法
技术领域
本发明涉及在电化学元件用电极上附着锂的锂化处理方法和包含 该锂化处理方法的制造方法、以及利用了应用这些方法来处理或制作 的电极的电化学元件,进而涉及用于对电化学元件用电极进行锂化处 理的装置。更详细地说,涉及在能够嵌入和脱嵌锂离子的电化学元件 用电极上使用锂蒸气附着锂的锂化处理方法和包含该锂化处理方法的 制造方法、以及利用了应用这些方法来处理或制作的电极的电化学元 件,进而涉及用于对能够嵌入和脱嵌锂离子的电化学元件用电极使用 锂蒸气来进行锂化处理的装置。
背景技术
近年来,电子设备正朝着便携化以及无绳化的方向飞速发展, 作为它们的驱动用电源,对小型、轻量且具有高能量密度的二次 电池的期望正在提高。另外,从这些小型民用到电力储存用和电动 汽车用等大型的二次电池的技术开发也正在加速之中。在这样的状况 下,具有高电压、高能量密度的非水电解质二次电池特别是锂二次电 池,正期待着作为电子设备用、电力储存用、或者电动汽车用的电源。非水电解质二次电池具有正极、负极、以及介于它们之间的隔膜 和非水电解质。在目前己实际应用的非水电解质二次电池中,作为正 极的活性物质,主要使用相对于锂的电位较高、安全性优良、且比较容易合成的锂钴氧化物(例如LiCo02)。作为负极的活性物质,主要使用石墨等各种碳素材料。用作负极活性物质的石墨在理论上相对于6个碳原子可以嵌入1 个锂原子,并具有372mAh/g的理论容量密度。但是,存在因不可逆 容量等引起的容量损失,从而实际的容量密度低至310 330mAh/g的程度。在进一步要求高能量密度的电池之中,作为理论容量密度较大的负极活性物质,可以期待的是与锂合金化的硅(Si)、锡(Sn)、锗 (Ge)以及它们的氧化物、合金等。其中,廉价的Si及其氧化物也正 在进行广泛的研究。但是,作为负极活性物质进行研究的Si、 Sn、 Ge和它们的氧化物 或合金在嵌入锂离子时,晶体结构发生变化而使体积增加。如果在充 放电时反复地进行锂离子的嵌入和脱嵌,从而使活性物质反复地膨胀 和收縮,则在活性物质和集电体之间将产生接触不良,从而充放电循 环寿命缩短。为解决这样的问题,人们提出了以下的方案。例如,为抑制因膨胀和收縮引起的活性物质和集电体的接触不良, 从而改善充放电循环寿命,已经提出了在集电体表面将活性物质成形 为薄膜状的方法(例如,特开2002—83594号公报)。进而提出了在 集电体表面以柱状且倾斜的状态使活性物质成膜的方法(例如,特开 2005 — 196970号公报)。根据这些方案,经由金属键而使活性物质和 集电体结合在一起,由此便可以确保牢固且稳定的集电。尤其是后者, 可以在柱状活性物质的周围确保充分的空间以吸收膨胀。为此,可以 防止因活性物质的膨胀和收縮引起的负极本身的崩溃,同时也可以降 低从负极向隔膜或正极的压应力,故而可以有效地提高充放电循环特 性。但是,即使如上述那样改善充放电循环特性,在使用可以期待高 容量密度的硅氧化物(SiOx (0<x<2))作为负极活性物质的情况下, 也存在如下的问题,即在初次的充电中所产生的不可逆容量较大,从 而实际的容量密度比理论容量密度大为降低。在此,所谓不可逆容量, 是指在硅氧化物的初次充电中嵌入硅氧化物内,而在其后的放电反应 中不能从硅氧化物中脱嵌(不可逆)的锂离子的量。在将以硅氧化物 为活性物质的负极就那样直接地与正极组合而使用的情况下,正极的 可逆容量(嵌入正极中的能够以电化学方式嵌入和脱嵌的锂离子的量)的大部分作为不可逆容量而被浪费掉。因此,为了使用以硅氧化物为 活性物质的负极而实现高容量的电池,在组合正极和负极以构成电池 而进行充放电之前,必须将在硅氧化物的初次充电中所产生的不可逆 容量部分的锂离子预先填补到负极上。于是,作为锂离子的填补手段,已经提出了许多在负极上附着金 属锂、并通过固相反应使其以锂离子的形式嵌入负极内的手段。例如,已经提出了一种方法(例如,特开2005 — 38720号公报),其具有在 负极表面上蒸镀锂的工序,以及将蒸镀了锂的负极保存在真空干燥气 氛中或电解液中的工序。但是,在采用如特开2002 — 83594号公报和特开2005 — 196970 号公报所记载的方法使活性物质成膜、而且如特开2005 — 38720号公 报所记载的那样于负极表面上蒸镀锂的情况下,锂蒸气扩散到真空容 器内,并于真空容器内在输送负极的装置等上也会蒸镀锂。为此,锂 将会被过量地消耗。或者锂的沉积速率在负极上变得不均匀。另外, 在时间的流逝的同时,蒸发源的锂量减少,从而锂蒸气的发生量随之 减少。为遍及负极的整个面均匀地蒸镀锂,必须频繁地补充蒸发源的 锂。但是,为了安全地进行锂的补充,在蒸镀时除真空容器以外,还 必须对在真空容器内加热到高温、从而反应性增强的锂进行冷却。该 冷却需要较长的时间,从而生产效率变得极低。发明内容本发明的电化学元件用电极的制造方法包含以下的锂化处理方 法。在此,将在电极内嵌入锂离子称为锂化处理。也就是说,对能够 以电化学的方式嵌入和脱嵌锂离子的电化学元件用电极进行锂化处 理。在本发明的锂化处理方法中,通过限制锂蒸气的移动路线,使锂 蒸气流过,从而在电极上附着锂。


图1是本发明的实施方案的非水电解质二次电池的纵向剖面图。图2是在本发明的实施方案中,在包括具有倾斜的柱状结构的活 性物质的负极的制造中所使用的装置的示意构成图。图3是含有用图2的装置制造的活性物质的负极的示意剖面图。 图4是为了附着本发明实施方案的锂的真空蒸镀装置的整体构成图。图5是表示本发明实施方案的锂蒸镀喷嘴的结构的示意剖面图。 图6A 图6C表示了本发明实施方案的锂的沉积速率和氩气流 速、铜坩埚内锂的表面位置随时间变化的概况。图7是本发明实施方案的锂蒸镀装置的锂蒸镀喷嘴的俯视图。 图8是本发明实施方案的锂蒸镀装置的其它锂蒸镀喷嘴的剖面图。
具体实施方式
下面参照附图,并且作为电化学元件,以非水电解质二次电池为 例,作为其电极,以负极为例,就本发明的实施方案进行说明。此外, 本发明只要是基于本说明书所记载的基本特征,就并不局限于以下所 记载的内容。图1是本发明实施方案的非水电解质二次电池的纵向剖面图。在 此,以圆筒形电池为一个例子进行说明。非水电解质二次电池具有壳 体1和收纳在壳体1内的电极组9。壳体1是用不锈钢或镀镍的铁等 金属制造的。电极组9采用下述的方法进行制作,即隔着隔膜7将作 为第1电极的负极6和作为第2电极的正极5巻绕成螺旋状。在电极 组9的上部配置有上部绝缘板8A,在下部配置有下部绝缘板8B。壳 体l的开口端部经由垫圈3而借助于封口板2进行密封。在正极5上 安设有铝制的正极引线5A的一端。正极引线5A的另一端连接在兼作 正极端子的封口板2上。在负极6上安设有镍制的负极引线6A的一端。 负极引线6A的另一端连接在兼作负极端子的壳体1上。在电极组9 上浸渍有作为电解质的、图中没有标示的非水电解质。也就是说,使非水电解质介于正极5和负极6之间。正极5通常由正极集电体和附载在其上的正极合剂构成。正极合 剂除了正极活性物质以外,也可以含有粘结剂、导电剂等。正极5例 如是将含有正极活性物质作为主要成分的正极合剂浆料涂布在正极集 电体上并使其干燥而制造的。作为正极活性物质,可以使用锂复合金属氧化物。例如可以列举 出LixCo02、 LixNi02、 LixMn02、 LixC。yM卜yOz、 LixNi卜yMyOz、 LixMn204、 LixMn2_zMz04、 LiMP04、 Li2MP04F。在此,M为Na、 Mg、 Sc、 Y、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Al、 Cr、 Pb、 Sb、 B之中的至少一种,0 《x《1.2, 0《y《0.9, 0《z《1.9。此外,表示锂的摩尔比的x值是在 锂复合金属氧化物制造之后、正极制作之前的数值。x值随充放电的 进行而增减。这些锂复合金属氧化物的一部分也可以由异种元素 置换。此外,也可以用金属氧化物、锂氧化物、导电剂等进行表 面处理。另外,还可以对表面进行疏水化处理。正极合剂的粘结剂例如可以使用聚偏氟乙烯(PVDF)、聚四氟 乙烯、聚乙烯、聚丙烯、芳族聚酰胺树脂、聚酰胺、聚酰亚胺、 聚酰胺-酰亚胺、聚丙烯腈、聚丙烯酸、聚丙烯酸甲酯、聚丙烯酸 乙酯、聚丙烯酸己酯、聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚甲 基丙烯酸乙酯、聚甲基丙烯酸己酯、聚醋酸乙烯酯、聚乙烯吡咯 垸酮、聚醚、聚醚砜、六氟聚丙烯、丁苯橡胶、羧甲基纤维素等。 另外,也可以单独或混合2种以上使用由选自四氟乙烯、六氟乙 烯、六氟丙烯、全氟烷基乙烯基醚、偏氟乙烯、三氟氯乙烯、乙 烯、丙烯、五氟丙烯、氟甲基乙烯基醚、丙烯酸、以及己二烯之 中的2种以上的化合物构成的共聚物。作为导电剂,例如可以使用石墨类,如天然石墨和人造石墨; 碳黑类,如乙炔黑、科琴碳黑、槽法碳黑、炉法碳黑、灯黑、热 裂碳黑等;导电性纤维类,如碳纤维和金属纤维等;金属粉末类, 如铝粉末等;导电性化合物的晶须类,如氧化锌和钛酸钾等;导电性金属氧化物,如氧化钛等;以及有机导电性材料,如亚苯基 衍生物等。优选的配比是正极活性物质为80 97重量%的范围,导电剂为 1 20重量%的范围,粘结剂为2 7重量%的范围。正极集电体可以使用有孔或无孔的导电性基板。作为导电性基板 所使用的材料,例如可以列举出不锈钢、铝、钛等。集电体的厚度并 没有特别的限定,但优选为l 500ym,更优选为5 20tim。通过将 集电体的厚度设定为上述范围,可以在保持电极强度的同时,实现电 极的轻量化。作为隔膜7,可以使用具有较大的离子透过度、并兼备规定的机 械强度和绝缘性的多孔薄膜、织物、无纺布等。作为隔膜7的材质, 例如聚丙烯、聚乙烯等聚烯烃由于耐久性优良、而且具有关闭功能, 所以从电池的安全性的角度考虑是优选的。隔膜7的厚度一般为10 300iim,但优选设定为40um以下。另外,更优选设定为5 30um 的范围,进一步优选为10 25um。再者,多孔薄膜既可以是由1种 材料构成的单层膜,也可以是由2种以上的材料构成的复合膜或多层 膜。另外,隔膜7的孔隙率优选为30 70%的范围。在此,所谓孔隙 率,是指孔部在隔膜7的表面积中所占的面积比。隔膜7的孔隙率更 优选的范围是35 60%。作为非水电解质,可以使用液状、凝胶状或固体状(高分子固体 电解质)非水电解质。液状非水电解质(非水电解液)可以通过使电 解质(例如,锂盐)溶解于非水溶剂中而得到。凝胶状非水电解质由 液状非水电解质、和保持该液状非水电解质的高分子材料构成。作为 高分子材料,例如可以使用PVDF、聚丙烯腈、聚环氧乙烷、聚氯乙 烯、聚丙烯酸酯、聚偏氟乙烯-六氟丙烯等。作为非水溶剂,可以使用公知的非水溶剂。非水溶剂的种类并没 有特别的限定。例如可以使用环状碳酸酯、链状碳酸酯、环状羧酸酯 等。作为环状碳酸酯,可以列举出碳酸亚丙酯(PC)、碳酸亚乙酯(EC)等。作为链状碳酸酯,可以列举出碳酸二乙酯(DEC)、碳酸甲乙酯 (EMC)、碳酸二甲酯(DMC)等。作为环状羧酸酯,可以列举出Y 一丁内酯(GBL) 、 Y—戊内酯(GVL)等。非水溶剂既可以单独使 用1种,也可以组合使用2种以上。溶解于非水溶剂中的溶质例如可以使用LiC104、 UBF4、 LiPF6、 LiAlCl4、 LiSbF6、 LiSCN、 LiCF3S03、 LiCF3C02、 LiAsF6、低级 脂肪族羧酸锂、LiC 1 、 LiBr、 Lil、氯硼烷基锂(chloroboran lithium )、 硼酸盐类、亚氨盐类等。作为硼酸盐类,可以列举出二 (1, 2-苯二酚(2-) -0, O,)硼酸酯锂、二 (2, 3-萘二酚(2-) -0, 0,) 硼酸酯锂、二 (2, 2,-联苯二酚(2-) -0, 0,)硼酸酯锂、二 (5-氟-2-羟基-l-苯磺酸-0, O')硼酸酯锂等。作为亚氨盐类,可以列 举出双三氟甲磺酰亚胺锂((CF3S02)2 NLi )、三氟甲磺酰基九 氟丁磺酰亚胺锂(LiN (CF3S02) (C4F9S02))、双五氟乙磺酰 亚胺锂((C2F5S02) 2NLi)等。溶质可以单独使用1种,也可以 组合使用2种以上。另外,非水电解质中也可以含有能够在负极6上分解、并形成锂 离子传导性较高的覆盖膜、从而提高充放电效率的添加剂。作为具有 这样的功能的添加剂,例如,可以列举出碳酸亚乙烯酯、4-甲基亚 乙烯基碳酸酯、4, 5-二甲基亚乙烯基碳酸酯、4-乙基亚乙烯基碳 酸酯、4, 5-二乙基亚乙烯基碳酸酯、4-丙基亚乙烯基碳酸酯、4, 5-二丙基亚乙烯基碳酸酯、4-苯基亚乙烯基碳酸酯、4, 5-二苯基 亚乙烯基碳酸酯、碳酸乙烯亚乙酯、二乙烯基亚乙基碳酸酯等。 它们既可以单独使用,也可以组合使用2种以上。在它们之中,优选 的是选自碳酸亚乙烯酯、碳酸乙烯亚乙酯和二乙烯基亚乙基碳酸酯之 中的至少1种。此外,这些化合物中氢原子的一部分也可以用氟原子 置换。添加剂相对于非水电解液的溶解量优选设定在0.1重量% 15 重量%的范围内。再者,在非水在电解质中,也可以含有公知的苯衍生物,该苯衍生物在过充电时发生分解,在正极5上形成覆盖膜而使电池钝化。作 为这样的苯衍生物,优选具有苯基和与该苯基相邻的环状化合物基。 作为环状化合物基,优选的是苯基、环状醚基、环状酯基、环烷基、 苯氧基等。作为苯衍生物的具体例子,可以列举出环己基苯、联二苯、二苯醚等。这些既可以单独使用,也可以组合使用2种以上。其中, 苯衍生物的含有量优选为整个非水溶剂的10体积%以下。下面就负极6及其制造方法进行说明。负极6具有集电体和设立 在其表面、且能够以电化学的方式嵌入和脱嵌锂离子的活性物质层。 在活性物质层中,除碳素材料以外,还可以有效地使用如硅(Si)和 锡(Sn)等那样能够大量地嵌入和脱嵌锂离子的材料作为活性物质。 该能够大量地嵌入和脱嵌锂离子的材料的充电状态的体积A与放电状 态的体积B之比A/B优选为1.2以上。体积例如通过测量充电前后 的厚度来决定。只要是满足这样的比A/B的材料,则无论是单质、 合金、化合物、固溶体以及含硅材料和含锡材料等复合物质中的哪一 种,均可以进一步有效地发挥出本发明的效果。作为含硅材料,可以 使用Si、 SiOx (0<x<2);或对于它们之中的任一种,用选自B、 Mg、 Ni、 Ti、 Mo、 Co、 Ca、 Cr、 Cu、 Fe、 Mn、 Nb、 Ta、 V、 W、 Zn、 C、N以及Sn之中的至少1种以上元素置换Si的一部分所得到的合金、 化合物、或固溶体等。作为含锡材料,可以使用Ni2Sat、 Mg2Sn、 SnOx (0<x<2) 、 Sn02、 SnSi03、 LiSnO等。在这些之中,进一步限定了 Si和氧的构成比的SiOx (0.3《x《1.3),其放电容量密度较大,而且 充电时的膨胀率比Si单质小,因而是优选的。无论哪一种材料,都可 以单独地、或组合2种以上的材料加以使用。作为组合2种以上的材料作为活性物质加以使用的例子,可以列 举出含有Si、氧和氮的化合物,以及含有选自包含Si和氧、且Si和 氧的构成比不同的多种化合物之中的多种化合物的活性物质层。使用这些材料作为活性物质粉末,并与粘结剂和导电剂等进行混 合,然后涂布在集电体上,经过干燥、压延等工序,由此便可以形成活性物质层。或者也可以使用这些材料,采用真空蒸镀法、溅射法、CVD法等方法,在集电体上形成活性物质薄膜。特别地,后者的形成 活性物质薄膜的方法在将高容量、但膨胀和收縮较大的材料用作活性 物质的情况下,由于经常能够确保良好的集电,从而获得优良的充放 电循环特性,因而是优选的。集电体可以使用不锈钢、镍、铜、钛等金属箔,以及碳和导电性 树脂的薄膜等。此外,还可以使用在碳、镍、钛等上实施了表面处理 的集电体。与正极的情况同样,集电体的厚度并没有特别的限定,但 优选为1 500ym,更优选为5 20um。通过将集电体厚度设定为上 述范围,可以保持电极的强度,同时实现电极的轻量化。下面,以使用电解铜箔作为集电体、制造含有硅氧化物(SiOx (0 <x<2))作为活性物质的活性物质层的步骤为例来进行说明。首先, 将作为集电体的电解铜箔贴附并固定在设置于真空蒸镀装置内(图中 没有标示)的水冷辊上。在该水冷辊的正下方,配置盛有高纯度Si的 石墨制坩埚。然后,对真空蒸镀装置内进行减压,之后以电子束加热 石墨制埘埚内的Si,从而在集电体上真空蒸镀(沉积)Si。在蒸镀时, 从氧喷嘴向真空蒸镀装置内导入微量的氧。在集电体单面的蒸镀结束 后,进而对背面(未蒸镀面)也同样地进行真空蒸镀,从而在两面形 成以硅氧化物(SiOx (0<x<2))作为活性物质的薄膜(活性物质层)。 这样便制作出带状的负极6。接着使用图2和图3,就形成更优选方案的活性物质层的方法进 行说明。图2是在本发明的实施方案中,在包括具有倾斜的柱状结构 的活性物质的负极的制造中所使用的装置的示意构成图。图3是含有 用图2的装置制造的活性物质的负极的示意剖面图。在图2所示的装置中,集电体15从开巻辊61经由成膜辊67、 68 而被输送到巻绕辊66。这些辊和蒸镀单元64、 65设立在真空容器60 中。真空容器60内通过真空泵62进行减压。蒸镀单元64、 65分别由 蒸镀源、坩埚、电子束发生装置构成。如图3所示,集电体15在表面上有许多突起15A。例如,使用借 助于电镀而设置有平均表面粗糙度Ra=2.0um的凹凸、且厚度为30 y m的电解铜箔作为集电体15。此外,突起15A设立在集电体15的 两面,但在图3中将其简化,只表示了单面。真空容器60的内部处于低压的不活泼气体气氛之中。例如,设定 成压力为3.5Pa的氩气气氛。蒸镀时,使通过电子束发生装置产生的 电子束照射在蒸镀源上。该蒸镀源例如使用Si。调整挡板63的开口部 的形状,使从蒸镀单元64、 65产生的Si蒸气不会垂直地入射在集电 体15的表面。一边向集电体15的表面供给Si蒸气, 一边将集电体15从开巻辊 61输送到巻绕辊66,与此同时,从与Si蒸气的入射方向成角"而设 立的氧喷嘴69向真空容器60内导入氧,藉此在集电体15的突起15A 上生长出由硅氧化物构成的活性物质块16。例如,将角o)设定为65。, 从氧喷嘴69向真空容器60内导入纯度为99.7%的氧气,并以大约20函 / sec的沉积速度在集电体15的突起15A上生成厚度为21 u m的膜。 该膜由柱状SiOo.4的活性物质块16构成。此外,通过成膜辊67于单 面上形成活性物质块16之后,将集电体15输送到成膜辊68,并采用 同样的方法,也可以在集电体15的另一表面形成活性物质块16。这 样一来,便制作出负极6。此外,在集电体15的两面预先等间隔地贴附耐热胶带,成膜后剥 离该胶带,由此便可以形成用于焊接负极引线6A的集电体露出部。除上述的方法以外,根据特开2003 — 17040号公报和特开2002 — 279974号公报所公开的方法,也可以制造具有集电体15和在其表面 设立的多个柱状的活性物质块16的负极6。其中,优选使活性物质块 16相对于集电体15的表面倾斜而形成。这样地使活性物质块16相对 于集电体15的表面而倾斜,藉此可以改善负极的充放电循环特性。其 理由尚未明确,但作为理由之一,例如可以认为如以下那样。具有锂 离子嵌入性的活性物质在嵌入和脱嵌锂离子时产生膨胀和收縮。随膨胀和收缩而产生的应力在具有于集电体15上倾斜而形成的活性物质 块16的负极中,被分散在与集电体15的表面平行的方向和垂直的方 向上。为此,可以认为由于集电体15的皱褶和活性物质块16的剥离 的发生受到抑制,因而充放电循环特性得以改善。优选将采用以上任一方法制造的、形成有由SiOx构成的活性物质 层的负极6投入到气氛炉(图中没有标示)中,并在规定的温度条件 下进行热处理。这时,更优选在非氧化性气氛中进行热处理。另外, 热处理温度优选设定为100°C 900°C。下面使用图4和图5,就在负极6的活性物质层上附着锂的步骤 进行说明。图4是为了在本发明实施方案的负极6上附着锂的真空蒸 镀装置的整体构成图,图5是表示本发明实施方案的锂蒸镀喷嘴的结 构的示意剖面图。真空蒸镀装置包括装有作为加热部的棒加热器(rod heater) 23A的铜坩埚24、锂蒸镀喷嘴25、真空容器20和真空泵31 。 锂蒸镀喷嘴25用于限制在铜坩埚24中产生的锂蒸气的移动路线,从 而使锂蒸气流向负极。真空容器20中收纳着负极6、加热部和锂蒸镀 喷嘴25。该装置还具有气体喷嘴26和气量控制部27。气体喷嘴26在 锂蒸镀喷嘴25的内部开孔,是为了往锂蒸气中流入气体而设立的。真 空泵31对真空容器20的内部进行减压。如图4所示,真空蒸镀装置被配置成可以将负极6从真空容器20 内的开巻辊21经由例如为2(TC的冷却CAN22而输送至巻绕辊30。将 金属锂盛入装有棒加热器23A的铜坩埚24中,并将装有棒加热器23B 的锂蒸镀喷嘴25安设在铜坩埚24上。接着将真空容器20内例如减压 至3xl0—3Pa。也就是说,对包含负极6和作为蒸发源的锂的气氛进行 减压。然后,为生成锂蒸气,对棒加热器23A通电而加热铜坩埚24 内的锂29A,从而产生出锂蒸气。为了不使产生的锂蒸气在锂蒸镀喷 嘴25的内部冷却从而析出锂,优选的是也对棒加热器23B通电而加热 锂蒸气喷嘴25。铜坩埚24、锂蒸镀喷嘴25的温度一边用热电偶28进 行监测, 一边例如控制为580'C。在此,锂蒸镀喷嘴25限制锂蒸气的移动路线。锂蒸气从锂蒸镀喷嘴25向负极6流出,从而在负极6的活 性物质层上附着锂。通过采用锂蒸镀喷嘴25对在铜坩埚24中产生的 锂蒸气的移动路线进行限制,可以抑制没有到达活性物质层而飞散的 锂的损失,从而可以在活性物质层上高效率地附着锂。此外,在开始产生锂蒸气之前,优选从开口于锂蒸镀喷嘴25的内 部而设置的气体喷嘴26向锂蒸气喷嘴25内开始流入氩气。流入的氩 气的流速例如设定为100sccm。在一边以0.2m/分的速度从开巻辊21向巻取辊30输送负极6, 一 边在负极6的单面的活性物质层上蒸镀锂之后,进而对背面的活性物 质层也同样地蒸镀锂。此外,也可以流入其它的稀有气体、氢、或它 们的混合气以代替氩气。这样一来,通过向限制锂蒸气的移动路线的 锂蒸镀喷嘴25内流入选自稀有气体、氢气以及它们的混合气体之中的 至少1种气体,与没有流入气体的情况相比,可以有效地限制锂蒸气 的移动量。由此,即使蒸发源使用大量的锂,也可以在负极6的活性 物质层的整个面上均匀地附着锂。另外,优选使用气量控制部27,随着时间的流逝逐渐减少氩气的 流速。例如,以0.05sccm/分的比率减少氩气的流速。图6A 图6C表示了本发明实施方案的锂的沉积速率和氩气流 速、铜坩埚24内锂29A的表面位置随时间变化的概况。虚线表示在没 有流入氩气的情况下的时间变化。如图6A所示,在没有流入氩气的情 况下,随着时间的流逝,蒸发源的锂量减少,导致锂的沉积速率下降。 这是因为如图6C所示,锂的表面位置降低,对于锂蒸气的传导性下 降,从而使移动量减少。另一方面,正如实线所表示的那样,如果从气体喷嘴26向锂蒸气 的气流中流入氩气,则锂蒸气的移动量受到限制,与没有流入氩气的 情况(虚线)相比,锂的沉积速率在蒸镀的开始时减小。蒸镀开始后, 伴随时间的流逝,当如图6B所表示的那样地逐渐减少氩气的流速时, 则锂蒸气移动量的限制随之变弱。其结果是,正如图6A的实线所表示的那样,锂的沉积速率大致保持恒定。由此,与时间的流逝无关,可 以在负极6的整个面上均匀地附着锂。也就是说,在时间流逝的同时 逐渐减少气体的流速,藉此即使在时间流逝的同时蒸发源的锂量得以减少,也可以使锂的沉积速率大致保持恒定。为此,可以遍及负极6的整个面而均匀且高效地附着锂。此外,气体喷嘴26被设置为在平行于锂蒸镀喷嘴25内的锂蒸气流的方向(并流方向)上流入氩气,不过,也可以设置为朝向加热的锂29A流入氩气。氩气的流速变化也可以不像图6B所示的那样成 直线地变化。可以根据铜坩埚24和锂蒸镀喷嘴25的大小、在负极6 上蒸镀的锂量,逐渐减少氩气的流速。氩气的流速控制例如可以使用 平滑的集电体来代替负极6,进行锂的蒸镀而求出氩气流速和锂的沉 积速率之间的关系,然后使用这种关系而有效地进行。或者可以在装 置内用激光位移计或接触式位移计测量锂蒸镀处理前后的膜厚,通过 由其差值控制氩气的流速,从而实现精度更高的处理。另外,从气体 喷嘴26流出的气体不局限于氩气。也可以使用不与锂蒸气反应的其它 稀有气体类、氢、或者它们的混合气体。下面就设立气体喷嘴26的优选的位置进行说明。图7是在根据本 发明的实施方案的锂蒸镀装置中配置的锂蒸镀喷嘴25的俯视图。在负极6的宽度较宽的情况下,需要使锂蒸气朝向负极6流出的 锂蒸镀喷嘴25的宽度也较宽。但是,如果扩大锂蒸镀喷嘴25的宽度, 则锂蒸镀喷嘴25的中央部与四周部相比,锂蒸气较多地流出。因此, 如图7所示,以气体流入锂蒸气的中央部的方式,将气喷嘴26设立在 锂蒸镀喷嘴25内。具体地说,例如在锂蒸气喷嘴25的宽度方向的中 央设立气体喷嘴26。由此,可以抑制锂蒸镀喷嘴25的中央部的锂蒸 气29的移动量。其结果是,由于可以在锂蒸镀喷嘴25的宽度方向上 均匀地流出锂蒸气29,故而对于负极6的宽度方向可以均匀地附着锂。下面就锂蒸镀喷嘴25优选的其它结构进行叙述。图8是本发明实 施方案的锂蒸镀装置中的其它锂蒸镀喷嘴25的剖面图。如图所示,也可以在锂蒸镀喷嘴25的喷出口侧设立整流板25A,以进一步限制锂蒸 气的移动路线。由于用锂蒸镀喷嘴25限制的锂蒸气流通过整流板25A 而得以整流,从而锂蒸气的扩散范围进一步被限制在较小范围内,所 以是优选的。另外,通过缩小锂蒸镀喷嘴25的喷出口在上下方向的宽 度,也可以得到同样的效果。此外,在上述实施方案中,以圆筒形电池为例进行了说明,但是, 即便使用方形等形状的电池,也可以得到同样的效果。另外,在上述 实施方案中,以非水电解质二次电池为例进行了说明,但即使是电容 器等电化学元件,在以锂离子为电荷载体、且至少一个电极具有不可 逆容量的情况下,也可以适用本发明。如上所述,在本发明的制造方法中,使用进行过锂化处理的电极 的电化学元件是高容量且长寿命的。因此,作为该电化学元件之一种 的非水电解液二次电池可用作笔记本电脑、手机、数码相机等电子设 备的驱动源,以及要求高输出功率的电力储存用或电动汽车的电源。 在制作如上述那样的电化学元件的方面,本发明由于可以提高生产效 率,因而是非常重要的且有效的手段。
权利要求
1、一种电化学元件用电极的制造方法,其是能够以电化学的方式嵌入和脱嵌锂离子的电化学元件用电极的制造方法,该制造方法包括形成所述电极的活性物质层的步骤,以及通过限制锂蒸气的移动路线,使所述锂蒸气流过,从而在所述电极上附着锂的步骤。
2、 根据权利要求1所述的电化学元件用电极的制造方法,其特征 在于在所述锂蒸气中,流入选自稀有气体、氢气、以及它们的混合 气体之中的至少1种气体,以限制所述锂蒸气的移动量,由此限制所 述锂蒸气的移动路线。
3、 根据权利要求2所述的电化学元件用电极的制造方法,其特征 在于在时间流逝的同时逐渐减少所述气体的流速。
4、 根据权利要求2所述的电化学元件用电极的制造方法,其特征 在于使所述气体流入所述锂蒸气流的中央部。
5、 根据权利要求1所述的电化学元件用电极的制造方法,其特征 在于对包含锂的蒸发源和所述电极的气氛进行减压,并加热所述锂 的蒸发源,由此生成所述锂蒸气。
6、 一种电化学元件用电极的锂化处理方法,其是能够以电化学的 方式嵌入和脱嵌锂离子的电化学元件用电极的锂化处理方法,该处理 方法包括限制锂蒸气的移动路线的步骤,以及用所述锂蒸气处理所述电极,由此在所述电极上附着锂的步骤。
7、 根据权利要求6所述的电化学元件用电极的锂化处理方法,其 特征在于在所述锂蒸气中,流入选自稀有气体、氢气、以及它们的 混合气体之中的至少1种气体,以限制所述锂蒸气的移动量,由此限制所述锂蒸气的移动路线。
8、 根据权利要求7所述的电化学元件用电极的锂化处理方法,其特征在于在时间流逝的同时逐渐减少所述气体的流速。
9、 根据权利要求7所述的电化学元件用电极的锂化处理方法,其特征在于使所述气体流入所述锂蒸气流的中央部。
10、 根据权利要求6所述的电化学元件用电极的锂化处理方法,其特征在于对包含锂的蒸发源和所述电极的气氛进行减压,并加热 所述锂的蒸发源,由此生成所述锂蒸气。
11、 一种电化学元件,其包括第l电极,其能够以电化学的方式嵌入和脱嵌锂离子,而且附着 有锂,其中锂的附着是通过限制锂蒸气的移动路线、并采用所述锂蒸 气对所述电极进行处理而进行的;第2电极,其能够以电化学的方式嵌入和脱嵌锂离子;以及 电解质,其介于所述第1电极和所述第2电极之间。
12、 一种锂化处理装置,其是能够以电化学的方式嵌入和脱嵌锂离子的电化学元件用电极的锂化处理装置,其包括-锂蒸镀喷嘴,其限制锂蒸气的移动路线而使所述锂蒸气流出,以便在所述电极表面上附着锂;以及容器,收纳着所述电极和所述锂蒸镀喷嘴。
13、 根据权利要求12所述的锂化处理装置,其特征在于还具有向所述锂蒸气中流入选自稀有气体、氢气、以及它们的混合气体之中 的至少1种气体的气体喷嘴。
14、 根据权利要求13所述的锂化处理装置,其特征在于还具有在时间流逝的同时逐渐减少所述气体的流速的气量控制部。
15、 根据权利要求13所述的锂化处理装置,其特征在于将所述气体喷嘴设立在所述锂蒸镀喷嘴内,以便使所述气体流入所述锂蒸气流的中央部。
16、根据权利要求12所述的锂化处理装置,其特征在于,还具有-加热部,其设立在所述容器内,加热锂的蒸发源而生成所述锂蒸气;以及真空泵,用于对所述容器内进行减压。
全文摘要
本发明提供一种能够嵌入和脱嵌锂离子的电化学元件用电极的制造方法,其包括补充电化学元件用电极的不可逆容量的锂化处理方法。在锂化处理方法中,限制锂蒸气的移动路线,使锂蒸气流过,从而在电极上附着锂。
文档编号H01M10/38GK101252181SQ20081008142
公开日2008年8月27日 申请日期2008年2月21日 优先权日2007年2月21日
发明者佐藤俊忠, 别所邦彦, 早田博, 本田和义 申请人:松下电器产业株式会社

最新回复(0)