半导体器件的制作方法

xiaoxiao2020-8-1  8

半导体器件的制作方法
【专利摘要】提高半导体器件的安装可靠性。QFP(5)包括:搭载半导体芯片(2)的晶片焊盘(1c);配置在晶片焊盘的周围的多个内引线部(1a);与多个内引线部(1a)分别相连的多个外引线部(1b);将半导体芯片的接合焊盘(2c)与多个内引线部分别电连接的多个导线(4);封固半导体芯片的封固体(3)。而且,半导体芯片的厚度大于从晶片焊盘(1c)的下表面(1cb)到封固体(3)的下表面(3b)的厚度(T5),且封固体的下表面(3b)与多个外引线部(1b)的各个外引线部的前端部(1be)之间的距离(D1)大于封固体中的从半导体芯片的主面(2a)到上表面(3a)的厚度(T4)。
【专利说明】半导体器件

【技术领域】
[0001]本实用新型涉及半导体器件,例如涉及有效适用于包括从封固半导体芯片的封固体的侧面突出的多个引线(lead)的半导体器件的技术。

【背景技术】
[0002]在具有封固体(封装)的半导体器件中,多个引线从封装的侧面向外方突出的构造,例如示于日本特开2004-319954号公报(专利文献I)。
[0003]此外,具有鸥翼形状的多个外部引线的半导体器件的构造例如示于日本特开平5-3277号公报(专利文献2)。
[0004]在先技术文献
[0005]专利文献
[0006]专利文献1:日本特开2004-319954号公报
[0007]专利文献2:日本特开平5-3277号公报实用新型内容
[0008]实用新型要解决的问题
[0009]在搭载于母板(布线基板)上的半导体器件(半导体封装)的热膨胀率与母板的热膨胀率不同的情况下,在母板与搭载于该母板上的半导体器件的接合部容易产生接合不良。产生该接合不良的原因在于,在搭载有半导体器件的母板受到热影响而发生变形(膨胀、收缩)时,母板的变形量(膨胀量、收缩量)与同样因热影响而变形(膨胀、收缩)的半导体器件的变形量(膨胀量、收缩量)不同。
[0010]另一方面,例如QFP(Quad Flat Package,四方引脚扁平封装)中,作为半导体器件的外部端子的引线的一部分(外引线部)在封固半导体芯片的封固体的外侧弯折。即,与母板接合的引线的一部分(外引线部)在封固体未被固定。
[0011]因此,例如如图31的比较例所示,即使在母板12与半导体器件(QFP21)相比在S方向收缩了较大的情况下,由于引线21a的一部分(外引线部)追随该母板12的变动,因此不易引起接合不良。
[0012]但是,近年来,存在与此前的产品相比在更严酷的使用环境下使用半导体器件的倾向(例如车载关联产品)。
[0013]因此,本申请实用新型人对能够确保比此前的QFP高的安装可靠性(安装强度)的半导体器件的构造进行了研宄。
[0014]关于其他课题及新特征,将通过本说明书的记载及附图而得以清楚。
[0015]用于解决问题的手段
[0016]一实施方式的半导体器件,包括:晶片焊盘、多个引线和将半导体芯片封固的封固体,所述半导体芯片的厚度大于从所述晶片焊盘的第二面到所述封固体的下表面的厚度。而且,所述封固体的下表面与所述多个引线的各个引线的一部分的前端部之间的距离,大于所述封固体中的从所述半导体芯片的主面到所述封固体的上表面的厚度。
[0017]实用新型效果
[0018]根据上述一实施方式,能够提高半导体器件的安装可靠性。

【专利附图】

【附图说明】
[0019]图1是表示实施方式的半导体器件(QFP)的构造的一例的俯视图。
[0020]图2是表示沿图1的A-A线剖切的构造的一例的剖视图。
[0021]图3是表示图1所示半导体器件的详细构造的放大剖视图。
[0022]图4是表示图1的半导体器件向安装基板安装的安装构造的一例的俯视图。
[0023]图5是表示图4所示半导体器件(QFP)的安装构造的一例的侧视图。
[0024]图6是表示实施方式的半导体器件(QFP)的构造的剖视图。
[0025]图7是表示比较例的QFP的构造的剖视图。
[0026]图8是表示实施方式的半导体器件的构造的一例的俯视图。
[0027]图9是表示图8所示半导体器件的安装构造的侧视图。
[0028]图10是表示比较例的QFP的构造的俯视图。
[0029]图11是表示图10所示半导体器件的安装构造的侧视图。
[0030]图12是表示图8所示半导体器件的焊锡湿润状态的示意图。
[0031]图13是表示比较例的半导体器件的焊锡湿润状态的示意图。
[0032]图14是表示在图1的半导体器件的装配中所用的引线框的构造的一例的俯视图。
[0033]图15是将图14的A部构造放大示出的局部放大俯视图。
[0034]图16是表示沿图15的A-A线剖切的构造的一例的剖视图。
[0035]图17是表示图1的半导体器件的装配中晶片接合后的构造的一例的局部放大俯视图。
[0036]图18是表示沿图17的A-A线剖切的构造的一例的剖视图。
[0037]图19是表示图1的半导体器件的装配中导线接合后的构造的一例的局部放大俯视图。
[0038]图20是表示沿图19的A-A线剖切的构造的一例的剖视图。
[0039]图21是表示图1的半导体器件的装配中树脂模制后的构造的一例的局部放大俯视图。
[0040]图22是表示沿图21的A-A线剖切的构造的一例的剖视图。
[0041]图23是表示图1的半导体器件的装配中堤坝切断后的构造的一例的剖视图。
[0042]图24是表示图1的半导体器件的装配中激光打标后的构造的一例的剖视图。
[0043]图25是表示图1的半导体器件的装配中外装镀敷形成后的构造的一例的剖视图。
[0044]图26是表示图1的半导体器件的装配中浇注口前端切断后的构造的一例的局部放大俯视图。
[0045]图27是表示图1的半导体器件的装配中引线切断并成形后的构造的一例的局部放大俯视图。
[0046]图28是表示图1的半导体器件的装配中角部切断后的构造的一例的俯视图。
[0047]图29是图28的构造的剖视图。
[0048]图30是图28的构造的外观立体图。
[0049]图31是表示比较例的半导体器件向母板安装的安装构造的示意图。
[0050]附图标记的说曰月
[0051]I引线框,Ia内引线部(引线),laa上表面,lab下表面,Iac导线接合部,Ib外引线部(引线),lba上表面,Ibb下表面,lbc、lbd弯折部,Ic晶片焊盘(芯片搭载部,接片),lca上表面(芯片搭载面),Icb下表面,Id堤坝连杆,Ie悬臂引线,If框部,Ifa内框,Ig孔部,Ih长孔,Ii元器件区域,2半导体芯片,2a主面,2b背面,2c接合焊盘(接合电极,电极焊盘),3封固体,3a上表面(表面),3b下表面(安装面),3c侧面,4导线,5 QFP(半导体器件),6粘晶材料,7镀膜(金属膜,外装镀敷),8焊锡,9切断刀,10激光,11标记,12母板(布线基板,安装基板,模块基板),12a布线,12b端子,13a、13b、13c、13d QFP (半导体器件),14a、14b SOP (半导体器件),15电容器(贴片型钽电容器),16电阻器,17电容器(层叠陶瓷电容器),18电容器(电解铝电容器),19销(螺栓),20模块(电子装置),21a引线。

【具体实施方式】
[0052]在以下的实施方式中,除了特别需要时,原则上对相同或同样的部分不重复说明。
[0053]而且,在以下的实施方式中为了便于说明,在需要时分为多个区段或实施方式地说明,但除了特别明示的情况之外,这些区段或实施方式并非彼此无关,存在一方是另一方的一部分或全部的变形例、详细说明、补充说明等关系。
[0054]此外,在以下的实施方式中,在言及要素的个数等(包括个数、数值、量、范围等)时,除了特别明示的情况及原理上明确限定为特定数量的情况等之外,不限定于特定数量,可以是特定数量以上,也可以是特定数量以下。
[0055]此外,在以下的实施方式中,关于其构成要素(包括要素步骤等),不言而喻,除了特别明示的情况及原理上明确认为是必须的情况等之外,未必一定是必须的。
[0056]此外,在以下的实施方式中,关于构成要素等,称之“由A构成”、“由A形成”、“具有A”、“包括A”时,除了特别明示了仅是该要素的情况等之外,自不用说,并不排除包括除此之外的要素。同样,在以下的实施方式中,言及构成要素等的形状、位置关系等时,除了特别明示的情况及原理上明确认为不是这样的情况等之外,包括实质上与该形状等近似或类似的形状等。关于这一点,对于上述数值及范围也是同样。
[0057]以下,基于附图详细说明本实用新型的实施方式。另外,在用于说明实施方式的所有附图中,对于具有同一功能的部件标注同一附图标记,省略其重复说明。此外,为了容易理解附图,即使在俯视图中有时也标注阴影线。
[0058](实施方式)
[0059]图1是表示实施方式的半导体器件的构造的一例的俯视图,图2是表示沿图1的A-A线剖切的构造的一例的剖视图,图3是表示图1所示半导体器件的详细构造的放大剖视图,图4是表示图1的半导体器件向安装基板安装的安装构造的一例的俯视图,图5是表示图4所示半导体器件(QFP)的安装构造的一例的侧视图。
[0060]<电子装置>
[0061]图4所示的安装构造是在作为布线基板的母板12上搭载多个半导体器件和/或电子部件而成的模块(电子装置)20。在本实施方式中,作为一例,选用车载用母板(是安装基板,以下也称为EOJ(电子控制单元,Electronic Control Unit)板)12进行说明。另夕卜,在本实施方式中,为了与电容器、电阻器等电子部件区别,将在内部搭载有半导体芯片的电子部件作为半导体器件。
[0062]车载用E⑶板中的发动机控制用E⑶板,经由金属制的销(螺栓)而与发动机室结合,且被固定。因而,在发动机室产生的热经由上述金属制的销而传递到E⑶板。
[0063]因此,尤其是搭载于发动机控制用E⑶板上的半导体器件、电子部件,要在非常严酷的环境下使用。
[0064]如图4 所示,在母板 12 上搭载有 QFP13a、13b、13c、13d 和 / 或 SOP (small outlinepackage,小引出线封装)14a、14b等各种半导体器件。还搭载电容器(贴片型钽电容器15、层叠陶瓷电容器17、电解铝电容器18)和/或电阻器(包括芯片电阻)16等各种电子部件。并且,这些半导体器件彼此、某半导体器件与某电子部件或电子部件彼此经由母板12的布线12a而相互电连接。
[0065]而且,在母板12还插入有多根(例如5根)金属制的销(螺栓)19。
[0066]在此,如上所述,由于各销19与发动机室结合,因此容易传递发动机室的热量。为此,在构成模块(电子装置)20的母板12中、尤其是各销19的附近,母板12容易发生变形(膨胀、收缩、扭曲、挠曲等)。换言之,与未配置(搭载)在销19附近的半导体器件和/或电子部件相比,配置(搭载)于销19附近的半导体器件和/或电子部件处于容易引起安装不良的环境下。
[0067]<半导体器件>
[0068]图1和图2所示的本实施方式的半导体器件,是包括将半导体芯片封固的封固体、且具有多个从上述封固体突出的引线的半导体封装。在本实施方式中,作为上述半导体器件的一例,采用如下的QFP (Quad Flat Package) 5进行说明,该QFP5中,多个外引线部(外部连接用端子)Ib从由树脂形成的封固体3突出,而且各个外引线部Ib弯曲成形为鸥翼状。
[0069]S卩,QFP5是作为外部连接端子的多个外引线部Ib从平面形状由大致四边形构成的封固体3中的相互相对置的两组边突出的半导体器件。
[0070]对QFP5的结构进行说明,其包括:晶片焊盘(芯片搭载部,接片(tab)) Ic,其具有上表面(芯片搭载面)Ica和与上表面Ica相反一侧的下表面Icb ;搭载于晶片焊盘Ic上的半导体芯片2 ;配置于晶片焊盘Ic周围的多个引线;以及封固体3。
[0071]此外,半导体芯片2具有主面2a、形成于主面2a上的多个接合焊盘(接合电极)2c、和与主面2a相反一侧的背面2b,如图2所示,半导体芯片2以背面2b与晶片焊盘Ic的上表面Ica相对的方式介由粘晶材料6搭载于晶片焊盘Ic的上表面Ica上。作为粘晶材料,例如使用Ag糊剂等糊剂状的粘接剂,但也可以使用膜状的粘接剂。
[0072]此外,晶片焊盘Ic由多个悬臂引线(suspens1n lead)(参照后述的图15) Ie支承,不支承晶片焊盘Ic的上述多个引线经由多个导线4而分别与半导体芯片2的多个接合电极2c电连接。
[0073]多个导线4分别例如是金线或铜线等。
[0074]此外,封固体3具有位于半导体芯片2的主面2a —侧的上表面(表面)3a、与上表面3a相反一侧的下表面(安装面)3b和位于上表面3a与下表面3b之间的侧面3c,由封固用树脂等形成。在此,封固体3的下表面3b是位于晶片焊盘Ic的下表面Icb —侧的面。
[0075]并且,封固体3以上述多个引线的各个引线的一部分(外引线部)从侧面突出的方式将晶片焊盘lc、多个引线的各个引线的另一部分(内引线部)、半导体芯片2及多个导线4封固。
[0076]也就是说,上述多个引线的各个引线中的埋入封固体3内部的部分为内引线部la,从封固体3的侧面3c向外部突出的部分为外引线部(一部分)lb。并且,在上述多个引线的各个引线中,内引线部Ia和外引线部Ib形成为一体。
[0077]此外,多个引线的各个引线的一部分(外引线部)在封固体3的外侧弯折。S卩,多个引线的各个引线的外引线部Ib被弯折成鸥翼状。
[0078]并且,多个引线的各个引线的外引线部Ib的表面被镀膜(金属膜)7 (参照后述的图29,但除了切断面)覆盖。
[0079]另外,封固体3例如由热固化性的环氧类树脂构成。
[0080]此外,半导体芯片2由基材和多层布线层构成,所述基材由硅构成,所述多层布线层形成于上述基材的元件形成面上,且厚度比上述基材的厚度薄。
[0081]本实施方式的QFP5中,在半导体芯片2的主面2a的上部和晶片焊盘Ic的下表面Icb的下部分别配置有封固体3的一部分。即,是将晶片焊盘Ic埋入封固体3内部的、所谓接片埋入构造的半导体器件。
[0082]并且,如图3所示,在QFP5中,半导体芯片2的厚度Tl大于从晶片焊盘Ic的下表面Icb到封固体3的下表面3b的厚度T5。在此,Tl例如为0.4mm,T5例如为0.39mm。
[0083]另外,QFP5是在封固体3内的半导体芯片2的占有率高的半导体器件。在此,半导体芯片2的占有率是指在封固体3的厚度方向上、半导体芯片2的厚度相对于封固体3总厚度的比例(支配量)。在此,作为芯片厚度的比较对象的一例,可举出芯片下方的封固体3的厚度。在QFP5中,如上所述,晶片焊盘Ic的下表面Icb侧的封固体3的厚度T5小于半导体芯片2的厚度Tl。
[0084]此外,在QFP5,封固体3的下表面3b与多个引线的各个引线的外引线部Ib中的前端部(主接合面)Ibe之间的距离Dl,大于封固体3中的从半导体芯片2的主面2a到封固体3的上表面3b的厚度T4。在此,Tl例如为0.73mm,T4例如为0.47mm。
[0085]另外,上述距离Dl是本实施方式的QFP5的托起高度(stand off)。QFP5的托起高度是从封固体3的下表面3b到外引线部Ib的前端部Ibe的最下方点的距离。此时,关于最准确的最下方点,考虑到扫描仪的尺寸检测,将比外引线部Ib的前端靠内侧0.1mm的底面的最低点的三边平均作为假设层平面,将该假设层平面作为最下方点。而且,在各外引线部Ib的前端部lbe,将与安装(焊锡接合)QFP5的母板12的电极焊盘(例如图31所示的母板12的端子12b)的表面相对的一面(下表面Ibb)作为主接合面。也就是说,各外引线部Ib的前端部Ibe是焊锡材料湿润的面,因此形成有上述镀膜7的全部面(但除了切断面)成为接合面,但与安装基板的电极焊盘相对的面(下表面Ibb)成为主要的接合面,因此,将该面作为主接合面。
[0086]此外,QFP5的多个内引线部Ia分别具有导线接合部lac,该导线接合部Iac与导线4接合,且被封固体3封固。另一方面,多个外引线部Ib分别具有朝向封固体3的厚度方向弯折的弯折部Ibc和朝向与封固体3的上表面3a平行的方向弯折的弯折部lbd,由弯折部Ibc和弯折部Ibd形成为鸥翼状。
[0087]另外,弯折部Ibc和弯折部Ibd分别形成于外引线部lb,因此从封固体3露出,弯折部Ibc配置在比内引线部Ia的导线接合部Iac更远离半导体芯片2的位置,而弯折部Ibd形成在比弯折部Ibc更远离半导体芯片2的位置。
[0088]此外,多个外引线部Ib各自的、从封固体3的下表面3b到弯折部Ibd的距离(间隔、Dl (托起高度))大于多个内引线部Ia各自的从导线接合部Iac的上表面Iaa到封固体3的上表面3a的厚度T8,或大于多个内引线部Ia各自的从导线接合部Iac的下表面Iab到封固体3的下表面3b的厚度T9。
[0089]即,在QFP5 中,Dl > T8 或 Dl > T9。在此,在 QFP5 中,T8、T9 例如都是 0.64mm,但T8、T9也可以不相同。
[0090]此外,在QFP5中,从封固体3的下表面3b到多个外引线部Ib各自的前端部Ibe的距离(间隔、Dl (托起高度))大于半导体芯片2的厚度。S卩,在QFP5中,Dl > Tl。
[0091]接着,说明本实施方式的QFP5、与基于JEITA(Japan Electronics andInformat1n Technology Industries Associat1n,日本电子信息技术产业协会)的QFP> LQFP (Low profile Quad Flat Package,薄型四方扁平封装)、TQFP (Thin Quad FlatPackage,薄四方扁平封装)之间的不同点。
[0092]图6是表示实施方式的半导体器件(QFP)的构造的剖视图,图7是表示比较例的QFP的构造的剖视图,图8是表示实施方式的半导体器件的构造的一例的俯视图,图9是表示图8所示半导体器件的安装构造的侧视图,图10是表示比较例的QFP的构造的俯视图,图11是表示图10所示半导体器件的安装构造的侧视图。
[0093]如上所述,本实用新型的QFP5是托起高度(Dl)大的半导体器件。
[0094]图6所示的本实施方式的QFP5的封固体3的厚度例如为如图3所示,T6 =1.40mm。而基于JEITA的QFP、LQFP, TQFP的各自的封固体的厚度分别为2.0OmmU.40mm、
1.0Omm0
[0095]本实施方式的QFP5的托起高度例如为如图3所示D1_0.73mm。而基于JEITA的QFP、LQFP、TQFP的各自的封固体的托起高度(例如图7所示的QFP21的dl)三种都是高度低值为0.10mm、高度高值为0.40mm。
[0096]也就是说,本实施方式的QFP5是基于JEITA的构造,封固体3的厚度相当于JEITA的LQFP,但各外引线部Ib的长度(尤其是相对于封固体3的厚度方向的长度)变长,比基于JEITA的QFP、LQFP, TQFP的托起高度(尤其是高度高值)大。
[0097]换言之,在母板(布线基板)12上的安装构造中,如图8?图11所示,本实施方式的QFP5的封固体3与母板12的距离(间隙)大。
[0098]另外,图7所示的QFP21是与基于JEITA的LQFP同样的构造,分别是,由内引线部21aa和外引线部21ab构成的多个引线21a中的、外引线部21ab的前端部21ac的下表面2Iaba与封固体3的下表面3b之间的距离即托起高度dl,小于半导体芯片2的厚度和/或晶片焊盘Ic的下表面Icb与封固体3的下表面3b之间的距离。
[0099]S卩,与本实施方式的QFP5的托起高度Dl相比,QFP21的托起高度dl非常小。
[0100]在此,作为本实施方式的QFP5的比较对象,说明LQFP、TQFP的各部分尺寸的一例。
[0101]关于半导体芯片2的厚度:LQFP = 0.40mm, TQFP = 0.28_,关于粘晶材料6的厚度:LQFP、TQFP都是0.02mm,关于引线框(内引线部、外引线部等)的厚度:LQFP = 0.125mm或 0.15mm、TQFP = 0.15mm。
[0102]另外,关于从芯片表面到封固体3的上表面3a的厚度:LQFP = 0.59mm、TQFP =0.33mm,关于从晶片焊盘Ic的下表面Icb到封固体3的下表面3b的厚度:LQFP = 0.38mm、TQFP = 0.23mm(其中,由悬臂引线Ie的弯折所引起的晶片焊盘Ic的降低量为0.24mm)。另夕卜,以上的数值仅是一例,可各种变更。
[0103]本实施方式的QFP5中,如上所述,封固体3的厚度相当于JEITA的LQFP,因此是实现了封固体3的薄型化的半导体器件。但是,半导体芯片2由于高功能化而难以更小。因而,本实施方式的QFP5是在封固体3内部中的半导体芯片2的占有率倾向变大的半导体器件,半导体器件自身的刚性也提高。
[0104]例如,在QFP5中,封固体3的平面尺寸是一边为5?6mm左右的正方形,半导体芯片2是其平面尺寸例如是一边为2?2.5_左右的长方形或正方形。
[0105]在将这样的封固体3内部的半导体芯片2的占有率大的QFP5安装于母板12等布线基板上时,QFP自身(封固体3)的刚性高,因此在基板因热影响而挠曲时,QFP5的动作难以追随基板的挠曲。
[0106]因此,在本实施方式的QFP5中,通过增大各自外引线部Ib的托起高度,由此能够使主体(封固体3)的动作容易追随基板的挠曲。
[0107]在此,对半导体芯片2、封固体3、晶片焊盘Ic (各引线也相同)的各个主成分和线膨胀系数进行说明。另外,热膨胀率有作为直线方向的膨胀率指标的线膨胀系数和作为三维空间的膨胀率指标的体积膨胀系数,作为因温度循环负载引起的应力产生原因,线膨胀系数的差异影响较大。
[0108]因而,在本实施方式中,主要关注线膨胀系数地进行说明。
[0109]在QFP5中,半导体芯片2的主成分是硅,其线膨胀系数为4?5ppm/°C、封固体3(树脂)的主成分是环氧树脂,其线膨胀系数为8?12ppm/°C。因而,半导体芯片2的线膨胀系数小于封固体3的线膨胀系数。
[0110]此外,包括晶片焊盘Ic的引线框1(参照后述的图14)的主成分是铜(Cu)材料,其线膨胀系数为17ppm/°C。
[0111]另外,安装QFP5的母板12的主成分是树脂材料,其线膨胀系数例如为15ppm/°C。
[0112]如上所述,半导体芯片2的线膨胀系数小于封固体3的线膨胀系数,因此,当封固体3内部的半导体芯片2的占有率变大时,QFP5自身的线膨胀系数降低,如上所述,QFP自身(封固体3)的刚性变高。
[0113]在此,对封固体3内的半导体芯片2的占有率高的半导体器件在向基板安装时的接合不良的课题进行说明。
[0114]QFP5的封固体3由热固化性的环氧类树脂构成,与此相对,半导体芯片2包括由硅构成的基材和形成于基材的元件形成面上且厚度比基材厚度薄的多层布线层(各布线层之间具有绝缘层)。因此,半导体芯片2的线膨胀系数(4?5ppm)低于封固体3的线膨胀系数(8?12ppm) ο
[0115]另外,在本实施方式中,半导体芯片2的厚度(LQFP:0.40mm,TQFP:0.28mm)大于例如封固体3中的从晶片焊盘Ic的下表面Icb到封固体3的下表面3b的厚度(LQFP:0.38mm,TQFP:0.23mm)。
[0116]这是因为,近年来,随着半导体器件的小型化(薄型化),封固体3的整体厚度也倾向变小。为此,随着封固体3的整体厚度的薄型化,位于晶片焊盘Ic下方的封固体3的厚度变得比半导体芯片2的厚度薄。结果,在该封固体3内的半导体芯片2的占有率增加,半导体器件自身的线膨胀系数降低(半导体器件自身(封固体3)的刚性变高)。
[0117]由此,如图31的比较例所示,在将QFP21安装到作为布线基板的母板12的构造中,在母板12因热等的影响而在S方向收缩了时,QFP21自身(封固体3)的刚性变高,因此QFP21的动作变得难以追随母板12的挠曲。
[0118]S卩,在母板12与搭载于该母板12上的QFP21的接合部(外引线部21ab与端子(电极焊盘)12b经由焊锡8的接合部),在搭载了 QFP21的母板12因热影响而变形时,母板12的变形量与同样因热影响而变形的QFP21的变形量不同,因此在上述接合部发生接合不良。
[0119]但是,在本实施方式的QFP5中,由于多个外引线部Ib各自的托起高度大,因此,QFP5自身(封固体3)的动作容易追随母板12的挠曲。
[0120]在此,图12是表示实施方式的QFP5的焊锡湿润状态的图。如图12所示,在QFP5,各外引线部Ib的托起高度大,因此,在各外引线部lb,焊锡8的湿润向各个外引线部Ib的高度方向增加。
[0121]结果,各个外引线部Ib与上述接合部的焊锡接合强度变高。进而,如上所述,QFP5自身(封固体3)的动作变得容易追随母板12的挠曲,因此,在QFP5能够确保高安装可靠性(安装强度)。
[0122]换言之,在主体部(封固体3)的线膨胀系数低的QFP5中,也能提高其安装可靠性(安装强度),能够谋求与安装基板(母板12)的接合不良的减少。
[0123]而且,通过在各外引线部Ib增加焊锡8的湿润量,由此能够提高QFP5的电气特性。
[0124]另外,如本实施方式的QFP5这样,在封固体3内容易积存热量、容易施加热应力的晶片焊盘埋入式的半导体器件中,能够提高安装可靠性(安装强度)。
[0125]接着,对半导体器件向图4所示的母板12(车载用E⑶板等)的安装构造(模块20)中的半导体器件的接合不良的课题进行说明。
[0126]车载用E⑶板中的发动机控制用E⑶板,经由金属制的销(螺栓)与发动机室结合且被固定。因而,在发动机室产生的热经由上述金属制的销而传递到ECU板,由此尤其是搭载于发动机控制用ECU板上的半导体器件、电子部件,在非常严酷的环境下使用。
[0127]详细而言,搭载有半导体器件的母板(例如ECU板)12利用多个销(螺栓)19被固定于发动机室。各销19由金属构成,因此当其使用环境暴露于高温下时,该销19的温度也容易上升。
[0128]结果,在母板12上,该各销19附近与其他区域(远离销19的区域)相比,容易挠曲(容易变形)。并且,配置(搭载)于该销19附近的半导体器件则比配置于其他区域的半导体器件容易发生接合不良。
[0129]例如在图4所示的模块20中,QFP13b、13c的近旁分别配置有两个销19,因此,通过对于这些QFP13b、13c采用本实施方式的托起高度大的构造,则即使在容易受到热影响的QFP13b、13c也能提高其安装可靠性(安装强度)。结果,能够谋求与母板12 (ECU板)的接合不良的减少。
[0130]但是,不言而喻,对于配置在远离销19的区域的半导体器件,也可以采用本实施方式的托起高度大的构造。
[0131]例如在模块20中,对于QFP13a、13d或S0P14a、S0P14b也可以采用本实施方式的托起高度大的构造。可以进一步提高这些半导体器件的安装可靠性(安装强度)。
[0132]另外,在半导体器件中,考虑取代增大各外引线部Ib的托起高度而采用图13所示的QFP21的构造。图13是表示比较例的半导体器件的焊锡湿润状态的示意图。
[0133]图13所示的QFP21是使各外引线部21ab沿着基板的安装面方向较长地延伸的构造。在图13的QFP21的情况下,在焊锡8的湿润量方面,比本实施方式的QFP5差,因此不能充分提高安装可靠性(安装强度)。
[0134]g卩,由于焊锡8的湿润有方向性,因此在图13的QFP21的情况下,在外引线部12ab的弯折部分焊锡8的湿润滞留。因而,不能确保如本实施方式的QFP5那样充分的安装可靠性(安装强度),无法如图4所示模块20的母板12 (ECU板)那样耐受在非常严酷的环境下使用。
[0135]〈半导体器件的制造方法〉
[0136]图14是表示在图1的半导体器件的装配中所用的引线框的构造的俯视图,图15是将图14的A部构造放大示出的局部放大俯视图,图16是表示沿图15的A-A线剖切的构造的剖视图,图17是表示图1的半导体器件的装配中晶片接合后的构造的局部放大俯视图,图18是表示沿图17的A-A线剖切的构造的剖视图。
[0137]此外,图19是表示图1的半导体器件的装配中导线接合后的构造的局部放大俯视图,图20是表示沿图19的A-A线剖切的构造的剖视图,图21是表示图1的半导体器件的装配中树脂模制后的构造的局部放大俯视图,图22是表示沿图21的A-A线剖切的构造的剖视图。
[0138]此外,图23是表示图1的半导体器件的装配中堤坝切断后的构造的剖视图,图24是表示图1的半导体器件的装配中激光打标后的构造的一例的剖视图,图25是表示图1的半导体器件的装配中外装镀敷形成后的构造的一例的剖视图,图26是表示图1的半导体器件的装配中浇注口前端切断后的构造的一例的局部放大俯视图。
[0139]此外,图27是表示图1的半导体器件的装配中引线切断并成形后的构造的一例的局部放大俯视图,图28是表示图1的半导体器件的装配中角部切断后的构造的一例的俯视图,图29是图28的构造的剖视图,图30是图28的构造的外观立体图。
[0140]1.准备引线框
[0141]如图14所示,在本实施方式的半导体器件的装配中,准备在框部If的内侧形成有多个元器件区域(元器件形成部)Ii的薄片状的引线框I。另外,元器件区域Ii是指形成I个QFP5的区域。此外,在本实施方式中,多个元器件区域Ii在俯视下配置成矩阵状,但也可以配置成一列(单列),在I张引线框I上形成的元器件区域Ii的数量未特别限定。此夕卜,在本实施方式中,引线框的平面形状由长方形构成。并且,沿着引线框I的框部If中的相互相对置的一对边(长边)而分别形成定位用或引导用的多个孔部lg。而且,在多个元器件区域Ii中的相互相邻的元器件区域之间,沿着相互相对置的一对边(短边)形成有多个长孔Ih。
[0142]接着,详细说明元器件区域li。
[0143]如图15所示,在一个元器件区域Ii设有一个晶片焊盘lc。在此,本实施方式中的晶片焊盘的平面形状由大致四边形构成。并且,该精品焊盘Ic的各角部由悬臂引线Ie支承。进而,在晶片焊盘Ic的周围形成有多个引线。各引线包括内引线部Ia和与其相连的外引线部lb。并且,各外引线部Ib的端部与设于框部If内侧(晶片焊盘侧)的内框Ifa相连。
[0144]此外,在多个外引线部lb,在内引线部Ia与外引线部Ib的交界部的稍外侧位置,通过堤坝连杆Id将相邻的外引线部彼此连结。
[0145]并且,多个外引线部Ib分别较长地形成,以使在后面的引线成形工序中生成的引线的托起高度变大。
[0146]此外,由悬臂引线Ie支承的晶片焊盘lc,如图16所示,配置在比多个内引线部Ia的各个内引线部低的位置。即,在各悬臂引线Ie的中途形成弯折,由此,晶片含氢Ic成为在比多个内引线部Ia的各个内引线部低的位置。
[0147]另外,引线框I由例如以铜为主成分的金属材料构成。
[0148]在本实施方式中,为了便于说明,以一个元器件区域Ii为代表,说明以后的QFP5的装配。
[0149]2.晶片接合
[0150]在准备引线框完成后,进行晶片接合。
[0151]在晶片接合工序,如图17和图18所不,介由粘晶材料6将半导体芯片2搭载于晶片焊盘Ic的上表面lea。S卩,将在主面2a形成有许多接合焊盘2c的半导体芯片2介由粘晶材料6搭载于晶片焊盘Ic上。
[0152]3.导线接合
[0153]在晶片接合完成后,进行导线接合(wire bond)。
[0154]在导线接合工序中,如图19和图20所示,将半导体芯片2的多个接合焊盘2c与多个内引线部Ia经由多个导线4而分别电连接。此时,多个导线4的各个导线的一端与多个内引线部Ia的各个内引线部的导线接合部Iac接合。
[0155]4.模制
[0156]导线接合完成后,进行模制(mould)。
[0157]在模制工序,如图21和图22所示,使用封固用树脂,将半导体芯片2、晶片焊盘lc、多个内引线部Ia和多个导线4封固。首先,在未图示的树脂成型用模具的模腔内配置导线接合完的引线框1,用模具将引线框I夹住后,将上述封固用树脂填充于上述模腔内而形成封固体3。上述封固用树脂例如是热固化性的环氧树脂,通过填充后的热固化而形成封固体3。
[0158]另外,封固用树脂从所要形成的封固体3的四个角部中的一个角部注入,因此在封固体3的俯视下的一个角部形成图21所示的浇注口树脂22。当形成封固体3后,如图22所示,成为多个外引线部Ib从封固体3的各个侧面3c突出的状态。
[0159]5.引线切断(堤坝连杆切断)
[0160]在模制完成后,进行引线切断(堤坝连杆切断)。
[0161]在堤坝连杆切断工序中,如图23所示,用切断刀9将配置在相邻的外引线部之间的堤坝连杆Id切断。另外,在堤坝连杆切断工序中,仅进行堤坝连杆Id的切断。
[0162]6.标记
[0163]在堤坝连杆切断完成后,进行打标。
[0164]在标记工序中,如图24所示,对封固体3的上表面3a照射激光10,如后述的图26所示,将规定的制造编号、管理编号等标记11标注于封固体3的上表面3a。
[0165]7.镀敷
[0166]在标记工序完成后,进行镀膜形成。
[0167]在镀敷工序中,如图25所示,在多个外引线部Ib的各个外引线部的表面(包括上表面Iba和下表面Ibb的表面)形成焊锡镀敷等镀膜(外装镀敷)。
[0168]另外,作为镀膜7,在使用焊锡镀敷时,优选采用无铅焊锡,通过采用无铅焊锡,可以谋求对环境负担的减少。在此,无铅焊锡是指铅(Pb)的含量为0.lwt%以下的焊锡,该含量是基于 RoHS (Restrict1n of Hazardous Substances)指令的基准而定。
[0169]8.引线切断(浇注口切断)
[0170]在镀敷工序完成后,进行引线切断(浇注口切断)。
[0171]在浇注口切断工序中,将形成有图21所示的浇注口树脂22的角部处的框切断。由此,封固体3成为被其余的三个角部支承于引线框I的状态。
[0172]9.引线成形
[0173]在浇注口切断完成后,进行引线成形。
[0174]在引线成形工序中,首先,将使各外引线部Ib的前端彼此相连的内框Ifa从框部If切离(参照图26)。接着,在保持将各外引线部Ib的前端相连的状态下,将外引线部Ib成形(弯折)成例如图29所示的鸥翼状。其后,切断将使各外引线部Ib的前端彼此相连的内框lfa,将各外引线部Ib彼此分离(参照图27)。
[0175]另外,该外引线部Ib的成形工序,在多个悬臂引线Ie与框部If相连的状态下进行。
[0176]10.引线切断(角部切断)
[0177]在引线成形工序完成后,进行引线切断(角部切断)。
[0178]在角部切断工序中,在图27所示的支承封固体3的其余的三个角部实施引线框切断而使其单片化。由此,如图28?图30所示,完成各外引线部Ib的托起高度大的QFP5的装配。
[0179]〈半导体器件的安装方法〉
[0180]在本实施方式的QFP5的安装中,如图12所示,在作为安装基板的母板12上借助焊锡8进行安装。此时,在QFP5中各外引线部Ib的托起高度大,因此在各外引线部Ib焊锡8的湿润量增加,焊锡8湿润达到各外引线部Ib的高度方向上较高的位置(图3所示的弯折部Ibc) ο
[0181]因而,提高了 QFP5的各个外引线部Ib的焊锡接合时的接合强度。结果,在QFP5能确保高安装可靠性(安装强度)。
[0182]另外,由于QFP5是封固体3中半导体芯片2的占有率大的半导体器件,因此即使是这样的半导体芯片2的占有率大的QFP5,也能提高其安装可靠性,能够谋求与母板12的接合不良的减少。
[0183]进而,即使在图4所示那样的ECU板(母板12)等受热影响程度高、处于非常严酷的环境下安装的QFP13b、13c等,也能提高其安装可靠性,能够谋求与ECU板的接合不良的减少(其中,对于母板12上的其他半导体器件也可以使用托起高度大的构造)。
[0184]〈变形例〉
[0185]以上,基于实施方式具体说明了由本实用新型人完成的实用新型,但本实用新型不限于上述记载的实施方式,不言而喻,在不脱离其要旨的范围内可进行各种变更。
[0186](变形例I)
[0187]在上述实施方式中,以QFP为晶片焊盘埋入构造的情况为例进行了说明,但上述QFP可以是使晶片焊盘Ic的一部分(例如下表面Icb)从封固体3露出的、所谓接片露出构造。
[0188](变形例2)
[0189]在上述实施方式中,说明了半导体器件为QFP的情况,但上述半导体器件也可以是如下的所谓SOP (Small Outline Package)型的半导体器件,即,作为外部连接端子的多个引线从平面形状为大致四边形的封固体3中的相互相对的两个边突出。
[0190](变形例3)
[0191]在上述实施方式的QFP5中,说明了当封固体3的厚度方向上的封固体内的半导体芯片2的占有率增加时、封固体3的线膨胀系数降低,但作为半导体芯片2的厚度的比较对象,可以采用芯片上方的封固体的厚度。即,半导体芯片2的占有率是指封固体3的厚度方向上的、半导体芯片2的厚度相对于封固体3的总厚度的比例(支配量)。因此,即使使晶片焊盘下方的封固体3的厚度比半导体芯片2的厚度大,在芯片上方的封固体3的厚度小于半导体芯片2的厚度时,也可能出现封固体3的线膨胀系数降低、由封固体3的变形(膨胀、收缩)引起半导体器件的安装不良的隐患。由此,作为芯片厚度的比较对象,不限于晶片焊盘下方的封固体3的厚度,也可以采用芯片上方的封固体3的厚度。但是,如上述实施方式的QFP5那样,在经由导线4将半导体芯片2和引线电连接的情况下,为使该导线4不露出于封固体3的表面,多是使形成于半导体芯片2上方(主面侧)的封固体3的厚度大于半导体芯片2的厚度。因此,在判断封固体3中的半导体芯片2的占有率(支配量)时,优选采用晶片焊盘下方的封固体3的厚度作为比较对象。
[0192](变形例4)
[0193]在上述实施方式中,说明了半导体器件(QFP5)的多个外引线部Ib分别形成为鸥翼状的情况,但多个外引线部Ib可以分别形成为例如J形引脚形状。即,半导体器件也可以是 QFJ(Quad Flat J-1eaded Package,四侧 J 形引脚扁平封装)、SOJ(Small OutlineJ-1eaded Package,双侧J形引脚封装)。
[0194](变形例5)
[0195]在上述实施方式的半导体器件的装配中,说明了在模制工序形成封固体3,在封固体形成后在各外引线部Ib的表面形成镀膜(外装镀敷)7的情况,但也可以是准备预先在引线框I的整个表面例如形成以钯(Pd)为主成分的镀膜而成的引线框1,使用该引线框I来装配半导体器件。
[0196]根据这样的装配,能省略模制工序后的外装镀敷涂布工序。
[0197](变形例6)
[0198]在上述实施方式中,说明了在外装镀敷工序中形成于各外引线部Ib的镀膜7是由焊锡材料构成的镀膜,上述焊锡材料是实质上不含铅(Pb)的无铅焊锡的情况,但上述焊锡材料可以是含铅的焊锡材料。但是,考虑环境污染问题,优选使用由上述无铅焊锡构成的焊锡材料。
[0199](变形例7)
[0200]另外,在不脱离上述实施方式所说明的技术构思的要旨的范围内,可以将变形例彼此组合应用。
【权利要求】
1.一种半导体器件,其特征在于,包括: 晶片焊盘,其具有第一面和与所述第一面相反一侧的第二面; 半导体芯片,其具有主面、形成于所述主面上的多个接合电极、以及与所述主面相反一侧的背面,所述半导体芯片以所述背面与所述晶片焊盘的所述第一面相对的方式,介由粘晶材料搭载于所述晶片焊盘的所述第一面上; 多个引线,经由多个导线而与所述多个接合电极分别电连接; 封固体,其具有位于所述半导体芯片的所述主面一侧的上表面、与所述上表面相反一侧的下表面、以及位于所述上表面与所述下表面之间的侧面,所述封固体以所述多个引线的各个引线的一部分从所述侧面突出的方式将所述晶片焊盘、所述半导体芯片及所述多个导线封固, 所述多个引线的各个引线的所述一部分在所述封固体的外侧弯折, 所述半导体芯片的厚度大于从所述晶片焊盘的所述第二面到所述封固体的所述下表面的厚度, 所述封固体的所述下表面与所述多个引线的各个引线的所述一部分的前端部之间的距离,大于所述封固体中的从所述半导体芯片的所述主面到所述封固体的所述上表面的厚度。
2.如权利要求1所述的半导体器件,其特征在于, 所述封固体由热固性的环氧类树脂构成, 所述半导体芯片由基材和多层布线层构成,所述基材由硅构成,所述多层布线层形成于所述基材的元件形成面上,且厚度比所述基材的厚度薄, 所述半导体芯片的线膨胀系数小于所述封固体的线膨胀系数。
3.如权利要求1所述的半导体器件,其特征在于, 所述多个引线分别包括:接合所述导线的导线接合部;向所述封固体的厚度方向弯折的第一弯折部;向与所述封固体的所述上表面平行的方向弯折的第二弯折部, 所述多个引线的各个引线中的、从所述封固体的所述下表面到所述第二弯折部的距离,大于所述多个引线的各个引线中的从所述导线接合部的上表面到所述封固体的所述上表面的厚度、或大于所述多个引线的各个引线中的从所述导线接合部的下表面到所述封固体的所述下表面的厚度。
4.如权利要求1所述的半导体器件,其特征在于, 所述多个引线分别包括:接合所述导线的导线接合部;向所述封固体的厚度方向弯折的第一弯折部;向与所述封固体的所述上表面平行的方向弯折的第二弯折部, 所述导线接合部被所述封固体封固, 所述第一弯折部和所述第二弯折部分别从所述封固体露出, 所述第一弯折部配置在比所述导线接合部更远离所述半导体芯片的位置,所述第二弯折部配置在比所述第一弯折部更远离所述半导体芯片的位置。
5.如权利要求1所述的半导体器件,其特征在于, 所述半导体芯片的厚度大于所述封固体中的、从所述半导体芯片的所述主面到所述封固体的所述上表面的厚度。
6.如权利要求1所述的半导体器件,其特征在于, 从所述封固体的所述下表面到所述多个引线的各个引线的所述一部分的前端部之间的距离大于所述芯片的厚度。
【文档编号】H01L23/50GK204204846SQ201420692867
【公开日】2015年3月11日 申请日期:2014年11月18日 优先权日:2014年3月13日
【发明者】高桥典之 申请人:瑞萨电子株式会社

最新回复(0)