无开关高效功率因数补偿电路的制作方法

xiaoxiao2020-7-31  8

无开关高效功率因数补偿电路的制作方法
【专利摘要】本实用新型公开了无开关高效功率因数补偿电路,输入电压通过整流二极管D1、D2、D3和D4整流成只有正端的折叠正弦波电压;当整流正弦电压升高过程中,二极管D5、D10阳极的电压超过其阴极电压时,即二极管D5和D10导通,整流电压对串联的三个电容C5、C4和C3进行充电;当整流正弦电压降低时,二极管D6、D8、D9和D11均导通,电容C5、C3、C4成并联,从而使得负载上的电压减低为整流峰值电压的三分之一,延长了输入电流的导通时间,使得输入电流的波形变宽。本实用新型既避免了开关型功率因数补偿电路的复杂性,又解决了现有的无开关功率补偿电路在容性负载条件下达不到0.9功率因数的问题,从而实现低成本和高功率因数补偿。
【专利说明】 无开关高效功率因数补偿电路
【技术领域】
[0001]本实用新型涉及电路【技术领域】,尤其涉无开关高效功率因数补偿电路。
【背景技术】
[0002]功率因数是正弦交流电中电流对电压的相位及其电流变形的衡量指标。当电流的波形与电压完全相同并没有超前或滞后(相位差)时,此时的功率因数为最大,即I或100%。小于I的功率因数意味着从发电站的电到达用户后有一部分没有被使用掉,而是返回了发电站,这部分称为无功功率。功率因数越低的其无功功率越高。无功功率是按功率因数大小跟有功功率成比例的。因此为了满足用户的需求,也就是对有功功率的需求,发电站必须要按比例传送额外的无功功率。结果不但造成了电力在输电线上的额外损耗,另外发电站的实际有效电力使用容量也被减小。所以很多产品都对功率因数有最低的要求。为了满足功率因数的要求,常常需要额外的电路对功率因数进行较正和补偿,以提高功率因数。
[0003]通常功率因数电路分两大类,一类是由受控制的开关来达到功率因数补偿目的,一般包括反激拓扑(Flyback)、升压(Boost)、降压(Buck),以及降升压(Buck-Boost)等;另一类电路是无开关的功率因数补偿电路,在这类电路中以元件的自然特性达到功率因数补偿的目的。目前,世界上包括中国在内大多数国家和地区要求的最低功率因数是0.9,虽然带开关功率因数补偿电路可以达到较高的功率因数,比方说0.9以上,但开关型电路体积庞大,也比较复杂,使得产品的成本提高;现有无开关功率因数补偿电路简单可靠,但如果负载为电容性负载,现有的无开关功率因数补偿电路功率补偿达不到功率因数0.9以上的要求。
实用新型内容
[0004]本实用新型的发明目的在于:针对上述存在的问题,提供一种能够既避免了开关型功率因数补偿电路的复杂性,又解决了现有的无开关功率补偿电路在容性负载条件下达不到0.9功率因数的问题,从而实现低成本和高功率因数补偿。
[0005]本实用新型采用的技术方案是这样的:无开关高效功率因数补偿电路,输入电压通过整流二极管D1、D2、D3和D4整流成只有正端的折叠正弦波电压;当整流正弦电压升高过程中,二极管D5、DlO阳极的电压超过其阴极电压时,即二极管D5和DlO导通,整流电压对串联的三个电容C5、C4和C3进行充电;当整流正弦电压降低时,二极管D6、D8、D9和Dll均导通,电容C5、C3、C4成并联,从而使得负载上的电压减低为整流峰值电压的三分之一,延长了输入电流的导通时间,使得输入电流的波形变宽。
[0006]作为优选,所述电容C4与三个二极管D9、D10、D11组成一级充放电降压电路。
[0007]作为优选,所述输入电流的波形更接近于输入电压波形,功率因数可达到0.98。
[0008]作为优选,所述降压电路不限于一级降压电路,如果需要,可以加更多级。
[0009]综上所述,由于采用了上述技术方案,本发明的有益效果是:
[0010]1、本发明避免了复杂的开关型功率因数补偿电路,解决了非开关型功率因数补偿电路达不到很多国家法律要求的0.9以上的功率因数问题,提供了低成本且高功率因数补偿电路,为产品设计降低成本提高了可靠性。
[0011]2、本发明的电路使得整流后的最低输出电压进一步得到降低,即峰值整流电压的三分之一,从而进一步延长了输入电流的导通时间,使得输入电流的波形更接近于输入电压波形,因此本发明电路的功率因数补偿可以达到0.98。
【专利附图】

【附图说明】
[0012]图1为没有功率因数补偿的容性负载电路;
[0013]图2A为一种带电感的无开关功率因数补偿电路;
[0014]图2B为另一种带电感的无开关功率因数补偿电路;
[0015]图3为不带电感的无开关功率因数补偿电路;
[0016]图4为本专利不带电感的功率因数补偿电路;
[0017]图5为电阻性负载的输入电压和电流波形;
[0018]图6为容性负载的输入电压和电流波形;
[0019]图7为现有的不带电感的无开关功率因数补偿的输入电压和电流波形;
[0020]图8为本专利不带电感的无开关功率因数补偿的输入电压和电流波形;
[0021]图中标记:1-负载,401-输入电压波形,402-输入电流波形,501-输入电流波形,601-输入电流波形,701-输入电流波形。
【具体实施方式】
[0022]下面结合附图,对本实用新型作详细的说明。
[0023]为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
[0024]如图1所示,输入的交流电压经过以D1、D2、D3、和D4的具有单向导通特性的二极管组成的整流器以后,使得输入的正负向正弦波电压成为只有正向的折叠的正弦波。假如没有滤波电容Cl,那么输入端的电压和电流波形如图5所示,401为输入电压波形,402为输入电流波形。由图5可见,这个电压和电流的波形完全相同,并且没有相位移。因此功率因数为最大值I。但因为一般电路都需要有滤波电容Cl,使得整流后的电压波形更接近于直流,因此负载变成了带电容性的负载。这样的负载条件下的输入电压和电流波形如图6所示,其中401为输入电压波形,而501为输入电流波形,可见输入电流波形与输入电压波形相差很大。这是因为当交流的输入电压通过整流后,如果低于电容上的电压,由于整流二极管的单向导电性,整流二极管不再导通,所以没有电流从输入端流向负载,电容Cl向负载I提供电流。这样的电路的功率因数一般在0.6左右,远低于各国法律要求的0.9以上。
[0025]为了提高功率因数,开关型的功率因数可以达到0.99以上,但电路复杂成本高。而无开关型的功率补偿电路简单可靠,但功率因数补偿效果不如开关型电路,很难达到0.9以上。一般的无开关型的功率因数补偿电路可以分两类。一类是使用电感的,如图2A和2B中所示的电路里使用了电感L5。由于电感的体积非常庞大,不方便使用,因此不带电感的无开关功率因数补偿电路使用得更为广泛。[0026]如图3为一种典型的非开关无电感功率因数补偿电路。其工作原理为:输入电压通过整流二极管D1、D2、D3和D4整流成只有正端的折叠的正弦波电压。当电压降低时,由于整流二极管的单向导电性,整流二极管倾向于阻断输入电流流向输出负载。而电容C5和C3则趋向于对负载提供电流。而这样的输出电流使得二极管D6和D8导通,导通的结果使得电容C5和C3从串联变成了并联,所以负载上的电压减低为半,这样当输入电压大于输入电容Cl上的电压,也就是最高电压的一半时,整流二极管开始且继续导通,使得输入电流继续流向负载。输入整流电压上升过程中,当二极管D5阳极的电压超过其阴极电压时,二极管D5导通,整流电压对电容C5和C3进行串联充电,一直充到输入整流电压的峰值,所以可见在输入电流波形上呈现一小尖刺,如图7所示。若要降低小尖刺的幅度,可以用一电阻或电感与二极管D5串联。由于负载端的最低电压被降低到整流峰值电压的一半,输入电流导通时间变长,因此输入电流的波形变宽,比较接近于输入波形。这样的电路可以改善功率因数到0.8以上,但通常达不到0.9以上。
[0027]如图4所示,一个电容C4和三个二极管D9、D10、Dll组成了新的一级充放电。当整流正弦电压升高时,二极管D5和DlO导通,整流电压对串联的三个电容C5、C4和C3进行充电,当电压降低时,二极管D6、D8、D9和Dll均导通,电容C5、C3、C4成并联,给负载提供电流。这个电路使得整流后的最低输出电压进一步降低,为峰值整流电压的三分之一。因此进一步延长了输入电流的导通时间。如图8所示,输入电流的波形更接近于输入电压波形,所以功率因数更高。实验结果显示某些应用中功率因数可以达到0.98。
[0028]此发明不限于多一级的降压电路,如果需要,可以加更多级。
[0029]本发明电路使得负载端的最低电压变得更低,输入电流的导通时间更长,从而获得更高的功率因数。
[0030]以上所述的具体实施例,对本实用新型的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。
【权利要求】
1.无开关高效功率因数补偿电路,其特征在于,输入电压通过整流二极管D1、D2、D3和D4整流成只有正端的折叠正弦波电压;当整流正弦电压升高过程中,二极管D5、D10阳极的电压超过其阴极电压时,即二极管D5和DlO导通,整流电压对串联的三个电容C5、C4和C3进行充电;当整流正弦电压降低时,二极管D6、D8、D9和Dll均导通,电容C5、C3、C4成并联,从而使得负载上的电压减低为整流峰值电压的三分之一,延长了输入电流的导通时间,使得输入电流的波形变宽。
2.根据权利要求1所述的无开关高效功率因数补偿电路,其特征在于,所述电容C4与三个二极管D9、D10、D11组成一级充放电降压电路。
3.根据权利要求1所述的无开关高效功率因数补偿电路,其特征在于,所述输入电流的波形更接近于输入电压波形,功率因数可达到0.98。
4.根据权利要求2所述的无开关高效功率因数补偿电路,其特征在于,所述降压电路不限于一级降压电路,如果需要,可以加更多级。
【文档编号】H02M1/42GK203708101SQ201420019060
【公开日】2014年7月9日 申请日期:2014年1月9日 优先权日:2014年1月9日
【发明者】林峰 申请人:常州隆辉照明科技有限公司

最新回复(0)