【专利交易】【专利代理】【商标和版权申请】【高新技术企业认定】Tel:18215660330

一种大规模订单处理与配送路径优化的方法

xiaoxiao2020-07-22  1

【专利交易】【专利代理】【商标和版权申请】【高新技术企业认定】Tel:18215660330

一种大规模订单处理与配送路径优化的方法
【专利摘要】一种大规模订单处理与配送路径优化的方法,包括以下步骤:步骤100,根据订单属性,对订单进行ABC分类法初次聚类,划分A类订单、B类订单、C类订单;步骤200,对所述A类订单、所述B类订单、所述C类订单进行BIRCH算法二次聚类,建立聚类特征树,对所述聚类特征树的叶结点进行聚类,获得特征簇;步骤300,根据提货站点属性及物流路径属性,分别采用蚁群算法选择提货站点和物流路径;步骤400,根据步骤200及步骤300的结果,对所述物流路径中所需要经过的站点,采用Dijkstra算法和蚁群算法对所述物流路径进行优化,获得最优路径。
【专利说明】一种大规模订单处理与配送路径优化的方法
【技术领域】
[0001]本发明涉及一种大规模订单处理与配送路径优化的方法。
【背景技术】
[0002]现代物流已被公认为是企业在降低物质消耗、提高劳动生产率以外创造利润的第三个重要源泉,也是企业降低成本,提高产品竞争力的重要途径。
[0003]在实际操作中对大规模的订单需要进行规模化的处理并且合理调配各站点仓库中的存储货物并且通过优化配送路径来节约运送成本,使利润最大化。

【发明内容】

[0004]本发明的目的在于,提供一种云街便利循环物流配送体系的系统操作的算法和物流调配实现的方式,用于实现云街便利循环物流配送体系并且实现高效率的物流调配,增强配送系统对物流订单的处理能力和寻找最优化物流路径的能力。利用实际的反馈数据不断更新数据库内容使得系统对订单的处理能力和寻找最优化物流路径能力更加精准,形成一种积极的正反馈行为。
_5] 用于解决问题的方案
[0006]为了实现上述目的,本发明创造提供一种大规模订单处理与配送路径优化的方法,包括以下步骤:
[0007]步骤100,根据订单属性,对订单进行ABC分类法初次聚类,划分A类订单、B类订单、C类订单;
[0008]步骤200,对所述A类订单、所述B类订单、所述C类订单进行BIRCH算法二次聚类,建立聚类特征树,对所述聚类特征树的叶结点进行聚类,获得特征簇;
[0009]步骤300,根据提货站点属性及物流路径属性,分别采用蚁群算法选择提货站点和物流路径;
[0010]步骤400,根据步骤200及步骤300的结果,对所述物流路径中所需要经过的站点,采用Dijkstra算法和蚁群算法对所述物流路径进行优化,获得最优路径。
[0011]优选地,步骤200中,所述二次聚类包括如下步骤:
[0012]步骤210,扫描所有数据,建立初始化的CF树,把稠密数据分成簇,稀疏数据作为孤立点;
[0013]步骤220,补救由于输入顺序和页面大小带来的分裂,使用全局/半全局算法对全部叶节点进行聚类。
[0014]优选地,步骤200中,所述二次聚类包括如下步骤:
[0015]步骤210,扫描所有数据,建立初始化的CF树,把稠密数据分成簇,稀疏数据作为孤立点;
[0016]步骤211,根据全局或半全局聚类算法的范围要求,建立一个更小的CF树;
[0017]步骤220,补救由于输入顺序和页面大小带来的分裂,使用全局/半全局算法对全部叶节点进行聚类;
[0018]步骤221,将步骤220中的中心点作为种子,将数据点重新分配到最近的种子上,保证重复数据分到同一个簇中,同时添加簇标签。
[0019]优选地,步骤400后还包括以下步骤:
[0020]步骤500,记录实际站点间的交通时间及站点停留时间;
[0021]步骤600,将步骤500的结果作为提货站点属性及物流路径属性。
[0022]优选地,所述订单属性包括订单送达时间、订单紧急程度、订单延迟时限。
[0023]优选地,所述提货站点属性包括站点停留时间、站点备货品种、站点备货量、站点位置。
[0024]有益.效果
[0025]1、良好适应云街便利循环物流配送体系的循环动态高效的配送体系。可以支持大量订单的分析与处理,且实现该种方法的软件对硬件要求不高,非常适合计算设备,适合现代电商的物流实际操作。在实际物流配送中与车载移动装置相配合可以实现输入订单显示路径以及预估到达各站点的时间,大大方便了物流配送人员,而且也方便公司对物流配送进行及时调配。该方法能有效节约物流成本提升物流配送效率。
[0026]2、该方法解 决了三个层次的问题:第一层次是订单的处理,第二层次提货站点及路径的选取,第三层次是各因素信息的及时更新。这三个层次的算法结构互不影响,当有先进算法时,随时可以引进来替换陈旧算法,且也不影响程序的完整性。
[0027]3、与以往的物流的提货选址和配送路径选择的单向性相比该方法具有双向性,一个方向是从订单处理到路径选取到货物送达,另一个方向是用完成的各步骤的结果数据(如时间信息)反馈给系统数据库。两个方向互相作用优化整个配送体系,给公司日后大数据处理埋下伏笔。
[0028]4、本发明适应性强,对用户友善,可建立云端数据库,有需要的企业可以根据需要自由调取运算。
【具体实施方式】
[0029]下面对本发明创造实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明创造部分实施例,而不是全部的实施例。基于本发明创造中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明创造保护的范围。
[0030]假设有η个订单,每个订单表示为Gi (i = 1,...,η),设物流调配系统有η个A类站点Si (I≤i≤e), m个B类站点Si (e < i≤f), p个C类站点Si (f < i≤g),每个站点表示为aji = 1,...,n),在时刻T(t),站点ai的某物流货物库存量为Qi(Ta)),而在这一时刻该站点对该物流货物的需求量为Di (T (t)),满足的约束条件为Q (T (t)) > D (T (t)),即总在未来某时间点某货物总库存量大于等于对该货物的需求量。且每辆运货车的最大装载量为W。
[0031]在初始状态时,各订单毫无规则且其中的数据繁杂,直接对初始订单数据进行聚类可能会导致程序运行缓慢,且聚类的结果不准确等情况。
[0032]因此,先对初始订单用ABC分类法的思想先进行初次聚类。[0033]步骤100,根据订单属性,对订单进行ABC分类法初次聚类,划分A类订单、B类订单、C类订单。
[0034]云街便利循环物流配送体系中分A、B、C三类站点。A类站点主要为公司自营期间店,主要承载的物流职能为揽件、自提、派送、分拣。B类站点主要为有配送能力的社区点,配送站等,主要承载的物流职能为揽件、自提、派送。C类站点主要为社区点,主要承载的物流职能是揽件和自提功能。配送体系中实行A类站点之间(即仓库之间)定点配送和A类站点、B类站点、C类站点无间配送的循环动态高效的配送体系。
[0035]ABC分类思想聚类的规则可以是按顾客收货的延迟期限可分为需采取及时配送(JIT配送)的A类订单、允许有一定延迟期限的B类订单以及允许较长延迟期限的C类订单,或者按订单货物调配方式分为各个A类站点和B类站点都有较多存货的A类订单、某些A类站点和B类站点有存货的B类订单以及需要从别的地方调运货物的C类订单。
[0036]步骤200,对所述A类订单、所述B类订单、所述C类订单进行BIRCH算法二次聚类,建立聚类特征树,对所述聚类特征树的叶结点进行聚类,获得特征簇。
[0037]优选地,所述二次聚类包括如下步骤:
[0038]步骤210,扫描所有数据,建立初始化的CF树,把稠密数据分成簇,稀疏数据作为孤立点;
[0039]步骤211,根据全局或半全局聚类算法的范围要求,建立一个更小的CF树;
[0040]步骤220,补救由于输入顺序和页面大小带来的分裂,使用全局/半全局算法对全部叶节点进行聚类;
[0041]步骤221,将步骤220中的中心点作为种子,将数据点重新分配到最近的种子上,保证重复数据分到同一个簇中,同时添加簇标签。
[0042]面对大型数据,利用BIRCH算法通过扫描数据库,建立一个初始存放于内存中的聚类特征树,然后对聚类特征树的叶结点进行聚类,聚类出的不同簇可看做是不同的物流路径。
[0043]BIRCH算法的基本思想是建立一棵树,这棵树能够捕获聚类所必须的信息,聚类仅在这颗树上进行。其中树中结点的标记包含了计算距离值所需要的信息。树的规模由与每个叶结点所对应的闕值T决定。闕值T代表允许的最大直径。这里的直径是指簇中所有两个点之间距离的平均值。
[0044]BIRCH聚类算法具体分为四个阶段:
[0045]1、扫描所有数据,建立初始化的CF树,把稠密数据分成簇,稀疏数据作为孤立点对待。
[0046]2、这个阶段是可选的,阶段3的全局或半全局聚类算法有着输入范围的要求,以达到速度与质量的要求,所以此阶段在阶段I的基础上,建立一个更小的CF树。
[0047]3、补救由于输入顺序和页面大小带来的分裂,使用全局/半全局算法对全部叶节点进行聚类。
[0048]4、这个阶段也是可选的,把阶段3的中心点作为种子,将数据点重新分配到最近的种子上,保证重复数据分到同一个簇中,同时添加簇标签。
[0049]步骤300,根据提货站点属性及物流路径属性,分别采用蚁群算法选择提货站点和物流路径。[0050]指派提货站点,利用聚合好的订单数据用指派问题的思想合理规划选择不同物流路径上需要提货以及经过的A类站点和B类站点。
[0051 ] 指派问题首先建立数学模型。
[0052]设物流调配系统中的A类站点和B类站点共有η个,每个站点都有各自的备货品种和备货量(如站点ak中有A商品a个、B商品b个、C商品c个等等),步骤二中聚类出的各物流路径上需要取货的货物种类和对应的数量分别设为X和Xy,而派送车去第i个站点取打包的货物j (A商品a个、B商品b个、C商品c个等等)所需的成本为C。
[0053]
【权利要求】
1.一种大规模订单处理与配送路径优化的方法,其特征在于,包括以下步骤: 步骤100,根据订单属性,对订单进行ABC分类法初次聚类,划分A类订单、B类订单、C类订单; 步骤200,对所述A类订单、所述B类订单、所述C类订单进行BIRCH算法二次聚类,建立聚类特征树,对所述聚类特征树的叶结点进行聚类,获得特征簇; 步骤300,根据提货站点属性及物流路径属性,分别采用蚁群算法选择提货站点和物流路径; 步骤400,根据步骤200及步骤300的结果,对所述物流路径中所需要经过的站点,采用Dijkstra算法和蚁群算法对所述物流路径进行优化,获得最优路径。
2.根据权利要求1所述的大规模订单处理与配送路径优化的方法,其特征在于,步骤200中,所述二次聚类包括如下步骤: 步骤210,扫描所有数据,建立初始化的CF树,把稠密数据分成簇,稀疏数据作为孤立占.步骤220,补救由于输入顺序和页面大小带来的分裂,使用全局/半全局算法对全部叶节点进行聚类。
3.根据权利要求1所述的大规模订单处理与配送路径优化的方法,其特征在于,步骤200中,所述二次聚类包括如下步骤: 步骤210,扫描所有数据,建立初始化的CF树,把稠密数据分成簇,稀疏数据作为孤立占.步骤211,根据全局或半全局聚类算法的范围要求,建立一个更小的CF树; 步骤220,补救由于输入顺序和页面大小带来的分裂,使用全局/半全局算法对全部叶节点进行聚类; 步骤221,将步骤220中的中心点作为种子,将数据点重新分配到最近的种子上,保证重复数据分到同一个簇中,同时添加簇标签。
4.根据权利要求1所述的大规模订单处理与配送路径优化的方法,其特征在于,步骤400后还包括以下步骤: 步骤500,记录实际站点间的交通时间及站点停留时间; 步骤600,将步骤500的结果作为提货站点属性及物流路径属性。
5.根据权利要求1至4任一所述的大规模订单处理与配送路径优化的方法,其特征在于,所述订单属性包括订单送达时间、订单紧急程度、订单延迟时限。
6.根据权利要求1至4任一所述的大规模订单处理与配送路径优化的方法,其特征在于,所述提货站点属性包括站点停留时间、站点备货品种、站点备货量、站点位置。
【文档编号】G06Q50/28GK103927643SQ201410179022
【公开日】2014年7月16日 申请日期:2014年4月30日 优先权日:2014年4月30日
【发明者】洪剑 申请人:洪剑

【专利交易】【专利代理】【商标和版权申请】【高新技术企业认定】Tel:18215660330

最新回复(0)