四冲程发动机的润滑系统的制作方法

xiaoxiao2020-7-22  3

【知识产权代理】【专利服务】Tel:18215660330

专利名称:四冲程发动机的润滑系统的制作方法
技术领域
本发明涉及一种手持式四冲程发动机的润滑系统,上述发动机主要用于剪切机或链锯的动力源。
在上述应用场合中广泛使用的普通手持式发动机是在任何发动机工作姿态如倾斜或横向翻倒姿态下可以具有润滑功能的二冲程发动机。
然而,作为这种手持式发动机,从废气排放控制的观点来看,最好使用四冲程发动机。然而,在四冲程发动机中,必须储存专门用作润滑的油。因此,如果四冲程发动机用作手持式发动机,那么必须在发动机的任何工作姿态下可靠地润滑发动机的各部分。
因此,本发明的目的是提供一种四冲程发动机润滑系统,它能够满足上述手持式工具的使用要求。
为了实现上述目的,按照本发明的第一方面和特征,一种四冲程发动机的润滑系统包括一个储油室,其用于储存润滑油并内设用于产生润滑油雾的油雾产生装置;一个曲轴室,其内装有曲轴的曲柄部分;以及一个气门分配室,其内装有一气门分配装置,所述储油室、曲轴室和气门分配室设在发动机体中,储油室和曲轴室通过在储油室中油面上方的一通孔相互连通,曲轴室和气门分配室通过一控制阀相互连通,该控制阀在曲轴室中压力升高时打开,在曲轴室内压力下降时闭合,气门分配室在其上部与大气连通,在其下部通过一个孔与储油室连通,下式是在发动机工作中建立的Pc≤Po<Pv其中Pc是曲轴室中的压力;Po是储油室中的压力;Pv是气门分配室中的压力。
由于本发明的上述第一特征,在发动机的任何倾斜状态中,油雾可以不变地循环至储油室、曲轴室、气门分配室和储油室,在气门分配室中液化的油可通过利用在各室内压力之间的差的大小循环至储油室,从而保证良好的润滑状态。另外,由于无需设置昂贵的油泵,这种润滑系统在成本方面也是适宜的。
按照本发明的第二方面和特征,除上述第一特征外,该系统还包括一个最上部室,它占据气门分配室上方的一个位置且通过一个孔与气门分配室连通,并通过一油道与储油室或曲轴室连通,下式是在发动机工作期间建立的Pc≤Po~≤Pt<Pv式中Pt是最上部室中的压力。
由于本发明的上述第二特征,不仅油雾的循环,而且在最上部室中液化和积蓄的油的循环也可容易地进行,从而可保证良好的润滑状态。
按照本发明的第三方面和特征,除了上述第一特征外,油雾产生装置包括一个抛油环,它由曲轴转动,以便在储油室中与发动机的倾斜状态无关地一直搅拌和抛洒润滑油。
由于本发明的第三特征,在储油室中,在发动机任何工作姿态下,抛油环的转动能够可靠地产生油雾,而且抛油环的结构较为简单。
按照本发明的第四方面和特征,除了上述第一或第二特征以外,控制阀包括一个压力响应式单向阀。
由于第四特征,单向阀可以与曲轴室中的压力脉冲相关地打开或闭合,以便将油雾从曲轴室送入气门分配室,并将曲轴室保持在平均负压状态。特别是当单向阀闭合时密封良好,因此,这种润滑系统可有效用于以较低速度转动的发动机。
按照本发明第五方面和特征,除了第一或第二特征之外,控制阀包括当与曲轴转动相关的活塞降低运动时打开,而上述活塞上升运动时闭合的转动阀。
由于第五特征,转动阀能够与曲轴转动的机械运动相关地打开和闭合,以便将油雾从曲轴室送入气门分配室,并将曲轴室保持在平均负压状态。特别是转动阀的开、闭定时不会产生偏差,因此,这种润滑系统可有效用于以较低速度转动的发动机。
按照本发明的第六方面和特征,除了第五特征之外,转动阀打开期间大致为曲柄转角的180°,转动阀打开的起始点设在一个范围中,该范围是从活塞上、下死点间的中点至按照曲柄转角来说的活塞45°下降位置。
由于本发明的第六特征,从曲轴室向气门分配室的正压排放可通过利用发动机高速转动期间气体的惯性作用有效地进行。因此,油雾的输送和曲轴室负压状态的保障可以更为可靠。
现在对照以下附图描述推荐实施例,以便进一步阐述本发明。


图1至10表示本发明的第一实施例,其中图1表示设有按照本发明的润滑系统的发动机的动力剪切机的工作情景;图2是发动机的前视垂向剖视图;图3是沿图2中3-3线的剖视图;图4是沿图2中4-4线的剖视图;图5是沿图2中5-5线的剖视图;图6是沿图2中6-6线的剖视图;图7是沿图2中7-7线的剖视图;图8是沿图2中8-8线的剖视图;图9是沿图2中9-9线的剖视图;图10A和10B的剖视图表示在发动机横向翻倒状态(10A)和倒置状态(10B)下,在储油箱储油面和循环通道之间的部位;图11至14表示发动机的变型,其中图11是发动机的垂向剖视图;图12是沿图11中12-12线的剖视图;图13是表示转动阀打开状态的剖视图;图14是表示转动阀开、闭定时的曲线图;图15-25表示本发明的第二实施例,其中图15是包括润滑系统的发动机的侧视图;图16是发动机的前视垂向剖视图;图17是图16中关键部分的放大图;图18是类似于图17的视图,但表示转动阀不同的工作状态;图19是沿图16中19-19线的剖视图20是沿图16中20-20线的剖视图;图21是沿图16中21-21线的剖视图;图22是沿图16中22-22线的剖视图;图23是沿图16中23-23线的剖视图;图24是表示当发动机侧翻时曲轴室中润滑油状态的剖视图;图25是表示当发动机倒置时曲轴室中润滑油状态的剖视图。
现在参阅附图,借助推荐实施例描述本发明。
首先描述图1至10所示本发明的第一实施例。现参阅图1,一个手持式四冲程发动机E例如安装在动力剪切机T的驱动部分,作为动力剪切机T的动力源。动力剪切机在使用中根据其工作状态,其剪切器分别在各个方向上转动,因而倾斜度大或处于倒置位置,其工作状态不是恒定的。
现参阅图2和3,一汽化器2和一排气消音器3装在发动机E的发动机体1的前、后部,一个空气滤清器4安装在汽化器2的进气通道入口中。燃油箱5装在发动机体1的下表面。汽化器2包括一个膜片式泵,其借助发动机E的曲轴室(下文将详述)中的压力脉冲泵送来自燃油箱5的燃油,以便将过剩的燃油循环至燃油箱5,从而使燃油可被送至处于任何姿态的发动机E的进气孔。
如图2和3所示,发动机体1包括一个带有整体式气缸盖的气缸体,以及一个结合在气缸体6的下端面上的曲轴箱7。气缸体6包括一个内装活塞8的单缸9,以及许多绕其外周的冷却片10。
曲轴箱7包括一对上、下半壳7a和7b,通过设在其周边的许多螺栓相互连在一起。曲轴13通过一连杆12连接于活塞8并以下述方式支承在半壳7a和7b之间。
上部半壳7a整体地设有一对从顶壁垂下的左、右上部轴颈支承壁14和14′,下部半壳7b整体地设有一对从底壁向上延伸,与上部轴颈支承壁14和14′相对的下部轴颈支承臂15和15′。曲轴13的左轴颈部夹在左上和右轴颈支承壁14和15之间,平面轴承16夹在其间。在每个上、下轴颈支承臂14′和15′上共有4个螺栓孔18,布置在平面轴承16或滚珠轴承17的相对两侧并垂向穿过曲轴箱7。四条柱螺栓19嵌入气缸体6的下端面并穿过螺栓孔18。螺母20旋紧在从曲轴箱7的下端面伸出的每个柱螺栓19的下端上。以这种方式,上、下轴颈支承臂14,14′和15,15′相互连接,气缸体6和曲轴箱7也相互连接起来。
这种连接结构并不干涉绕气缸体6外周设置的冷却片10,因而可以自由选择冷却片10的数目、尺寸等,从而可以显著提高发动机的冷却效果,同时也提高了曲轴箱7对曲轴13的支承刚度。
油封21和21′安装在曲轴箱7的曲轴13穿过的相对端壁上。
曲轴箱7的内部分成左侧的储油室22、中间的曲轴室23和右侧的气门分配室24,如图2所示。曲轴13的曲柄部分13a设置在曲轴室23中。限定量的润滑油O储存在储油室22中,用于搅拌和抛洒润滑油O的抛油环25(它是油雾产生装置)紧固在曲轴13上。
如图2和4所示,抛油环25包括配合在曲轴13上的一个凸台25a,许多长臂叶片25b和许多短臂叶片25c,两种叶片都是从凸台25a的外周伸出的。叶片25b和25c的末端以轴向相对的方向弯曲。
具有上述结构的抛油环25能够在发动机E的任何工作姿态下,通过叶片25b和2c的转动来搅拌储油室22中储存的油,以便总是可以产生油雾。
气门分配室24穿过气缸体6的一侧延伸至气缸体6的气缸盖。气门分配室24的上部可被一个连接于气缸体6的气缸盖上的罩26开、闭。
如图2和5所示,气缸体6的气缸盖设有连接于汽化器2和排气消音器3的排气孔27和28,以及用于开、闭进、排气孔27和28的进、排气门29和30。用于开、闭进、排气门29和30的气门分配装置31设在气门分配室24中。
气门分配装置31包括一个随动定时齿轮33,它可转动地承载在一支承轴34上,该支承轴支承在气缸体和曲轴箱7的连接表面之间,随动定时齿轮33由一主动定时齿轮32以2/1的减速比被驱动;一个承载在凸轮随动轴36上的凸轮随动件37和38,它们被凸轮35摆动;一对承载在摇臂轴39上的摇臂40和41,摇臂轴39装在气缸体6的气缸盖中,其两端抵靠进、排气门29和30的气门头;一对将凸轮随动件37和38连接于摇臂40和41的另一端的推杆42和43;以及在闭合方向偏压进、进气门29和30的气门弹簧44和45。在活塞8的进气冲程中,进气门29可以被打开,在活塞8的排气冲程中,排气门30可以被打开。
储油室22和曲轴室23通过曲轴13中的通孔46相互连通。在这种情形中,通孔通入储油室22的孔口设置在储油室22的中部。储存在储油室22中的润滑油O的量可以调节,使得在发动机的任何倾斜或倒置的状态下,该孔口也不浸在油中。或者,通孔46也可设在平面轴承16或储油室22和曲轴室23之间的隔壁中。
如图2和7所示,一个阀门室47限定在曲轴箱7的下表面之下并连接于气门分配室24。阀门室47通过一个阀孔48与曲轴室23连通。单向阀49作为开、闭阀孔48的控制阀安装在阀门室47中,并响应于曲轴室23中的压力脉冲被移动,因而阀孔48在压力减小时闭合,在压力上升时打开。
一个U形返油室50在曲轴箱7的下表面之下被限定,包围着阀门室47。返油室50通过一对孔51与气门分配室24的底部连通,孔51相互最大限度间隔开来,返油室50通过一对通孔46也与储油室22连通。两道孔46的总横截面积设定得足够地大于两孔51的总横截面积。
一底板53使曲轴箱7下表面上的凹部封闭起来,从而形成了阀门室47和返油室50。底板50通过柱螺栓19和螺母20压紧在曲轴箱7上。
气门分配室24的上部通过一根通气管54与空气滤清器4的内部相连通,通气管54是由橡胶制成的并穿过气缸盖的罩26的一侧壁安装。在这种情形中,通入气门分配室24的通气管54的端部设置得伸入气门分配室24一个预定长度。因此,在发动机E的任何工作姿态下都可防止在气门分配室24中积蓄的油流出室24而进入通气管54,如图2,8和9所示,一个外罩55连接于气缸盖的罩26,配合在罩26的外周上。一个扁平的最上部室56限定在罩26和55的顶壁之间,并通过一对孔57与气门分配室24连通,孔57在对角位置(最好在四个角部)设在气缸盖的罩26的顶壁中。最上部室56通过一条油道58也与返油室50连通,油道58设在气缸体6和曲轴箱7中。油道58的横截面积大于一对孔57的总横截面积。
孔51和57、最上部室56、油道58、返油室50和通孔46构成一条循环通道L,其用于使润滑油从气门分配室24返回储油室24。该循环通道通入储油室22的孔口,即,通孔52的出口端位于储油室22的纵向和横向中部,且在储油室2的垂向中部之下,及在室22的垂向中部之下。因此,如图10A和10B所示,在发动机E的侧翻或倒置状态下,上述孔口暴露在储油室22的储油面上方,在发动机的上述状态下,气门分配室24位于储油室22之下。
如果在发动机E工作期间,曲轴13的转动借助抛油环25在储油室中搅拌润滑油O以产生油雾,那么,当曲轴室中的压力被活塞8的升起运动减小时,油雾通过通孔46被吸入曲轴室23,以便润滑围绕曲柄部分13a和活塞8的部分。然后,当曲轴室23中的压力被活塞8的下降运动增高时,单向阀49被打开,使油雾与曲轴室23中产生的漏气一起从阀孔48送入阀门室47,从而送入气门分配室24,在那里油雾和漏气相互分开。因此,油雾可润滑气门分配装置31的各部分,而则通过通气管54排入空气滤清器4。
由于活塞8的升、降运动,曲轴室23中的压力是脉动的,在正、负压力间交替变换。在正压力下,单向阀49打开,使正压力向阀门室47释放。在负压力下,单向阀49闭合,防止正压力从阀门室47回流,因而曲轴室23中的压力在平均值上保持为负。
另一方面,相互连接的气门分配室24和阀门室47通过通气管54与处于大气压状态的空气滤清器4连通,因而在两个室24和47中的压力基本等于大气压。
储油室22通过通孔46与曲轴室23连通,因而储油室22中的压力等于或稍高于曲轴室23中的压力。
返回室50通过通孔52与储油室22连通,也通过孔51与气门分配室24连通,因而返油室50中的压力等于或稍高于储油室22中的压力。
最上部室56通过油道58与返油室50连通,也通过孔57与气门分配室24连通,因而最上部室56中的压力等于或销高于返回室50中的压力。
在各室中的压力间的关系可用下式表达Pc≤Po≤Pr≤Pt<Pv
式中Pc为曲轴室23中的压力,Po为储油室22中的压力,Pr为返油室50中的压力,Pt为最上部室56中的压力,Pv为气门分配室24中的压力因此,在发动机工作期间,压力是通过下述路径流动的 因此,送至气门分配室24的油雾通过压力路径循环至储油室22,在气门分配室24中液化的油通过孔51循环至返油室50和储油室22。油雾和液化后的油的上述循环,即使发动机E以任何姿态倾斜,进行时也没有障碍。
在发动机E的倒置工作状态下,最上部室56位于气门分配室24之下,因而在气门分配室24中液化的油通过孔57流入最上部室并通过油道58吸入返油室50,并循环入储油室22中。
甚至在发动机E的任何工作姿态如倾斜和倒置姿态下,润滑油的循环也可以不受阻碍地进行,从而一直保证良好的润滑状态。因此,发动机可以耐受动力剪切机在各个方向上的工作。另外,由于曲轴室23中的压力脉冲用于润滑油的循环,因而无需设置油泵。
在工作完成之后,发动机E停止工作,使动力剪切机间置,如图10A和10B所示,发动机E可侧翻或倒置。然而,在这种状态下,循环路径L的使气门分配室通入储油室22的孔口,即,通孔52的出口端暴露在储油室22中储存的润滑油O的油面上方,因而储油室22中的润滑油O可防止通过循环路径L回流入气门分配室24中。因此,可以避免润滑油从气门分配室24漏入通气管54中。
再参阅图2,带有冷却片60的飞轮永磁发电机59的转子61邻近于气门分配室24固定于曲轴13的外端,与转子61配合工作的点火线圈62固定于气缸体6。离心式离合器64设置在转子61和工作机驱动轴63之间。离心式离合器64包括多个可膨胀地装在转子61上的离合器瓦65,一个在收缩方向偏压离合器瓦65的离合器弹簧66,以及一个固定于驱动轴63包围离合器瓦65的离合器鼓67。当转子以预定转速以上被转动时,离合器瓦65膨胀,与离合器鼓67的内周面压力接触,因而将输出转矩从曲轴13传至驱动轴63。
一护罩69安装在发动机体1上,盖住发动机体1和飞轮永磁发电机59的头部,并限定了一条护罩和发动机体1和飞轮永磁发电机59的头部之间的冷却空气道68。通入冷却空气道68的入口68i设在离心式离合器64和护罩69之间的环形结构中,而出口68O设在护罩69中,入口68i的相对侧上。
因此,在转子61转动期间,冷却叶片60产生的风流过冷却空气道68以冷却发动机E的各部分。
邻接曲轴室23一侧的储油室22设置得从气缸体6的外表面伸出,面对冷却空气道68,能够起动曲轴13的公知的线圈起动器70安装在曲轴箱7邻近储油室22的外表面上。起动器70设置得伸向护罩69的外侧,使护罩69不干涉起动器70的起动索的工作。
当转子61随曲轴13转动时,由冷却叶片60产生的风流过冷却空气道68以冷却发动机E的各部分。但是具体来说,由于储油室22面对冷却气道68,使储油室22受到冷却空气的冷却,从而使润滑油O得到有效冷却。另外,储油室22设在传统上是死空间的,曲轴室23和后坐式起动器70之间的空间中,发动机E的尺寸未因设置储油室22而增加。
图11至14表示发动机的一种变型,它采用转动阀71替代单向阀49。在图11至13中,转动阀71包括一对风扇形阀件72,它们是在气门分配装置31的随动定时齿轮33的与凸轮35相对侧上以凸起方式形成的,且设在一条直径线上;以及一对周向地位于阀件72之间的凹槽73。转动阀对着曲轴室23和气门分配室24之间的隔壁上的阀孔74,以便借助随动定时齿轮33的转动开、闭阀孔74。
每个阀件72和凹槽73具有大约90°的中心角,但是因为随动定时齿轮33是以1/2的减速比被与曲轴13一起转动的主动齿轮32驱动的,所以按照曲柄角来说,阀孔74的每个被阀件72和凹槽73开、闭的期间为大约180°。
另外,如图14所示,阀件72和凹槽73的设置使得在活塞8的下降行程中阀被打开,而在活塞8的升高行程中阀被闭合。具体来说,需要的设置是使阀孔74在从活塞8的上、下死点间的中点P至相应于曲柄角45°的活塞下降位置的范围内打开,而在从上述中点P至相应于曲柄角45°的活塞升高位置的范围内闭合。
除了没有阀门室47以外,其它布置均与前述实施例相似,在图11至14中,与前述第一实施例中相应的部分或部件使用相同的标号。
转动阀71与曲轴13的转动机械动作相关地打开和闭合阀孔74,因而即使发动机E高速转动期间,也不会产生开、闭阀孔预定的定时的偏差,而且通过有效地利用流动气体的惯性作用,油雾可有效地从曲轴室23送入气门分配室24,同时,可以保证曲轴室23的平均负压状态。
现参阅图15至25描述本发明的第二实施例。
现在参阅图15,汽化器102和排气消音器103分别安装在手持式四冲程发动机10E的发动机体101的前、后部,空气滤清器104安装在汽化器102的进气口。燃油箱105安装在发动机体101的下表面。汽化器102包括一个膜片泵,它利用下文将详述的曲轴室中的压力脉冲从燃油泵105泵送燃油,并将过剩的燃油送回燃油箱,因而在发动机的任何姿态下都可将燃油送至发动机10E的进气孔。
现参阅图16,17,19和20,发动机101包括由一对用螺栓相互连接起来的左、右半壳106a和106b构成的曲轴箱106和一个用螺栓固定在曲轴箱106上表面上的带有整体气缸盖的气缸体107。半壳106a和106b水平地承载着曲轴108,活塞110通过连杆109连接于曲轴108的曲轴销,并可滑动地装在气缸体107中形成的气缸107a中。
气缸107a的顶壁包括进气孔111和排气孔112,并连接于汽化器102,设在其上的进、排气门113和114用于打开和闭合进、排气孔111和112。用于驱动进、排气门113和114的气门分配装置115设置在气门分配室116中,气门分配室116从曲轴箱106和气缸体107的侧面延伸至气缸体107的顶部。气门分配室116能够被罩121打开和闭合,罩121连接于气缸体107的气缸盖上。
气门分配室115包括一个固定在曲轴108上的主动定时齿轮117;一个承载在支承轴119上的随动定时齿轮118,支承轴119在气门分配室116的中部安装在曲轴箱106上,随动定时齿轮118以1/2的减速比由主动定时齿轮117驱动;一个整体地连接于随动定时齿轮一端的凸轮120;一对承载在凸轮随动轴122上的凸轮随动件123和124,凸轮随动轴122装在气缸盖107中;一对由摇臂轴125支承的摇臂126和127,摇臂轴125装在气缸体107中,其端部抵靠进、排气门113和114的气门头;一对将凸轮随动件123和124连接于摇臂126和127的另一端的推杆128和129;以及在闭合方向上偏压进、排气门113和114的气门弹簧130和131,因此,进气门在活塞110的进气冲程中打开,而排气门114在活塞110的排气冲程中打开。
一个曲轴室132在曲轴箱106中形成并包括一个圆筒形内室132a,其中设置曲轴108的曲柄部分108a,还包括一个外室132b,其具有U形截面并从底部至周向相对的侧面包围着内室132a。在曲轴室132底部,在内、外室132a和132b之间的隔臂134上设有一孔口133,使内、外室132a和132b可相互连通。润滑油O储存在曲轴室132的底部,存油量使油面稍许接触曲柄部分108a的外周。油匙135在连杆109的扩大端形成,作为油雾产生装置以便在曲轴108转动过程中搅拌和抛洒润滑油O,从而产生油雾。
如图17和23所示,曲轴室132和气门分配室116通过第一和第二供油道136和137相互连通,第一和第二供油道136和137分别在曲轴室132中油面的上方设在曲轴108和曲轴箱106中。气门分配室116在其底部也通过一个孔138与曲轴室132连通。
一转动阀139作为控制阀装在第一和第二供油道136和137之间。转动阀139包括一条大约180°的弧形槽160,在曲轴108一侧,在一轴颈部分108b的外周上形成,以及一阀孔162设在用于支承轴颈部分108b的曲轴箱106的支承部分161中,与弧形槽160连通。曲轴108中的第一供油道136连接于弧形槽160,曲轴箱106中的第二供油道137连接于阀孔162。因此,曲轴每转过大约180°,使弧形槽160和阀孔162交替地连通和隔开,然而转动阀的设置使其在活塞110下降行程中打开(图18),而在活塞110上升行程中闭合(图17)。具体来说,需要的设置是,转动阀在从活塞上、下死点间的中点P至相应于曲柄角45°的活塞降下位置的范围内开始打开,而在从上述中点P至相应于曲柄角45°的活塞上升位置的范围内活塞的打开完成,这一情形与上述变型(见图14)中所述情形是一样的。
如图20所示,气门分配室124的上部通过一条通气管142与空气滤清器104的内部连通,通气管104由橡胶制成并穿过气缸盖的罩121一侧安装。在这种情形中,通气管142通入气门分配室116的那端设置得伸入气门分配室116一个预定的长度。因此,在气门分配室116中积蓄的油,在发动机10E的任何工作姿态下,都可防止流出室116而进入通气管142。
如图16,21和22所示,一个外部罩163连接于气缸盖的罩121,配合在罩121的外周上。一扁平的最上部室164在罩121和163的顶壁间形成,并通过一对孔165与气门分配室116连通,孔165在对角位置(最好在四个角部上)上设在罩121的顶壁中。最上部室164也通过一系列设在气缸体107和曲轴箱106中的循环油道166与曲轴室132的内室132a连通。循环油道166的横截面积大于孔165的总横截面积。
因此,发动机10E工作期间,随着曲轴108的转动,连接109扩大端部上的油匙135垂向摆过曲轴室132的内、外室132a和132b之间的孔口133,使润滑油被搅拌和抛洒以便在曲轴室132中产生油雾。油雾首先润滑曲柄部分108a的圆周部分以及活塞110,然后,当转动阀139打开时,油雾通过第一和第二供油道136和137随漏气送入气门分配室116,在室116中油雾和漏气相互分离。油雾润滑气门分配装置115的各部分,漏气通过通气管142排入空气滤清器104。
由于活塞110的升、降运动,曲轴室132中的压力交替在正、负压力间脉动。当产生正压力时,转动阀139打开,使正压力通过第一和第二供油道136和137放入气门分配室116。当产生负压时,转动阀闭合,防止正压力从气门分配室回流,从而使曲轴室132中的压力平均保持为负。
另一方面,气门分配室116通过通气管142与处于大气压状态的空气滤清器104的内部连通,因而使气门分配室116中的压力基本等于大气压。
最上部室164通过循环通道166与曲轴室132连通,也通过孔165与气门分配室116连通,因而最上部室164中的压力等于或稍高于曲轴室132中的压力。
在各室中压力大小的关系可由下式表达Pc≤Pt<Pv式中Pc为曲轴室132中的压力,Pt为最上部室164中的压力,Pv为气门分配室116中的压力。
因此,在发动机10E工作期间,压力流动路径可表示为 因此,从曲轴室132送至气门分配室116的油雾通过上述路径循环至曲轴室132。上述油雾和液化的油的循环即使当发动机10E以任何姿态倾斜时也不会受到阻碍。
如图24和25所示,当发动机10E工作期间侧翻或倒置时,曲轴室132中的大量润滑油O以闭合外室132b的方向流动,小量润滑油O留在内室132a中。因此,可防止活塞110浸入油中,从而避免油进入燃烧室。
在发动机10E的侧翻或倒置的工作状态下,在气门分配室116中液化的油通过孔165流入最上部室164,然而,各室间的压力关系得到保持,因而在最上部室164中积蓄的油通过油的循环通道166吸入由轴室132的内室132a中。
另一方面,在这种情形中连杆109的油匙135不能搅拌润滑油,但是,通过油的循环通道166返回内室132a中的油撞击曲轴108的曲柄部分108a和活塞110,因此,油溅射形成油雾。因此,并不妨碍润滑发动机10E的各部分。
甚至在发动机10E的任何工作姿态如倾斜或倒置姿态下,润滑油的循环也可以不间断地进行,以保证总是处于良好的润滑状态。
现在再参阅图16,能够起动曲轴的后坐式起动器143安装在曲轴箱106的与气门分配室116相对的外表面上。带有冷却叶片145的飞轮永磁发电机144的转子146固定在曲轴108邻近气门分配室116的外端上,与转子146配合工作的点火线圈147固定在气缸体107上。离心式离合器149设在转子146和工作机驱动轴148之间。离心式离合器149包括可膨胀地承载在转子146上的多个离合器瓦150,一个在收缩方向上偏压离合器瓦150的离合器弹簧151,以及一个固定在驱动轴148上,包围离合器瓦150的离合器鼓152。当转子在预定转速以上转动时,离合器瓦150膨胀,与离合器鼓152的内周面压力接触,从而将输出转矩从曲轴108传至驱动轴148。
一护罩153安装在发动机体1上,覆盖发动机和飞轮永磁发电机144的头部,并在护罩和发动机体1和子轮永磁发电机59的头部之间形成冷却空气通道154。通入冷却空气通道154的进口154a设在离心式离合器149和护罩153之间的环形结构中,出口154b设在护罩153与进口154a相对侧上。
因此,转子146转动的期间,冷却叶片145产生的风流过冷却空气通道154以便冷却发动机10E的各部分。
虽然已经详细描述了本发明的实施例,但是显然本发明并不局限于上述实施例,可以作出各种变化而并不超出本发明的范围。
权利要求
1.四冲程发动机的润滑系统,它包括一个曲轴室(132),曲轴(108)的一曲柄部分(108a)容纳在其中且润滑油(O)储存在其中;一个内装气门分配装置(115)的气门分配室(116),所述曲轴室(132)和所述气门分配室(116)设置在一发动机体(101)内;一个油雾产生装置(135)设在所述曲轴室(132)内,用于产生润滑油的油雾;所述曲轴室(132)和所述气门分配室(116)通过一控制阀(139)在曲轴室(132)中的润滑油(O)的油面上方相互连通,所述控制阀当所述曲轴室(132)中压力上升时打开,当所述曲轴室中压力减小时闭合;所述气门分配室(116)在其上部基本与大气连通,在其底部通过孔(138)与所述曲轴室(132)连通;在发动机工作期间形成下述关系Pc<Pv其中,Pc为所述曲轴室中的压力,Pv为所述气门分配室中的压力。
2.如权利要求1所述的四冲程发动机的润滑系统,其特征在于还包括一个最上部室(164),它设在发动机体(101)内,占据所述气门分配室(116)上方的位置,并通过一个孔(165)与所述气门分配室(116)连通,也通过一条油的循环通道(166)与所述曲轴室(136)连通,形成下述关系Pc≤Pt<Pv其中,Pt为所述最上部室中的压力。
3.如权利要求1所述的四冲程发动机的润滑系统,其特征在于所述控制阀包括一转动阀(139),所述转动阀在与曲轴(108)转动相关的活塞(110)下降运动时打开,而在所述活塞上升运动时闭合。
4.如权利要求3所述的四冲程发动机的润滑系统,其特征在于按照曲柄角来说,所述转动阀(139)的打开期间为大约180°,所述转动阀打开的起始点设定在从活塞(110)上、下死点之间的中点(P)至按照曲柄角来说所述活塞45°的下降位置的范围内。
5.如权利要求1所述的四冲程发动机的润滑系统,其特征在于所述曲轴室(132)包括一个内设曲轴(108)的曲柄部分(108a)的内室(132a)和一个外室(132b),所述外室在一隔壁(134)的相对侧邻接所述内室(132a)的相对侧,并与所述内室的底部连通,当发动机(10E)侧翻或倒置时,大量所述曲轴室(132)中的润滑油装纳在所述外室(132b)中。
全文摘要
在发动机体内设置储油室、曲轴室和气门分配室。储油室和曲轴室通过一通孔相互连通,曲轴室和气门分配室通过单向阀相互连通,该单向阀在曲轴室中压力升高时打开。气门分配室和储油室通过一孔相互连通。利用曲轴室中的压力脉冲,使储油室中产生的油雾从储油室循环至曲轴室、气门分配室和储油室。因此,在发动机的任何工作姿态下,无需使用专用油泵就可以循环润滑油。
文档编号F02B75/02GK1313457SQ01104998
公开日2001年9月19日 申请日期1996年12月13日 优先权日1995年12月15日
发明者龙康武, 本天宗平, 西田隆夫, 告川高则 申请人:本田技研工业株式会社

最新回复(0)