产生处理基底的光束的光学系统的制作方法

xiaoxiao2020-7-2  12

专利名称:产生处理基底的光束的光学系统的制作方法
技术领域
本发明涉及一种产生光束的光学系统,该光束用于处理布置在基底平面中的基底,其中该光束在垂直于光束的传播方向的第一维度上具有束长度,并且该光束在垂直于第一维度并垂直于光传播方向的第二维度上具有束宽度,该光学系统包括至少一个混光光学布置,在第一维度和第二维度中的至少一个上,该混光光学布置将光束分成多个光路,该多个光路以彼此叠加的方式入射到基底平面中。
背景技术
从TO 2007/141185A2中已知这种光学系统。在介绍中所提及的这种光学系统用于例如熔化材料,尤其是在硅的光引起的结晶领域中。一个具体的应用是平板屏幕(flat screen)制造,其中用光束处理具有非晶硅层的基底以使硅结晶。在这种情况中,所使用的基底具有相对较大的尺寸,例如在大于30cmX 大于50cm的范围中。通过介绍中所提及的这种类型的光学系统,相应地产生在第一维度 (以后表示为X)上具有束长度的光束,所述束长度大约与基底的宽度(例如大约30cm)相等。在垂直于X维度并且还垂直于光束的传播方向的维度(以后表示为Y)中,光束较细。因此,应用于基底的光束具有较大的、X维度的束长度与Y维度的束宽度的比,根据束长度,该比可大于5,000,甚至大于10,000。在这种情况中,用于处理基底的光束必须满足以下要求至少在(长的)X维度中, 光束的强度分布尽可能均勻,而且在短的Y维度中也尽可能均勻。从以上所提及的文件WO 2007/14185A2中已知的光学系统具有混光光学布置,该混光光学布置具有两个透镜阵列以及聚光器光学单元,其中每个透镜阵列具有多个在X维度上彼此相邻布置的透镜(例如圆柱透镜)。一般而言,混光光学布置用于通过混合而均勻化光束在基底平面中的光,例如通过将光束分成部分光线并叠加它们。为了简化理解,考虑以下情形混光光学布置仅导致光束在(长的)X维度中的均勻化。图1以进一步简化的方式示出已知的光学系统,并且用附图标记1表示该光学系统。光学系统1具有光学混合布置(混光光学布置)2,这里为了简化说明,该光学混合布置2具有仅包括三个单独(individual)透镜h、2b和2c的透镜阵列以及聚光器光学单元3,该聚光器光学单元的焦距用f。表示。附图标记4表示聚光器光学单元3聚焦的基底平面。通过混光光学布置2,将在传播方向Z中传播的入射光束5分成多个部分光线,其中,在简化的例子中,混光光学布置2具有三个单独透镜2a、2b和2c,这里光束5分成相应地沿三个光路6a、6b和6c传播的三个部分光线。图1中各个相邻光路6a、6b、6c之间的距离用L表示。通过聚光器光学单元3将单独的部分光线或者光路6a、6b、6c彼此叠加在基底平面4中。因此,光在三个光路6a、6b、6c上传播到基底平面4中的一场点。
因为光束5被分成多个光路6a、6b、6c并且它们在基底平面4中叠加,所以由于来自不同光路6a、6b、6c的光之间的干涉而出现的强度对比度可出现在基底平面4中。图1, 右手侧的部分图中,相对于基底平面4中的χ坐标绘出了强度I。由于干涉现象,所以强度 I不均勻。在彼此相对倾斜的相应两个部分光线干涉时,分别出现周期性干涉图案,其接着叠加。对于这里所示的透镜阵列在相邻透镜之间具有相等的距离L的情形,出现的干涉周期彼此成倍数。距离为η · L的两个光路的光的干涉的干涉周期Pn与波长λ和聚光器光学单元3的焦距f。之间的关系如下通常,与光路距离L的倍数η L关联的不同干涉周期Pn以叠加的方式出现在基底平面4上。应注意,本发明不限于其中至少一个混光光学布置产生具有不同光路之间的恒定的光路距离L的光路的光学系统,而且也包括光路距离L在不同光路之间可变化的光学系统。在后一情况中,干涉图案从而具有多种不同干涉周期,其被叠加形成不规则的图案。为了减少基底平面4中的干涉对比度,WO 2007/141185Α2建议在光束入射到混光光学布置上之前将光束分成多个部分光线,并且使单独部分光线以不同的入射角度入射到混光光学布置上。混光光学布置上的单独部分光线的不同入射角在合适选择入射角的情况下在基底平面上产生彼此偏移的干涉图案,并且如果单独部分光线彼此不相干,则所述干涉图案总体上在X维度上产生恒定的强度I。在已知光学系统中,通过反射镜实现将入射光束分成多个非平行的部分光线,所述反射镜布置在脉冲加长模块中。可从以下事实中看出已知光学系统的一个缺点难以足够精确地设置单独部分光线之间的角度偏移,使得单独部分光线产生的干涉图案彼此偏移了半干涉周期的奇数倍, 以便降低或消除基底平面上的干涉对比度。而且,已知类型的脉冲加长模块通常产生大量具有较大入射角的较弱部分光线,这也同样带来了困难。

发明内容
本发明基于开发介绍中所提及的类型的光学系统的目的,以实现以简单的方式至少减少基底平面中的干涉对比度。根据本发明,关于介绍中所提及的光学系统,通过以下事实实现该目的至少一个影响相干性的光学布置存在于光束的光束路径中,并对所述光束作用,使得针对一个光路到至少一个其它光路的至少一个光路距离,至少减少光的相干度。本发明基于减少入射在光学系统中的光的横向相干度的构思,该光学系统具有至少一个混光光学布置,该混光光学布置在光线的传播方向的横向上将入射光束分成多个光路,至少对于一个光路距离,优选将所述横向相干度最小化到零值。即,本发明目的在于减少横向相干度到如下程度来自不同光路的光的干涉能力变小或者完全不再干涉。为了这个目的,下面描述优选措施,通过这些措施,以简单的方式并且在对调整不增加开销的情况下,可以对于一个光路与至少一个其它光路的至少一个光路距离,至少减
5少光的相干度。一种措施在于减少光束在光路的横向上的横向相干长度与至少两个相邻光路之间的光路距离的比,并且优选将其设置为小于2,更优选小于1。如果光束在光路的横向上的横向相干距离小于两个相邻光路之间的光路距离,则来自这两个光路的部分光线几乎不能彼此干涉,即在这种情况中几乎可以完全避免基底平面中的干涉现象。在使用光(例如来自受激准分子激光器的光)的预定自然(natural)横向相干长度的情况下,这可能需要增加光路距离,即,针对光束在传播方向的横向上的预定范围,使该至少一个混光光学布置具有更少的混光光学元件,然而,这会减少混光光学布置的均勻化效果。另一优选措施提出该至少一个影响相干性的光学布置具有分束器布置,该分束器布置在光路的横向方向上将光束分成多个横向偏移的部分光线,所述部分光线相对于彼此的传播路径差大于所述部分光线的光的时间相干长度。在这种措施的情况中,将由分束器布置产生的彼此横向偏移的多个部分光线彼此分离大于光的时间相干长度的传播路径差。通过保持相同的横向相干长度,该布置使光束宽度成为原来的四倍,并且因此可以相应地减少横向相干长度与光路距离的比。半透射反射镜、棱镜(使用内部全反射)、偏移板等可用作分束器布置。与已知光学系统相比,所述部分光线可以彼此平行。另一优选措施提出该至少一个影响相干性的光学布置具有相干转换器布置,该相干转换器布置具有分束器布置以及束重排布(resorting)布置,该分束器布置在两个维度中的一个上将光束分成多个部分光线,该束重排布布置在两个维度中的另一维度方向上彼此相邻地布置部分光线。在文件DE 10 2006 018 504A1中描述了本发明中所使用的这种相干转换器布置。这种相干转换器布置在光束的X维度上增加光束发散度,并且相应地减小光的相干度和相对于光束宽度的横向相干长度。在另一优选构造中,该至少一个影响相干性的光学布置具有至少一个光学元件, 该光学元件的光入射面和光出射面是平面并且彼此倾斜一角度,其中该至少一个光学元件是双折射的。对于用于微光刻的投射曝光设备的照明系统,文件US 5,253,110中公开了双折射光楔本身的使用。但是,在本发明中,这种双折射光学元件(例如光楔)优选和上述措施组合地使用,上述措施将横向相干长度与两个相邻光路之间的光路距离的比设置为至少小于2。这是因为双折射光学元件可以用于以有目标的方式抑制干涉级(及其奇数倍),尤其是第一干涉级,因此,可以将横向干涉长度与光路距离的比选择为没有这种双折射光学元件时的两倍,其相反地意味着对于相同的干涉比,可以将该至少一个混光光学布置的光路数目选择为两倍大,这提高了该至少一个混光光学布置的均勻化效果。通过将光学元件的光入射面和光出射面之间的角度选择为使得对于至少一个光路距离、寻常光线和非寻常光线之间由光学元件引入的相位差是半波长的奇数倍,可改进该至少一个双折射光学元件的干涉抑制效果。结果,由寻常光线和非寻常光线产生的干涉图案相对于彼此偏移半个波长,从而两个干涉图案的总和产生强度分布,该强度分布在光束的相应维度中是恒定的。
特别优选将以上所提及的至少一个分束器布置、所述至少一个双折射元件、以及以上所提及的将横向相干长度和光路距离的比设置为小于2(优选小于1)的措施进行组合。同样地,可附加地将以上所提及的至少一个相干转换器与这些措施组合。这些措施的组合导致甚至更有效地降低相干度或最小化相干函数,用于避免基底平面中的干涉对比度。该至少一个双折射光学元件在光束的传播方向上优选布置在该至少一个混光光学布置的下游。另一优选措施提出多个串行设置的混光光学布置代替一个混光光学布置。在这种情况中,减少基底平面中的干涉图案的空间周期以及促进双折射元件的使用是有利的。用于降低相干度的另一措施提出该至少一个影响相干性的光学布置具有至少一个声光调制器(AOM)。声光调制器(AOM)具有光学元件,在该光学元件中例如通过布置在光学元件一端的压电元件产生声波。在这种情况中,声波的传播方向垂直于入射光束。在AOM中,声波对折射率进行空间调制,该折射率随着声音的速度而变化。因此,穿过AOM的光经历相移δ ’ 该相移δ取决于位置和时间,并且在波长的分数中具有以下形式δ (χ, t) = a sin [2 π (χ/ A -fst)]在这种情况中,a取决于声学幅度以及声场在光轴方向上的范围。Λ是声波的波长,并且4是声波的频率。利用由AOM的材料限定的声速,可通过激励元件(例如压电元件)对声波的激励频率fs从而改变波长Λ。依据时间的相移导致来自不同位置的光的去相关,从而降低横向相干性。对于光路距离L,相干度的减小以及干涉对比度的因此减少取决于AOM的振幅a和波长Λ并取决于光路距离L。在以上所提及的措施的另一构造中,AOM的声学波长Λ和声学振幅a被设置为使得对于至少一个光路距离,满足条件JJIhsir^JiL/A) |] << 1,其中Jtl是零阶贝塞尔函数。除了声学波长Λ等于光路距离L的情况,通过合适的声学振幅a,可一直满足以上所提及的条件。由于贝塞尔函数的自变量的周期性,该条件还可适用于值L+mA,并且由于对称性,还可适用于值(A-L)+mA,其中m是整数。因此,一个AOM已经明显降低对于多个光路距离的横向相干性。即使没有获得相同的减少范围,对于干扰光路距离,AOM也不是没有效果。特别优选存在多个Α0Μ,其中不同AOM设置不同的声学波长和/或声学振幅,以便为多个光路距离,至少减小相干度。可替代的,出于减小要提供的光学组件的数量的目的,可提出仅存在一个Α0Μ,在该AOM中同时产生多个可能具有不同声学振幅的声学波长,以便为多个光路距离,至少减小相干度。在另一优选构造中,在光束被脉冲化的情况中,提出在至少一个AOM之外,在光束路径中布置至少一个脉冲加长模块。如以上所解释的,由于动态相位差,AOM导致不同位置的光的去相关。仅当可以在尽可能多的具有均勻强度的声学周期上进行平均时,该去相关才是完全的,具体地如对于连续波长工作的激光器的情形。相比较的,对于脉冲持续时间(例如20ns)在典型的AOM 频率范围(例如20-100MHZ,周期持续时间为10-50ns)中的短脉冲激光器(例如受激准分子激光器),该条件不被满足并且在基底平面中出现剩余干涉对比度。以上所提及的在光线的光路中布置至少一个脉冲加长模块的措施与AOM组合,可避免以上所提及的缺点。脉冲加长模块加长光线的单独光脉冲。其例如通过将入射到脉冲加长模块中的光束分成两个部分光线并且通过将两个部分光线中穿过脉冲加长模块的延迟线的一个加到没有穿过延迟线的另一部分光线来完成。这产生更长的脉冲,其包络仍可通过输入脉冲的脉冲持续时间调制。不言而喻,如果对降低基底平面中的干涉对比度是有用的,则可提供多个脉冲加长模块,以便更进一步加长光脉冲。在这种情况中,更加优选AOM的声学频率与经加长的脉冲配合,使得像平面中的干涉对比度小于10 %,优选小于5%,更优选小于1%。考虑以下事实是有利的在脉冲加长的情况中,AOM也存在增大基底平面中的干涉对比度的声学频率范围。这些声学频率范围对应于产生周期强度调制的脉冲加长模块中的脉冲的循环持续时间,如果可能,该周期强度调制期望与声学频率不一致。在以上所提及的措施的另一优选构造中,AOM的声学频率fs不等于该至少一个脉冲加长模块中的脉冲循环频率,并且不等于该循环频率的整数倍。这里“不等于”意味着AOM的声学频率与一个或者多个脉冲加长模块中的循环频率足够不同(并且相应地也与所述循环频率或多个循环频率的整数倍足够不同),使得尽可能地避免由于声学频率等于循环频率而导致的基底平面中的残留对比度。优选地,AOM的声学频率与循环频率及其整数倍的差别分别超过10%。通过以上调整声学频率的措施获得当AOM与脉冲加长模块组合时,尽可能地降低了基底中的干涉对比度。这里,同样不言而喻,存在至少一个AOM和/或脉冲加长模块的措施可与以上所提及的措施(设置横向相干长度与光路距离的比、双折射光学元件、相干转换器等)组合,以便光束在基底平面中的干涉现象被尽可能地降低或者被完全消除。根据以下说明和附图,其它优点和特征将变得明显可见。不言而喻,以上所提及的特征和下面所要解释的特征不仅可用于各个指定的组合中,而且还可用于其它组合中或者它们本身独立使用,而不背离本发明的范围。


附图中示出了本发明的示例实施例,并且下文参照附图更详细地说明本发明的示例实施例。在图中图1示出根据现有技术的光学系统,用于说明发生在光学系统中的干涉效应;图2示出根据本发明的光学系统的基本示意图;图3a)到3b)示出两个柱状图,其示出在大干涉长度(图3a))和小干涉长度(图 3b))的情况中的不同干涉级的比例;图4示出用于通过提供双折射元件而抑制图2中的光学系统中的干涉效应的措施的示例实施例;图5a)到c)示出三个柱状图,其示出具有或者不具有图4中的双折射光学元件时,混光光学布置的横向相干长度与光路距离的比的影响;图6示出图4中的示例实施例的修改。图7示出用于降低图2中的光学系统的干涉效应的措施的另一示例实施例;图8示出与图7类似的用于降低图2中的光学系统的干涉效应的措施的另一示例实施例;图9示出用于降低图2中的光学系统的干涉效应的措施的另一示例实施例;图10示出表示三个光脉冲形状的图;图11针对图10中的脉冲形状示出干涉效应与根据图9的声光调制器的声频的相关性的图;图12示出图11的图的局部放大图;图13示出在没有提供降低干涉的措施时、图2中的光学系统的相干函数的例子。图14至21示出不同的相干函数,其中通过虚线示出根据图13的相干函数,并且与根据图13的相干函数相比较的,通过实线示出受降低干涉的不同措施影响后的相干函数。
具体实施例方式图2示意性地示出产生用于处理基底的光束的光学系统,该光学系统用附图标记 10表示。特别的,系统10用于通过光线表面(areally)熔化基底上的层的设备中。更具体的,光学系统10用于结晶由非晶硅制成的硅层以制造平板屏幕的设备中。在这种用于表面地熔化基底上的层的设备中,光学系统10是整个光学系统的组成部分,该整个光学系统除光学系统10之外甚至还包括其它光学单元(未示出),例如光源 (尤其是激光)、扩束光学单元等。在这样的整个光学系统中,从光传播方向看,根据图2的光学系统10可为基底上游的最后一个光学上起作用的单元,如这里所示。如在光扩展方向上所观察的,光学系统10相应地示出为,从光进入光学系统10的虚拟光入射平面12直到放置基底(未示出)的基底平面14。光学系统10被设计为在基底平面14中产生光束,该光束在第一维度(下文表示为X维度)上具有束长度Ls,并且在第二维度(下文表示为Y维度)上具有束宽度,其中Y 维度垂直于图2的图平面。在这种情况中,束长度LsS大于束宽度。束长度Ls大于100mm, 例如大约300mm,并且束宽度小于50 μ m。图2中,用Z表示同时垂直于X维度和Y维度的光的传播方向。在图2中,在XZ 平面中示出光学系统10,出于示意的目的还绘出坐标系统16。光学系统10具有第一混光光学布置18。混光光学布置18具有光学元件20。光学元件20将入射光在X维度上分成彼此相邻布置的多个光通道或者光路Ma-c,其中为了简化说明,在所示示例实施例种,仅示出三个这样的光路Ma-c。光学元件20被实施为圆柱透镜阵列的形式,其中单独圆柱透镜的各个圆柱轴在Y 维度上延伸,即垂直于图2的图示平面。代替单独圆柱透镜阵列,也可使用由两个圆柱透镜
9阵列构成的蝇眼聚光器。在图2中,单独透镜被示为双凸圆柱透镜,但不言而喻,该透镜还可具有其它形状,例如平凸。光学元件20的光路Ma-c将入射到光学元件20中的光束在X维度上分成多个部分场,其中图2中通过示例示出了三个部分场^a、28b和^c。第一光学布置18除圆柱透镜阵列之外还具有附加的聚光器光学单元30。光学系统10具有另一混光光学布置36,其位于混光光学布置18的上游并且具有衍射或散射光学元件38和聚光器光学单元40,其中光学布置36将已经预混合的入射光束引导到混光光学布置18上。而且,光学系统10具有光学布置46,其仅在Y维度上对光束起作用,以便在基底平面14上将光束聚焦为较小的束宽度。关于混光光学布置18,如以上参考图1所解释的,下述内容适用入射到混光光学布置18的光线在X维度上被分成多个部分光线,所述光线以光路Ma-c表示,并在基底平面14中发生干涉效应,其导致基底平面14中的线性光束的干涉对比度。下面为了即使不消除也至少降低基底平面14中的这种干涉现象或者干涉对比度而描述各种措施。本发明基于在光束的光束路径中提供至少一个影响相干性的光学布置的构思,该影响相干性的光学布置对光束作用,使得针对一个光路与至少一个其它光路的至少一个光路距离,而至少降低光的相干度。在详细讨论降低相干对比度的各种方法之前,下面将解释术语“横向相干长度 (lateral coherence length),,禾口“相干函数(coherence function),,。图13示出典型的相干函数的分布。横坐标是任意单位的距离L。通过例子,例如, 图2中混光光学布置18的光路Ma-c之中的单独光路之间的光路距离可被选为单位。从而,距离L = 2是指从一个光路到与所考虑的光路一侧的再下一个的光路的距离。纵坐标表示可采用0至1 (0%至100% )之间的值的干涉度。值1是指完全干涉, 值0表示完全不干涉。不限制一般性,这里考虑X维度上的横向相干,其中在混光光学系统18也执行Y 维度上的混合或者在混光光学布置18之外还提供相应的混光光学布置的情况下,这同样适用。根据图13的示例相干函数具有近似高斯分布。以下所有说明可等同地应用于其它相干函数,尤其是非高斯相干函数、非单调下降的相干函数、或者其它已经具有极小值或零的相干函数。相干长度理解为相干度K降到预定值的距离L。不限制一般性,在当前的说明中, 相干长度理解为相干度K降到值10% (0. 1)的距离L。在图13中,这是距离L = 3的情况。以下所介绍的措施的目标是减小横向相干长度。第一种措施在于设置光束的横向相干长度与光路距离(距离L)的比,使得该比小于2,优选为小于1。如果光束在光路Ma-C横向的方向上的相干长度与两个相邻光路之间的光路距离L的比被设置为小于1,则几乎可以完全避免相干现象。这是因为,在这种情况中,来自光路Ma-C中的相邻光路不能彼此干涉,或者最多只能彼此干涉到较小的程度。图3a)示出对于较大相干长度的情况,作为光路η的函数的、不同干涉周期? 对总干涉对比度的贡献,而图3b)示出对于较小干涉长度的情况的各个干涉周期PnW贡献。因此,通过减小相干长度,可较大地减少干涉的比例。图4示出影响相干性的光学布置50。这里,光学布置50具有双折射光学元件52, 该双折射光学元件52的光入射面M和光出射面56是平面,并且相对于彼此倾斜一角度。双折射光学元件52将入射到光入射面M中的光束分成寻常光线和非寻常光线, 这里,寻常光线用实线表示,非寻常光线用虚线表示。接着选择光入射面M和光出射面 56之间的角度,使得对于至少一个光路距离,由光学元件52引入的寻常和非常部分光线之间的相位差为光束的光的半波长的奇数倍。以这种方式,由寻常部分光线产生的干涉条纹和由非常部分光线产生的干涉条纹相对于彼此偏移半个干涉周期,从而由于它们彼此不相干,所以基底平面14中的光线在X维度上的强度总体表现为均勻强度分布I。在这种情况中,优选将双折射元件52的晶体空间取向选择为使得寻常和非寻常光线的强度尽可能相等,以便相对于彼此偏移的干涉图案彼此精确地抵消。当XY平面中的晶轴关于光偏振平面为45度角时,可以实现这一点。图5a)针对横向相干长度小于或等于混光光学布置18’的相邻光路24’之间的光路距离的情况示出不同干涉级的比例Pn的柱状图。通过选择这种较小的相干长度,可很好地抑制干涉现象。图5b)示出横向相干长度仅小于或者等于相邻光路之间的光路距离的两倍的情况。在这种情况中,第一相干级P1的贡献依然较大,并且仅抑制了 P2和所有其它η > 2的相干级Pn的贡献。图5c)接着示出横向相干长度小于或者等于相邻光路之间的光路距离的两倍、并且双折射光学元件52附加地存在于光束路径中的情况。在图5c)中用虚线示出根据图恥)WP1的贡献,并且用实线表示当使用双折射光学元件52时P1的贡献。根据图5c),很明显通过使用至少一个具有非平面平行的光入射面和光出射面的双折射光学元件52,可以有目的地抑制干涉级(以及它的奇数倍),尤其是第一级(P1)15 与没有这种双折射光学元件的情况相比较,可以将相对于光路距离的横向相干长度选择为较大,或者相反地将光路数目选择为较大。图6示出相对于图4修改的示例实施例,并且在该示例实施例中影响相干性的光学布置50’具有双折射光学元件52’,该双折射光学元件52’具有非平面平行光入射面M’ 和光出射面56’。与图4的示例实施例不同的,存在与图2相似的两个混光光学布置18”和 36”。使用多个混光光学布置具有以下优点尤其是在第二混光光学布置20”在光束的传播方向中的情况中,光路距离L可被选择地较大,因此,基底平面14”中的干涉周期相应地变小并且双折射光学元件52’的光入射面54’和光出射面56’之间的角度也同样可被选择得较小。尽管光路距离L更大,但通过多级混合获得了更好的混光效果,并且寻常和非常部分光线在基底平面14”中的干涉图案彼此偏移的程度更小,此外,色差减少并且对光学系统的调整精度的要求降低。当图4中的双折射光学元件52和图6中的双折射光学元件52’分别布置在圆柱透镜阵列20’和22”与下游的聚光器光学单元40’和40”之间,双折射光学元件还可布置在光束的光束路径中的其它位置中,例如也可以在相应的混光光学布置18’和18”的上游或者完全在它们的下游,即聚光器光学单元40’和40”的下游。而且,如果减少基底平面14中的干涉对比度是有利的,则两个或者更多个这样的双折射光学元件52或52’可用于图2中的光学系统10中。图7和8示出了用于减少基底平面14中的干涉对比度的另一措施,其可作为上述措施的替代或附加而被提供到图2的光学系统10中。图7示出具有分束器布置62的影响相干性的光学布置60。分束器布置62 (例如具有部分透射反射镜64)将光束在光路M和沈横向的方向(即X维度)上分成多个横向偏移的平行部分光线66、68,其中部分光线66和68相对于彼此的传播路径差大于部分光线 66,68的光的时间相干长度。在根据图7的示例实施例中,分束器布置62将光束分裂成两个部分光线66、68。作为入射光束在部分透射反射镜64处的反射以及在全反射镜66处的反射的结果,出现部分光线68。通过光学布置60,将部分光线66和68在X维度上彼此横向相邻放置。将入射光束分裂成多个彼此横向相邻设置的部分光线66、68具有以下效果 对于相同的总光路数目,横向相干长度与整个光束的束直径的比减小,并且横向相干长度与光路距离的比也减小。图8示出相比于图7而修改的影响相干性的光学布置60’,并且其中光束被分成三个部分光线66’、68’和70’,结果,横向相干长度相对于光路M之间的光路距离而言甚至可以被进一步减小。在某些环境下,校正光学布置60或60 ’引入的横向束偏移是有利的,如图8中的布置63所示出的。在光学系统10中,例如光学布置60和60’可布置在光进入平面12的上游。代替部分透射反射镜,这种分束器布置也可使用板、棱镜(使用全内反射)和/或分束层。具体的,光学布置60或60’还可被实施为相对于光束倾斜且被部分光束66穿过的平面平行板,并且部分束68在板内被反射两次。此外,通过多次反射可产生其它部分光线。在这种情况中,如果板的不同区域具有不同的分别适配的反射率的涂层,从而部分光线具有相同的强度,则是有利的。用于降低横向相干长度的另一措施在于在光束的光束路径中布置影响相干性的光学布置(未示出),该布置具有根据DE 10 2006 018 504 Al的相干转换器布置。这种相干转换器布置同样具有分束器布置并还具有束重排布(resorting)布置,该分束器布置将入射光束在X维度上分成多个部分光线,该束重排布布置在另一维度方向上彼此相邻地布置部分光线。然后,在后一维度中发生光束的压缩并且在前一维度中发生光束的扩展。对于这种相干转换器布置的更详细的说明,参考前述文件,通过引用将其的公开内容合并到本公开中。参照图9,将说明用于减少图2中的光学系统10的基底平面14中的干涉对比度的另一措施。下述措施可被用作以上已经说明的措施的替代或附加。图9示出具有声光调制器(AOM) 72的影响相干度的光学布置70。该AOM 72具有光学元件74 (例如板),在该光学元件74中产生声波76,该声波76相对于入射光束78横向地在光学元件74中传播,如通过箭头80所表示的。声波76可通过例如布置在一端82 处的压电致动器(piezoactuator)(未示出)而产生。穿过光学元件74的声波76具有以下效果对于入射光束78,光学元件74用作衍射或者相位光栅。声波76可具有例如大约 5MHz到IGHz超声范围中的声频fs。当声波76穿过光学元件74时,其在光学元件74中带来周期密度调制并因此带来周期折射率调制,其产生以上所提及的衍射或者相位光束的效果。穿过AOM 72的光因此经历相移δ,其依赖于位置和时间,并且以光波长的分数表示时具有以下形式δ (χ, t) = asin [2 π (χ/ Λ -fst) ] (2)在这种情况中,a取决于声学幅度以及声场在光轴方向上的范围。Λ表示声波的波长以及4表示声波的频率。时间相关的相移导致不同位置的光的去相关(decorrelation),结果,横向相干性减小。对于光路距离L,相干度的减小以及因此干涉对比度的减小取决于AOM 72的振幅a 以及波长Λ,并且取决于光路距离L。从而,AOM 72被设计为与图2中的混光光学布置18相互作用,就光路M和沈而言,该混光光学布置18而将入射到混光光学布置18上的光束分成多个部分场^aJ8b、 28c,该多个部分场^aJSb JSc在基底平面14中彼此叠加,使得针对所述光路之间的距离的横向相干度减少,并且干涉相应地降低。具体的,AOM 72的声波长Λ和声振幅a对于至少一个光路距离L可被设置或设置为满足以下条件J0[|2a sin(3iL/A) |] << 1 (3)其中Jci是0次贝塞尔函数。其中定义 =pasin(JiL/A) |,贝塞尔函数Jtl的零点是 =2. 40483,5. 52008, 8.65373,11. 7915,......如果L= Λ不是正好成立,则总是可以通过适当地选择声波76的振幅a来满足条件(3)。由于正弦的周期性,该条件还可适用于值L+mA,并且由于对称性,其还适用于 (A-L)+mA。特别优选以下情形对于其它光路距离L也满足条件(3),或者该积分具有 <<1的值
0128
权利要求
1.一种光学系统,用于产生处理布置在基底平面(14)中的基底的光束,其中所述光束在第一维度(X)上具有束长度(L)并且在第二维度(Y)上具有束宽度(B),所述第一维度 (X)垂直于所述光束的传播方向(Z),所述第二维度(Y)垂直于所述第一维度(X)并且垂直于所述光束的传播方向(Z),所述光学系统包括至少一个混光光学布置(18;18’ ;18”),所述混光光学布置(18 ;18’;18”)在所述第一和第二维度中的至少一个上将所述光束分成多个光路O^-c),所述多个光路(Ma-c)以彼此叠加的方式入射在所述基底平面(14)中,其特征在于至少一个影响相干性的光学布置(50 ;50’ ;60 ;60’ ;70)存在于所述光束的光束路径中,并且对所述光束作用,使得对于一个光路(Ma-c)与至少一个其它光路(Ma-c)的至少一个光路距离,至少减少所述光的相干度。
2.如权利要求1所述的光学系统,其特征在于所述光束在所述光路(Ma-c)横向上的横向相干长度与至少两个相邻光路(Ma-c)之间的光路距离的比小于2,优选小于1。
3.如权利要求1或2所述的光学系统,其特征在于所述至少一个影响相干性的光学布置(60 ;60’ )具有至少一个分束器布置(62 ;62’),所述分束器布置(62 ;62’ )将所述光束在所述光路O^-c)的横向上分成多个横向偏移的部分光线(66,68 ;66',68' ;70’),所述横向偏移的部分光线(66,68 ;66',68' ;70’ )相对于彼此的传播路径差大于所述部分光线的光的时间相干长度。
4.如权利要求1至3中的任一项所述的光学系统,其特征在于所述至少一个影响相干性的光学布置具有相干转换器布置,所述相干转换器布置具有分束器布置以及束重排布布置,所述分束器布置在所述两个维度中的一个维度上将所述光束分成多个部分光线,并且所述束重排布布置在所述两个维度中的另一维度的方向上彼此相邻地布置所述部分光线。
5.如权利要求1至4中的任一项所述的光学系统,其特征在于所述至少一个影响相干性的光学布置(50 ;50’)具有至少一个光学元件(52 ;52’),所述至少一个光学元件(52 ; 52’ )的光入射面(54 ;54’ )和光出射面(56 ;56’ )是平面并且彼此倾斜一角度,并且所述至少一个光学元件(52 ;52’ )是双折射的。
6.如权利要求5所述的光学系统,其特征在于所述光入射面(54;54’ )和所述光出射面(56 ;56’ )之间的角度被选择为使得对于所述至少一个光路距离,寻常部分光线以及非常部分光线之间的相位差是半光波长的奇数倍,所述相位差由所述光学元件(52 ;52’ )引入。
7.如权利要求5或6所述的光学系统,其特征在于所述至少一个光学元件(52;52’) 在所述光束的传播方向中布置在所述至少一个混光光学布置(18 ;18’ ;18”)的下游。
8.如权利要求1至7中的任一项所述的光学系统,其特征在于存在多个混光光学布置(18,36 ;18”,36”)。
9.如权利要求1至8中的任一项所述的光学系统,其特征在于所述至少一个影响相干性的光学布置(70)具有至少一个声光调制器(AOM) (72)。
10.如权利要求9所述的光学系统,其特征在于所述AOM(72)的声学波长λ和/或声学振幅a是可调的。
11.如权利要求9或10所述的光学系统,其特征在于所述A0M(72)的声学波长Λ和声学振幅a被选择或者设置为使得对于所述至少一个光路距离L,满足条件J0[|2asin(jiL/A) ] << 1,其中Jtl是零阶贝塞尔函数。
12.如权利要求11所述的光学系统,其特征在于所述AOM(72)的声学振幅a和声学波长Λ被选择为使得对于所述至少一个光路距离L,满足aSin( JiL/Λ) <0.75。
13.如权利要求9至12中的任一项所述的光学系统,其特征在于存在多个AOM(72), 其中不同的AOM设置不同的声学波长和/或声学振幅,以便对于多个光路距离,至少减少相干度。
14.根据权利要求9至12中的任一项所述的光学系统,其特征在于仅存在一个 AOM(72),其中同时设置多个不同的声学波长和/或声学振幅,以便对于多个光路距离,至少减少干涉度。
15.如权利要求9至14中的任一项所述的光学系统,其特征在于所述光束是脉冲化的,并且在所述光束路径中布置至少一个脉冲加长模块(88)。
16.如权利要求15所述的光学系统,其特征在于所述AOM的声学波长Λ或者其整数倍与被加长的脉冲相配合,使得所述基底平面(14)中的干涉对比度小于10%,优选小于5%, 更优选小于1%。
17.如权利要求15或16所述的光学系统,其特征在于所述Α0Μ(72)的声学频率仁不等于所述至少一个脉冲加长模块(88)中的脉冲的循环频率,并且不等于所述循环频率的整数倍。
18.如权利要求17所述的光学系统,其特征在于所述AOM(72)的声学频率fs与所述至少一个脉冲加长模块(88)中的脉冲的循环频率以及所有整数倍的差别大于5%,优选大于 10%。
19.如权利要求18所述的光学系统,其特征在于所述A0M(72)的声学频率fs与所有脉冲加长模块(88)中的脉冲的相应循环频率及其所有整数倍的差别大于5%,优选大于 10%。
全文摘要
本发明涉及一种光学系统,用于产生处理布置在基底平面(14)中的基底的光束,其中所述光束在第一维度(X)上具有束长度(L)并且在第二维度(Y)上具有束宽度(B),所述第一维度(X)垂直于所述光束的传播方向(Z),所述第二维度(Y)垂直于所述第一维度(X)并且垂直于所述光束的传播方向(Z),所述光学系统包括至少一个混光光学布置(18),所述混光光学布置(18)在所述第一和第二维度中的至少一个上将所述光束分成多个光路(24a-c),所述多个光路(24a-c)以彼此叠加的方式入射在所述基底平面(14)中。至少一个影响相干性的光学布置存在于所述光束的光束路径中,并且对所述光束作用,使得对于一个光路与至少一个其它光路的至少一个光路距离,至少减少所述光的相干度。
文档编号G02B27/48GK102576152SQ201080044075
公开日2012年7月11日 申请日期2010年7月19日 优先权日2009年7月31日
发明者D.菲奥尔卡, H.明兹, J.万格勒, W.默克尔 申请人:卡尔蔡司激光器材有限责任公司

最新回复(0)