专利名称:苯基(烷基)羧酸衍生物和二酸苯基烷基杂环衍生物及其用作具有血清葡萄糖和/或血清 ...的制作方法
技术领域:
本发明涉及苯基(烷基)羧酸衍生物和二酸(dionic)苯基烷基杂环衍生物及其用作药物,特别是具有血清葡萄糖和/或血清脂降低活性的药物的应用。
背景技术:
糖尿病是一种全世界分布广泛的疾病并且与重要的临床并发症有关,其中包括大血管损伤(动脉粥样硬化)和微血管损伤(视网膜病、肾病和神经病)。上述并发症是该病的必然后果并且构成对患者生命和健康的严重威胁。糖尿病与各种异常如肥胖、高血压和高脂血症有关。糖尿病的各种临床形式是已知的,最常见的是2型和1型糖尿病。2型糖尿病的特征在于对胰岛素作用的敏感性降低(胰岛素抗性)并且为了补偿这种缺陷导致体内实际胰岛素水平增加和结果导致葡萄糖水平增加。许多报道已证实除2型糖尿病本身外,胰岛素抗性牵涉多种疾病如血脂异常症、肥胖、动脉高血压症和糖尿病特征性的某些大血管和微血管表现。胰岛素抗性和肥胖、高血压和血脂异常合称为综合征X。
多年来用来治疗2型糖尿病的药物如双胍类和磺酰脲类药物可以从市场上买到。关于双胍类(最著名的是二甲双胍),作用机制仍不清楚并且效力看来不能令人满意地持续整夜。磺酰脲药物促进β-细胞分泌胰岛素,并且可能存在低血糖发作的副作用。
最近引进市场的药物是噻唑烷二酮类即胰岛素致敏的抗糖尿病化合物如曲格列酮(J.Med.Chem.,1989,32,421-428),吡格列酮(Arzneim,Forsch./Drug Res.,1990,40(1),37-42)和罗格列酮(Bioorg.Med.Chem.Lett.,1994,4,1181-1184),这些药物能降低高血糖症、糖尿病性高脂血症和胰岛素水平。这些化合物是PPARγ的高亲和性合成配体(J.Biol.Chem.,1995,270,12953-12956)。
过氧化物酶体增殖物激活性受体(PPARs)是属于核受体超家族的受体,其功能是控制涉及碳水化合物和脂质代谢的基因的表达(J.Med.Chem.,2000,43,527-550)。PPARs的各种亚型已确认PPARγ、PPARα和PPARβ(也称为PPARδ)。γ同种型(PPARγ)涉及调节脂肪细胞的分化和能量稳态,而α同种型(PPARα)控制脂肪酸氧化,导致调节血浆中游离脂肪酸的水平。在旨在确定可能具有抗糖尿病作用的新分子的结构-活性关系研究中,已证明在PPARγ活化和血清葡萄糖降低活性间存在对应性(J.Med.,Chem.,1996,39,665-668;J.Med.Chem.,1998,41,5020-5036;5037-5054;5055-5069)。就此第一系列化合物来说,胰岛素致敏作用似乎与激活的PPARγ调节的脂肪酸补充作用有关,据认为这导致组织的胰岛素抗性改善,提高了血清葡萄糖水平并降低了胰岛素水平(Diabetes,1998,47,507-514)。
使用曲格列酮已观察到的并且担心此类的其他化合物也存在的副作用是严重的肝脏毒性(导致曲格列酮从美国市场上撤出)、胆固醇增加、体重增加和水肿。
近年来具有混合特征的分子,即PPARγ和PPARα的配体已出现(KRP 297,Diabetes,1998,47,1841-1847;DRF 2725,Diabetes,2001,50,suppl.2,A108;AZ 242,Diabetes,2001,50,suppl.2,A121-A122)。这些化合物可能能施加对糖尿病的良好控制,同时具有降低血清葡萄糖和血清脂的作用,而较少噻唑烷二酮类第一系列化合物典型的副作用,所述噻唑烷二酮类第一系列化合物仅由PPARγ配体构成。
但并非科学界全都同意这种思考方向。近来对新一代化合物无论是噻唑烷二酮衍生物或其他化合物的研究(MC555,J.Biol. Chem.,1998,vol.273(49),32679-32684;NC2100 Diabetes,2000,49,759-767,YM440,Metabolism,2000,49,411-417),在基因转活试验、肌肉组织的体外葡萄糖摄取试验和PPARγ表达缺陷的转基因动物的体内实验方面,已导致形成在PPARγ激活和这些化合物降低血清葡萄糖和血清脂的活性间无直接关系的假说(Toxicology Letters,2001,120,9-19)。这可能表明这些分子的血清葡萄糖降低活性与PPARγ激活无必然联系,这些化合物可能通过与其他生化靶标的相互作用从而能调节碳水化合物和脂代谢。这被研究者选择使用在糖尿病动物(db/db小鼠,ob/ob小鼠)中体内筛选和体外/体内试验(L6细胞)(J.Med.Chem.,1998,41,4556-4566)以识别不必是PPAR良好配体的可能的胰岛素致敏剂的工作所证实。这些实验导致选择仍在调查在动物模型中具有有希望的抗糖尿病活性的化合物(DRF2189,J.Med.Chem.,1998,41,1619-1630;JTT-501,J.Med.Chem.,1998,41,1927-1933)。
总之,由于属于噻唑烷二酮类的第一系列化合物已证实与重大的肝毒性和其他副作用有关,这可能与其PPARγ活性有关,科学界现在似乎转向寻找具有不同作用机制的新化合物,所述新化合物诱导对胰岛素敏感性和葡萄糖体内稳态产生相似或更好的作用,而无毒性副作用(J.Med.Chem.,2001,44,2601-2611)。
发明概述现已发现式(I)化合物已被报道作为血清葡萄糖和血清脂降低剂有活性并且具有低毒性,因此可用作药物,特别是用于治疗高脂血症和高血糖症。
优选的应用是预防和治疗糖尿病,特别是2型糖尿病及其并发症、综合征X、各种形式的胰岛素抗性和高脂血症。
本文所述本发明的目的是式(I)化合物 其中A是CH;2-4个碳原子的亚次烷基(alkanylilidene),特别是CH2-CH;2-4个碳原子的亚次烯基(alkenylilidene),特别是CH=C;
Ar是单环、双环或三环C6-C10芳基或杂芳基,含一个或多个选自氮、氧和硫的杂原子,可能被卤素、NO2、OH、C1-C4烷基和烷氧基取代,所述烷基和烷氧基可能被至少一个卤素取代;单环、双环或三环芳烷基或杂芳烷基,含一个或多个选自氮、氧和硫的杂原子,其中的烷基残基含1-3个碳原子,所述芳烷基或杂芳烷基可能被卤素、NO2、OH、C1-C4烷基和烷氧基取代,所述烷基和烷氧基可能被至少一个卤素取代;f是数字0或1;h是数字0或1;m是0-3的整数;n是数字0或1,如果n是0,R1不存在,COY直接结合到苯上);Q和Z可以相同或不同,选自NH、O、S、NHC(O)O、NHC(O)NH,NHC(O)S,OC(O)NH,S(CO)NH,C(O)NH和NHC(O);R选自R2、OR2;R1选自H、COW、SO3-、OR3、=O、CN、NH2、NHCO(C6-C10)Ar,其中Ar可能被卤素、NO2、OH、C1-C4烷基和烷氧基取代,所述烷基和烷氧基可能被至少一个卤素取代;R2选自H、直链或支链C1-C4烷基,可能被至少一个卤素取代;R3选自H、直链或支链C1-C4烷基,可能被至少一个卤素取代,(C6-C10)ArCH2,其中Ar可能被卤素、NO2、OH、C1-C4烷基和烷氧基取代,所述烷基和烷氧基可能被至少一个卤素取代;W选自OH、OR4、NH2;R4为直链或支链C1-C4烷基;Y选自OH、OR5、NH2;R5为直链或支链C1-C4烷基;或A、COY和R1共同形成下列类型的环
其药理学上可接受的盐、外消旋混合物、单独的对映体、几何异构体或立体异构体和互变异构体。
本文所述本发明的另一目的是所述化合物用作治疗高脂血症和高血糖症,特别是用于治疗2型糖尿病及其并发症的药物的应用,以及含有上述化合物作为活性成分的药物组合物。
这些目的和其他目的将详细地、并且借助实施例进行描述。
发明详述在式(I)化合物中,2-4个碳原子的亚次烷基表示的是基团-(CR6R7)p-CR8<,其中R6、R7和R8是氢、甲基或乙基,p是1-3的整数。
2-4个碳原子的亚次烯基表示的是基团-CR9R10=C<,-CR9R10-CR11=C<,-CR9=CR10-CR11<,-CH2-CH2-CH=C<,-CH=CH-CH2-CH<,-CH=CH-CH=C<,-CH2-CH=CH-CH<,-CH=C=CH-CH<,-CH2-CH=C=C<,其中R9、R10和R11是氢、甲基或乙基。在一切情况下,符号<等同于A与COY和R1结合的键。
在式(I)化合物中,第一组优选化合物由下述化合物组成,其中Ar是杂芳基,优选含氮为杂原子,如吲哚或吡啶,经由所有允许的位置结合到分子的剩余部分;这些中特别优选的是1-吲哚基和1-吡啶基。在此第一组范围内,优选f是0,m是1或2,Q是氧,R是氢。
第二组优选化合物由下述化合物组成,其中Ar是芳基,可能被一个或多个卤素原子、烷基、烷氧基或低级卤代烷基(优选甲基、甲氧基或三氟甲基)、硝基、单-或二-烷基胺取代。在此第二组范围内,优选f是0,m是0、1或2,Q是氧或HNC(O)O,R是氢。
特别优选的是其中R1是COW的化合物。
更优选的是下列化合物i.4-[2-(1-吲哚基)乙氧基]亚苄基丙二酸二乙酯ii.4-[2-(1-吲哚基)乙氧基]苯甲基丙二酸二乙酯iii.4-[2-(1-吲哚基)乙氧基]亚苄基丙二酸二甲酯iv.4-[2-(1-吲哚基)乙氧基]苯甲基丙二酸二甲酯v.4-[2-(1-吲哚基)乙氧基]苯甲基丙二酸
vi.(2S)-氨基-2-[4-[2-(1-吲哚基)乙氧基]苯基]-乙酸甲酯vii.4-[2-(1-吲哚基)乙氧基]苯甲酸甲酯viii.3-[4-[2-(1-吲哚基)乙氧基]苯基]丙酸甲酯ix.2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯x.2-磺基-2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯钠盐xi.(S)-2-苯甲酰氨基-2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯xii.2-羟基-3-[4-[2-(1-吲哚基)乙氧基]苯基]丙酸甲酯xiii.4-[2-[4-(二甲基氨基)苯基]乙氧基]苯甲基-丙二酸二甲酯xiv.3-[4-[2-(1-吲哚基)乙氧基]苯基]-2-氰基-丙烯酸甲酯xv.3-[4-[2-(1-吲哚基)乙氧基]苯基]-2-氰基-丙酸甲酯xvi.4-[2-(3-吲哚基)乙氧基]亚苄基丙二酸二甲酯xvii.4-[2-(1-萘基)乙氧基]苯甲基丙二酸二甲酯xviii.4-[2-(2-吡啶基)乙氧基]苯甲基丙二酸二甲酯xix.4-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯xx.5-[4-[2-(4-氯苯基)乙氧基]苯基亚甲基]-噻唑烷-2,4-二酮xxi.5-[4-[2-(4-氯苯基)乙氧基]苯基甲基]-噻唑烷-2,4-二酮xxii.3-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯xxiii.3-[2-(苯基)乙氧基]苯甲基丙二酸二甲酯xxiv.3-[N-(4-三氟甲基苯甲基)氨基甲酰基]-4-甲氧基苯甲基丙二酸二甲酯xxv.4-甲氧基-3-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯xxvi.3-(2-苯基乙氧基)-4-甲氧基苯甲基丙二酸二甲酯xxvii.4-[2-(4-甲氧基苯基)乙氧基]苯甲基丙二酸二甲酯xxviii.4-[3-(4-甲氧基苯基)丙氧基]苯甲基丙二酸二甲酯xxix.4-[2-(2-萘基)乙氧基]苯甲基丙二酸二甲酯xxx.(2S)-2-苯甲酰氨基-3-[4-(4-甲氧基苯甲基)氨基甲酰基]氧苯基]乙基丙酸酯xxxi.4-[[(4-甲氧基苯甲基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯xxxii.4-[[(4-三氟甲苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯
xxxiii.4-[[(2,4-二氯苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯xxxiv.4-[[(4-氯苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯xxxv.4-[2-(吡啶(pyridinio))乙氧基]苯甲基丙二酸二甲酯甲磺酸盐xxxvi.4-[[(4-硝基苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯xxxvii.3-[[(4-甲氧基苯甲基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯xxxviii.3-[[(4-丁基苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯xxxix.4-[[(4-丁基苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯xl.3-[[(4-氯苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯xli.(Z)-2-乙氧基-3-[4-[2-(4-氯苯基)乙氧基]苯基]乙基丙烯酸酯xlii.(E)-2-乙氧基-3-[4-[2-(4-氯-苯基)乙氧基]苯基]乙基丙烯酸酯xliii.(R,S)-2-乙氧基-3-[4-[2-(苯基)乙氧基]苯基]乙基丙酸酯xliv.(R,S)-2-乙氧基-3-[4-[2-(4-氯-苯基)乙氧基]苯基]甲基丙酸酯xlv.4-[2-(2,3-二甲基-1-吲哚基)乙氧基]苯甲基-丙二酸二甲酯通式化合物是使用方法A-H所述的反应制备的。
对于A是亚次烯基、R1=COW、CN和Y=OH、OR5、NH2或R1与COY和A共同形成如以上式(I)中所述的环的式(I)化合物,可使用下文所述的方法A,以A=-CH=C<为例。
方法A 除非另有说明,各种符号的含义与在通式中表示的相符。
通式I化合物可按照上图合成,由通式Ia和Ib化合物开始,在作为催化剂的有机碱与有机酸的盐如哌啶乙酸盐(通常用于Knovenagel反应)的存在下,用Dean-Stark在质子惰性溶剂如甲苯中回流5-24小时,优选18小时,或者在质子惰性的极性溶剂如DMF中(SyntheticCommunications,2000,30(4),712-726),可能在有机碱如哌啶的存在下,在20-100℃温度范围内,优选80℃,反应1小时至3天,优选2天。
对于Q选自NH、O、S、NHC(O)S和NHC(O)O的式(I)化合物,可使用下述方法B。
方法B 其中L是离去基(exit group)如MsO、TsO、Br、Cl、IA、COY和R1可能形成环= 除非另有说明,各种基团的含义与在以上通式(I)中表示的相符。
通式I化合物可按照上图合成,由通式Ic、Id化合物开始,其中L是离去基如卤素、对甲苯磺酸酯和甲磺酸酯。反应在质子惰性溶剂如DMF、DMSO和THF中,在碱如K2CO3或KOH或碱金属氢化物如NaH的存在下,可能在惰性气氛下进行,所述惰性气氛可使用气体如N2和Ar来保持。反应温度范围可从0-120℃,优选30-100℃,反应时间1-48小时,优选6-18小时。
对于Q选自O或S的式(I)化合物,可使用下述方法C。
方法C A、COY和R1可形成环=
除非另有说明,各种基团的含义与在以上通式(I)中表示的相符。
通式I化合物可按照上图合成,由通式Ie、If化合物开始,使用三芳基膦/二烷基偶氮二羧酸酯如PPH3/DEAD和类似化合物作为缩合剂,其可以以与底物的比为1-2当量使用,优选1.3-1.5当量。反应可在质子惰性溶剂如THF、DME、CHCl3等中,可能在惰性气氛下进行,所述惰性气氛可使用气体如N2和Ar来保持。反应温度范围可从0-60℃,优选20-40℃,反应时间3小时至6天,优选18小时至3天。
对于Q选自NHC(O)O、NHC(O)NH、NHC(O)S、OC(O)NH或SC(O)NH的式(I)化合物,可使用下述方法D。
方法D除非另有说明,各种基团的含义与在上述通式(I)中表示的相符,并且当M选自OH、NH2、SH时,X是-NCO,或当M是NCO时,X是OH、SH、NH2。
A、COY和R1可形成环= 如果M或X是NCO基团,通式I化合物可按照上图合成,由通式Ig、Ih化合物开始,在质子惰性溶剂如CH3CN、THF、CHCl3等中,可能在作为催化剂的有机碱如三乙胺的存在下,可能在用气体如N2和Ar保持的惰性气氛下进行。反应温度范围可从0-40℃,优选25℃,反应时间是1-48小时,优选18小时。
对于Q选自NHC(O)或C(O)NH的式(I)化合物,可使用下述方法E。
方法E
除非另有说明,各种基团的含义与在上述通式(I)中表示的相符,并且当M是NH2时,X是COOH,和当M是COOH时,X是NH2。
当X或M是COOH基团时,通式I化合物可按照上图合成,由通式Ii、Il化合物开始,使用缩合剂如氰化磷酸二乙酯(diethylphosphorocyanidate)、EEDQ、DCC或CDI等,其与底物的比是1-3当量,优选1-1.5当量,在有机溶剂如DMF、CH3CN、CHCl3、THF等中,在20-80℃温度范围下,优选25℃,进行反应18小时至3天,优选24小时。合成还可通过将酸衍生成酰基卤,然后在质子受体如三乙胺的存在下,在类似于上述条件的条件下进行缩合。
对于Ar是芳族杂环的式(I)化合物,可使用下述方法F,以吡啶鎓基为例。
方法F 除非另有说明,各种基团的含义与上述通式(I)中所述的相符,并且L是离去基如MsO、TsO、Br、Cl或I;m是1-3的整数。
通式(I)化合物可按照上图从通式Im化合物开始合成,其中L是离去基如卤素、对-甲苯磺酸酯和甲磺酸酯。反应使用如方法B中所述相同的条件进行。
对于Z具有通式中所述除NH以外的含义的式(I)化合物,可使用下文所述方法G。
方法G 除非另有说明,各种基团的含义与上述通式(I)中所述的相符,并且当Z1选自O、S、NH时,X选自NCO、COOH、OC(O)Cl、SC(O)Cl,或当Z1是O时,X选自OH、SH,或当Z1是COOH时,X是NH2。
当X或Z1是COOH基团和X或Z1是O或N时,通式(I)化合物可按照上图从通式In、Ip化合物开始合成,使用如方法E中所述的反应条件。当X是NCO基团且Z1是O、N或S时,反应可在方法D*所述条件下进行。当X是OH或SH基团且Z1是O时,反应可在方法C*所述条件下进行。当X是OC(O)Cl或SC(O)Cl基团且Z1是N时,反应在有机溶剂如CHCl3、THF等中进行,使用碱如三乙胺作为质子受体,在0-60℃,优选25℃下反应2-24小时,优选18小时。
*在这些情况下,A、COY和R1可形成环=
对于R1=OR3且A=CH=C的式(I)化合物,可使用下文所述方法H。
方法H 除非另有说明,各种基团的含义与通式中所述的相符。
通式I化合物可由通式Iq和Ir(后者如Tetrahedron,1992,48(19),3991-4004中所述获得)化合物开始合成,在质子惰性溶剂如THF中,在无机碱如碱金属氢化物优选NaH的存在下,在20-100℃,优选室温下,反应1-48小时,优选20小时。
对于A是亚次烷基的式(I)化合物,可由相应的A是亚次烯基的式(I)化合物来制备。
式I的饱和化合物可通过在H2存在下,在大气压至60psi、优选50psi压力下,并且使用催化剂如1-20%、优选10%的碳载金属如Pd/C的催化加氢作用还原不饱和化合物来获得。催化剂用量可在1-100%w/w范围内,通常是10%w/w,在质子溶剂或质子惰性溶剂如MeOH、二氧杂环己烷和THF,优选MeOH中,反应18小时至3天,优选24小时。还原还可在有机溶剂如MeOH中通过氢化物如NaBH4进行,反应时间1-24小时,优选2小时,反应温度0-80℃,优选25℃。另外的还原方法是使用碱金属如Mg,在质子溶剂如MeOH、EtOH等中,在20-40℃,优选25℃下,反应2-24小时,优选6小时。
除非另有说明,原料化合物是可以从市场上买到的或者可以按照常规方法制备的,遵从实施例中提供的指导。下列实施例进一步说明了本发明。
实施例14-[2-(1-吲哚基)乙氧基]亚苄基丙二酸二乙酯(ST1445)的制备中间产物1-(2-羟基-乙基)吲哚的制备报道于J.Med.Chem.,1998,41/10,1619-1639的中间产物按照其中所述方法制备,除了反应持续时间外(用30小时代替30分钟),由吲哚(5.00g,42.7mmol)、KOH(3.60g,64.1mmol)和在50ml无水DMSO中的2-溴乙醇(6.40g,51.3mmol)开始,在温度=25-30℃下,得到5.00g油状产物(产率=73%)。
中间产物1-(2-甲磺酰氧乙基)吲哚的制备向1-(2-羟基乙基)吲哚(1.00g,6.20mmol)的25ml无水二氯甲烷溶液中添加无水吡啶(736mg,9.30mmol)并滴加甲磺酰氯(1.06g,9.30mmol)。反应在50℃下搅拌2小时。此后真空蒸发混合物,残余物溶解于乙酸乙酯(50ml)并用水(50ml)洗。从水溶液中分离出的有机溶液用0.1N HCl溶液(2×50ml)洗和用水(2×50ml)洗。有机溶液经无水Na2SO4干燥并蒸发,残余物用100ml己烷研磨,过滤后得到1.10g固体产物(产率=74%)。熔点(Mp)=在75℃分解;TLC硅胶,洗脱剂乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.61;1H NMR(CDCl3,300MHz)δ7.62(d,1H),7.38(d,1H),7.22(m,2H),7.18(m,2H),6.57(d,1H),4.50(m,4H),2.60(s,3H);元素分析(E.A.)与C11H13NO3S一致。
中间产物4-[2-(1-吲哚基)乙氧基]苯甲醛的制备用一种不同的合成方法制备报道于J.Med.Chem.1998,41(10),1619-1639的中间产物,由中间产物1-(2-甲磺酰氧乙基)吲哚(1.40g,5.85mmol)和4-羟基苯甲醛(880mg,6.86mmol)与NaH(190mg,7.87mmol)在30ml无水DMF中的溶液开始。反应混合物在80℃下持续搅拌18小时。此时期终止时,向混合物中添加水(150ml),产物用乙酸乙酯(3×150ml)萃取。收集有机萃取物,经无水Na2SO4干燥并在真空中蒸发溶剂,获得1.50g产物(产率=96%)。
4-[2-(1-吲哚基)乙氧基]亚苄基丙二酸二乙酯(ST1445)的制备方法A向4-[2-(1-吲哚基)乙氧基]苯甲醛(1.40g,5.28mmol)和丙二酸二乙酯(845mg,5.28mmol)在15ml无水甲苯中的溶液中添加乙酸(47.2mg,0.79mmol)和哌啶(66.9mg,0.79mmol)。反应混合物用Dean-Stark回流7小时。此后干燥混合物,粗反应产物通过硅胶色谱纯化,使用乙酸乙酯∶己烷=3∶7作为洗脱液,产生1.50g油状产物(产率=70%);TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.66;1H NMR(CDCl3,300MHz)δ7.60(m,2H),7.40(m,3H),7.22(d,1H),7.20(d,1H),7.15(t,1H),6.80(d,2H),6.45(d,1H),4.45(t,2H),4.25(m,6H),1.25(m,6H);HPLC柱Inertisil ODS-3(5μm)(250×4.6mm),流动相CH3CN∶H2O(70∶30v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=19.47分钟;元素分析(E.A.)与C24H25NO5一致。
实施例24-[2-(1-吲哚基)乙氧基]苯甲基丙二酸二乙酯(ST1446)的制备将如实施例1所述获得的ST1445(0.90g,2.20mmol)溶解于30ml二氧杂环己烷中,在室温下用10%Pd/C(90mg)进行催化加氢(60psi)48小时。此后,将悬浮液用硅藻土过滤,滤液在真空中蒸发。粗产物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=2∶8作为洗脱液,产生380mg油状产物(产率=42%);TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.60;1H NMR(CDCl3,300MHz)δ7.60(d,1H),7.30(d,1H),7.18(m,2H),7.00(m,3H),6.70(d,2H),6.45(d,1H),4.42(t,2H),4.20(t,2H),4.05(m,4H),3.45(t,1H),3.05(d,2H),1.15(t,6H);HPLC柱InertisilODS-3(5μm)(250×4.6mm),流动相CH3CN∶H2O(70∶30v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=19.16分钟;元素分析(E.A.)与C24H27NO5一致。
实施例34-[2-(1-吲哚基)乙氧基]亚苄基丙二酸二甲酯(ST1443)的制备方法B在氮气流下,向NaH(360mg,15.0mmol)在无水DMF(70ml)中的悬浮液中添加4-羟基亚苄基丙二酸二甲酯(3.00g,12.5mmol)在15ml无水DMF中的溶液。待反应混合物澄清后,添加如实施例1所述制备的1-(2-甲磺酰氧乙基)吲哚(2.90g,12.5mmol)在15ml无水DMF中的溶液,反应混合物在氮气流下70℃搅拌18小时。此后向反应中添加水(300ml),产物用乙酸乙酯(3×100ml)萃取。有机溶液用水和饱和NaCl溶液洗,过无水Na2SO4干燥,真空蒸发干燥。粗反应产物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=2∶8作为洗脱液,产生3.10g固体产物(产率=65%)。熔点(Mp)=68-70℃;TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.61;1H NMR(CDCl3,300MHz)δ7.65(s,1H),7.62(d,1H),7.40(m,3H),7.20(m,3H),6.82(d,2H),6.50(d,1H),4.50(t,2H),4.30(t,2H),3.80(d,6H);HPLC柱Symmetry C18(5μm)(150×3.9mm),流动相CH3CN∶KH2PO450mM(60∶40v/v),pH=3,T=30℃,流速=0.5ml/min,205nm紫外检测器,保留时间=12.75分钟;元素分析(E.A.)与C22H21NO5一致。
实施例44-[2-(1-吲哚基)乙氧基]苯甲基丙二酸二甲酯(ST1444)的制备将如实施例3所述制备的ST1443(1.50g,3.90mmol)溶解于45ml二氧杂环己烷中,在室温下用10%Pd/C(750mg)进行催化加氢(60psi)24小时。将悬浮液用硅藻土过滤,滤液在真空中蒸发,产生油状残余物,通过硅胶层析纯化,使用乙酸乙酯∶己烷=2∶8作为洗脱液,产生0.90g油状产物(产率=60%);TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.63;1H NMR(CDCl3,300MHz)δ7.62(d,1H),7.40(d,1H),7.20(m,2H),7.10(2d,3H),6.80(d,2H),6.50(d,1H),4.50(t,2H),4.25(t,2H),3.70(s,6H),3.60(t,1H),3.15(d,2H);HPLC柱SymmetryC18(5μm)(150×3.9mm),流动相CH3CN∶KH2PO450mM(60∶40v/v),pH=3,T=30℃,流速=0.5ml/min,205nm紫外检测器,保留时间=13.15分钟;元素分析(E.A.)与C22H23NO5一致。
实施例54-[2-(1-吲哚基)乙氧基]苯甲基丙二酸(ST1467)的制备向如实施例3所述制备的ST1444(0.95g,2.50mmol)在甲醇(10ml)和THF(5ml)的溶液中添加2N NaOH(3ml),令反应在室温下搅拌24小时。此后,反应物真空蒸发,向残余物中加水(10ml),溶液用乙酸乙酯(2×10ml)萃取。水相用1N HCl酸化至pH=4,产物用乙酸乙酯(2×10ml)萃取。有机萃取物过无水Na2SO4干燥并真空蒸发。残余物重新溶解于乙酸乙酯中并用己烷沉淀,产生250mg产物(产率=28%);熔点(Mp)=112-114℃;TCL硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.28;1H NMR(CDCl3,300MHz)δ7.60(d,1H),7.50(d,1H),7.30(d,1H),7.20(t,1H),7.1 0(m,3H),6.80(d,2H),6.45(d,1H),4.50(t,2H),4.30(t,2H),3.60(t,1H),3.05(d,2H);HPLC柱SymmetryC18(5μm)(150×3.9mm),流动相CH3CN∶KH2PO450mM(55∶45v/v),pH=4,T=30℃,流速=0.5ml/min,205nm紫外检测器,保留时间=4.40分钟;元素分析(E.A.)与C20H19NO5一致,KF=0.8%H2O。
实施例6(2S)-氨基-2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯(ST1539)的制备中间产物4-羟基-(2S)-α-苯基甘氨酸甲酯盐酸盐的制备向4-羟基-(2S)-α-苯基甘氨酸(5.00g,29.0mmol)的甲醇(50ml)溶液中添加SOCl2(7.20g,59.0mmol)。反应在室温下搅拌24小时。溶剂真空蒸发,残余物用二乙醚研磨,产生6.50g白色固体产物(产率=100%);TLC硅胶,洗脱液乙酸乙酯∶己烷=5∶5,前沿比(Fr)=0.21;1HNMR(CDCl3,300MHz)δ7.30(d,2H),6.90(d,2H),5.20(s,1H),3.80(s,3H)。
(2S)-氨基-2-[4-[2-(1-吲哚基)乙氧基]-苯基]乙酸甲酯(ST1539)的制备除了NaH的量(280mg,12.0mmol)、反应时间(6小时代替18小时)和色谱纯化中所用的洗脱液(乙酸乙酯代替乙酸乙酯∶己烷=2∶8)外,如实施例3(方法B)所述,从4-羟基(2S)-α-苯基甘氨酸甲酯盐酸盐(1.10g,5.00mmol)和如实施例1所述制备的1-(2-甲磺酰氧乙基)吲哚(1.20g,5.00mol)的无水DMF(50ml)溶液开始制备产物,产生500mg油状产物(产率=31%);[α]D20=-7℃(c=0.1,在甲醇中);TLC硅胶,洗脱液乙酸乙酯∶甲醇=9∶1,前沿比(Fr)=0.51;1H NMR(CDCl3,300MHz)δ7.62(d,1H),7.40(d,1H),7.22(m,4H),7.10(t,1H),6.80(d,2H),6.55(d,1H),4.50(s+t,3H),4.30(t,2H),3.70(s,3H);HPLC柱Symmetry C18(5μm)(250×4.6mm),流动相CH3CN∶KH2PO450mM(60∶40v/v),pH=4.2,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=6.52分钟;元素分析(E.A.)与C19H20N2O3一致。
实施例74-[2-(1-吲哚基)乙氧基]苯甲酸甲酯的制备除反应时间(24小时代替18小时)和色谱纯化中所用洗脱液(乙酸乙酯∶己烷=1∶9代替2∶8)外,如实施例3所述(方法B)由如实施例1所述制备的1-(2-甲磺酰氧乙基)吲哚(0.95g,3.90mmol)、4-羟基苯甲酸甲酯(600mg,3.90mmol)和NaH(114mg,4.70mmol)的无水DMF(10ml)溶液制备该产物。将所得仍不纯的产物通过Amberlyst A21树脂色谱进行纯化,使用乙酸乙酯作为洗脱液,产生540mg白色固体产物(产率=47%);熔点(Mp)=70-73℃,TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.48;1H NMR(CDCl3,300MHz)δ8.00(d,2H),7.65(d,1H),7.40(d,1H),7.20(m,3H),6.90(d,2H),6.60(d,1H),4.60(t,2H),4.40(t,2H),3.90(s,3H);HPLC柱Symmetry(5μm)-(250×4.6mm),流动相CH3CN∶KH2PO450mM(60∶40v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=24.66分钟;元素分析(E.A.)与C18H17NO3一致。
实施例83-[4-[2-(1-吲哚基)乙氧基]苯基]丙酸甲酯(ST1626)的制备除溶剂(无水乙腈(1.5ml)代替无水DMF)和色谱纯化中所用洗脱液(乙酸乙酯∶己烷=1∶9代替2∶8)外,如实施例3所述(方法B)由如实施例1所述制备的1-(2-甲磺酰氧乙基)吲哚(1.10g,4.50mmol)、4-羟基苯基丙酸甲酯(820mg,4.55mmol)和NaH(142mg,5.90mmol)制备该产物。所得残余物再用己烷研磨以除去微量溶剂,产生270mg白色固体产物(产率=19%);熔点(Mp)=85℃,TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.49;1H NMR(CDCl3,300MHz)δ7.62(d,1H),7.40(d,1H),7.20(m,3H),7.10(d,2H),6.80(d,2H),6.50(d,1H),4.50(t,2H),4.30(t,2H),3.82(s,3H),2.90(t,2H),2.60(t,2H);HPLC柱Symmetry(5μm)-(250×4.6mm),流动相CH3CN∶H2O(60∶40v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=22.33分钟;元素分析(E.A.)与C20H21NO3一致。
实施例92-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯(ST1627)的制备除溶剂(无水乙腈(1.5ml)代替无水DMF)和色谱纯化中所用洗脱液(乙酸乙酯∶己烷=1∶9代替2∶8)外,如实施例3所述(方法B)由如实施例1所述制备的1-(2-甲磺酰氧乙基)吲哚(860mg,3.60mmol)、4-羟基苯基乙酸甲酯(600mg,3.60mmol)和NaH(112mg,4.70mmol)制备该产物,产生243mg白色固体产物(产率=22%);熔点(Mp)=50-52℃,TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.46;1H NMR(CDCl3,300MHz)δ7.62(d,1H),7.40(d,1H),7.20(m,5H),6.80(d,2H),6.55(d,1H),4.58(t,2H),4.30(t,2H),3.70(s,3H),3.60(s,2H);HPLC柱Symmetry(5μm)-(250×4.6mm),流动相CH3CN∶H2O(60∶40v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=17.38分钟;元素分析(E.A.)与C19H19NO3一致。
实施例102-磺基-2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯钠盐(ST1706)的制备中间产物4-羟基-α-磺基苯基乙酸甲酯钠盐的制备由溶解于甲醇(44ml)的4-羟基-α-磺基苯基乙酸钠盐单水合物(2.00g,7.34mmol)添加SOCl2(1.75g,14.6mmol)制备该产物。反应混合物置于室温下24小时。真空蒸发溶剂后,残余物用二乙醚(3×50ml)处理。仍不纯的最终残余物通过硅胶快速色谱纯化,使用CHCl3∶MeOH=8∶2作为洗脱液,产生1.25g油状产物(产率=63.5%);1H NMR(D2O,300MHz)δ7.30(d,2H),6.80(d,2H),4.95(s,1H),3.65(s,3H);元素分析(E.A.)与C9H10SO6Na一致;KF=2.2%H2O。
2-磺基-2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯钠盐(ST1706)的制备除反应时间和温度(3小时代替18小时,120℃而非80℃)外,如实施例3所述(方法B)由4-羟基-磺基苯基乙酸甲酯钠盐(1.10g,4.10mmol)、如实施例1所述制备的1-(2-甲磺酰氧乙基)吲哚(0.98g,4.10mmol)和NaH(147.6mg,6.15mmol)在3.4ml无水DMF中的溶液开始制备该产物。深色半固体用二乙醚(200ml)处理,所得粗固体通过硅胶快速色谱纯化,使用CHCl3∶MeOH=9∶1作为洗脱液,产生400mg固体产物(产率=21.4%);熔点(Mp)=253-258℃(分解);TLC硅胶,洗脱液CHCl3∶MeOH=7∶3,前沿比(Fr)=0.58;1H NMR(CD3ODd4,300MHz)δ7.55(m,4H),7.25(d,1H),7.18(t,1H),7.00(t,1H),6.80(d,2H),6.42(d,1H),4.85(s,1H),4.50(t,2H),4.30(t,2H),3.70(s,3H);HPLC柱Symmetry C18(5μm)(250×4.6mm),流动相CH3CN∶KH2PO450mM(50∶50v/v),pH=3,T=30℃,流速=1ml/min,205nm紫外检测器,保留时间=6.07分钟;元素分析(E.A.)与C19H18NO6NaS一致。
实施例11(S)-2-苯甲酰基氨基-2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯(ST1709)的制备中间产物(S)-2-苯甲酰基氨基-2-(4-羟基苯基)乙酸甲酯的制备在0℃,由溶解于DMF(30ml)的如实施例6所述制备的4-羟基-(2S)-α-苯基甘氨酸甲酯盐酸盐(1.24g,5.70mmol),向该溶液中添加TEA(1.15g,11.4mmol)和苯甲酰氯(896mg,6.38mmol),来制备该产物。反应混合物留在室温下18小时。此后向反应物中加水(100ml),产物用乙酸乙酯(3×30ml)萃取。有机溶液用水(2×40ml)洗,过无水Na2SO4干燥和真空蒸发干燥,产生1.29g固体产物(产率=79%);熔点(Mp)=152℃;1H NMR(CDCl3,300MHz)δ7.90(d,2H),7.50(m,3H),7.20(d,2H),6.80(d,2H),5.70(d,1H),3.80(s,3H)。
(2S)-苯甲酰氨基-2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯(ST1709)的制备如实施例3所述(方法B)由(2S)-苯甲酰氨基-2-(4-羟基苯基)乙酸甲酯(0.70g,2.50mmol)、如实施例1所述制备的1-(2-甲磺酰氧乙基)吲哚(0.58g,2.50mmol)和NaH(72mg,3.00mmol)开始,反应24小时(代替18小时)制备该产物。在加工过程中,使用CH2Cl2代替乙酸乙酯萃取水中的产物。进行产物的色谱纯化,使用乙酸乙酯∶己烷=7∶3(代替2∶8)作为洗脱液,产生530mg油状产物(产率=50%);[α]D20=-2.6°(c=1%,在CHCl3中);TLC硅胶,洗脱液乙酸乙酯∶己烷=5∶5,前沿比(Fr)=0.65;1HNMR(CDCl3,300MHz)δ7.80(d,2H),7.60(d,1H),7.55-7.10(m,9H),6.82(d,2H),6.50(d,1H),5.70(d,1H),4.50(t,2H),4.22(t,2H),3.75(s,3H);HPLC柱Inertisil ODS-3(5μm)(250×4.6mm),流动相CH3CN∶KH2PO450mM(65∶35v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=13.57分钟;元素分析(E.A.)与C26H24N2O4一致,KF=1.5%水。
实施例122-羟基-3-[4-[2-(1-吲哚基)乙氧基]苯基]丙酸甲酯(ST1733)的制备中间产物2-羟基-3-(4-羟基)苯基)丙酸甲酯的制备由溶解于甲醇(30ml)的D,L 3-(4-羟基苯基)乳酸水合物(500mg,2.76mmol)用气态HCl至饱和来制备该产物。反应溶液留在室温下4小时。在真空蒸发溶剂后,用二乙醚再溶解油状残余物,溶剂真空蒸发,重复该操作3次(3×10ml),产生540mg油状产物(产率=100%);1HNMR(CDCl3,300MHz)δ7.10(d,2H),6.90(d,2H),5.00(brs,1H),4.45(t,1H),3.80(s,3H),3.00(dd,2H)。
2-羟基-3-[4-[2-(1-吲哚基)乙氧基]苯基]丙酸甲酯(ST1733)的制备如实施例3所述(方法B),由2-羟基-3-(4-羟基苯基)丙酸甲酯(800mg,4.10mmol)和如实施例1所述制备的1-(2-甲磺酰氧乙基)吲哚(970mg,4.10mmol)和溶于50ml无水DMF的NaH(108mg,4.50mmol)开始,在40℃反应24小时(代替70℃18小时)来制备该产物。在加工过程中,用CH2Cl2代替乙酸乙酯萃取产物,最终的残余物通过色谱纯化,使用乙酸乙酯∶己烷=3∶7(代替2∶8)作为洗脱液,产生270mg固体产物(产率=18%);熔点(Mp)=70-72℃;TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.22;1H NMR(CDCl3,300MHz)δ7.65(d,1H),7.40(d,1H),7.12(m,3H),7.10(d,2H),6.80(d,2H),6.55(d,1H),4.50(t,2H),4.40(brt,1H),4.22(t,2H),3.80(s,3H),3.00(dq,2H);HPLC柱InertisilODS-3(5μm)-(250×4.6mm),流动相CH3CN∶KH2PO450mM(65∶35v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=9.39分钟;元素分析(E.A.)与C20H21NO4一致。
实施例134-[2-[4-(二甲基氨基)苯基]乙氧基]苯甲基丙二酸二甲酯(ST1705)的制备中间产物1-甲磺酰氧-2-[4-(二甲基氨基)苯基]乙基的制备在0℃,向4-(二甲基氨基)苯基乙醇(500mg,3.02mmol)的无水二氯甲烷(10ml)溶液中添加TEA(336mg,3.33mmol)并滴加甲磺酰氯(381mg,3.33mmol)。反应留在室温下18小时。此后,将混合物真空蒸发,残余物用乙酸乙酯(100ml)萃取,溶液过滤。有机溶液真空蒸发,产生720mg油状产物(产率=98%);1H NMR(CDCl3,300MHz)δ7.10(d,2H),6.70(d,2H),4.40(t,2H),3.00(m,8H),2.85(s,3H)。
中间产物4-羟基苯甲基丙二酸二甲酯的制备除了反应持续时间(24小时代替5小时)和压力(50psi代替环境压力)外,如专利WO94/13650“杂环衍生物及其在药学中的应用”中所述方法,通过在甲醇中用10%Pd/C(500mg)催化氢化由4-羟基亚苄基丙二酸二甲酯(5.00g,21.0mmol)来制备该产物,产生5.00g油状产物(产率=99%);分析数据类似于该文献中报告的数据。
4-[2-[4-(二甲基氨基)苯基]乙氧基]苯甲基丙二酸二甲酯(ST1705)的制备如实施例3所述(方法B),由4-羟基苯甲基丙二酸二甲酯(708mg,2.97mmol)、1-甲磺酰氧-2-[4-(二甲基氨基)苯基]乙基(724mg,2.97mmol)和NaH(71mg,2.97mmol)开始制备该产物。粗反应产物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=15∶85(代替2∶8)作为洗脱液,产生油状产物,通过己烷进行处理进一步纯化,产生270mg产物(产率=24%);TLC硅胶,洗脱液乙酸乙酯∶己烷=4∶6,前沿比(Fr)=0.55;1H NMR(CDCl3,300MHz)δ7.18(d,2H),7.12(d,2H),6.80(d,2H),6.75(m,2H),4.10(t,2H),3.70(s,6H),3.60(t,1H),3.18(d,2H),3.00(t,2H),2.90(s,6H);HPLC柱Symmetry C18(5μm)(250×4.6mm),流动相CH3CN∶H2O(65∶35v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=19.13分钟;元素分析(E.A.)与C22H27NO5一致。
实施例143-[4-[2-(1-吲哚基)乙氧基]苯基]-2-氰基丙烯酸甲酯(ST1462)的制备中间产物α-氰基-4-羟基肉桂酸甲酯的制备向α-氰基-4-羟基肉桂酸(20.0g,106mmol)的甲醇(200ml)溶液中添加SOCl2(24.9g,210mmol)。反应物在60℃搅拌24小时。溶剂真空蒸发,残余物用二乙醚研磨,产生18.0g浅黄色固体产物(产率=85%);TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.28;1H NMR(CDCl3,300MHz)δ8.20(s,1H),8.10(d,2H),7.10(d,2H),3.90(s,3H)。
3-[4-[2-(1-吲哚基)乙氧基]苯基]-2-氰基丙烯酸甲酯(ST1462)的制备方法C向如实施例1所述制备的1-(2-羟基乙基)吲哚(1.00g,6.20mmol)和α-氰基-4-羟基肉桂酸甲酯(1.10g,5.60mmol)的无水THF(20ml)溶液中添加DEAD(1.30g,7.3mmol)和PPh3(1.90g,7.30mmol)。令该溶液在室温下搅拌5天。溶剂真空蒸发后所得的残余物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=2∶8作为洗脱液,产生850mg固体产物(产率=44%);熔点(Mp)=142-144℃;TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.38;1H NMR(CDCl3,300MHz)δ8.10(s,1H),7.90(d,2H),7.60(d,1H),7.35(d,1H),7.10(m,2H),7.05(t,1H),6.80(d,2H),6.45(d,1H),4.50(t,2H),4.25(t,2H),3.80(s,3H);HPLC柱SymmetryC18(5μm)-(150×3.9mm),流动相CH3CN∶H2O(60∶40v/v),pH=按现状,T=30℃,流速=0.5ml/min,205nm紫外检测器,保留时间=13.86分钟;元素分析(E.A.)与C21H18N2O3一致。
实施例153-[4-[2-(1-吲哚基)乙氧基]苯基]-2-氰基丙酸甲酯(ST1499)的制备将如实施例14所述重新制备的ST1462(1.30g,3.70mmol)溶解于60ml THF中,用10%Pd/C(130mg)进行24小时的催化加氢。悬浮液用硅藻土过滤,滤液真空蒸发,残余物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=3∶7作为洗脱液,产生620mg油状产物(产率=48%);TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.42;1H NMR(CDCl3,300MHz)δ7.62(d,1H),7.40(d,1H),7.20(m,5H),6.80(d,2H),6.55(d,1H),4.50(t,2H),4.30(t,2H),3.80(s,3H),3.65(t,1H),3.15(m,2H);HPLC柱Symmetry C18(5μm)-(250×4.6mm),流动相CH3CN∶H2O(70∶30v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=14.47分钟;元素分析(E.A.)与C21H20N2O3一致。
实施例164-[2-(3-吲哚基)乙氧基]亚苄基丙二酸二甲酯(ST1474)的制备除了反应时间(4天代替5天)和色谱纯化中所用洗脱液(乙酸乙酯∶己烷=3∶7和异丙醚∶己烷=6∶4代替乙酸乙酯∶己烷=2∶8)外,如实施例14所述(方法C)制备该产物,由3-(2-羟基乙基)吲哚(2.50g,15.5mmol)、4-羟基亚苄基丙二酸二甲酯(3.30g,14.1mmol)、DEAD(3.20g,18.3mmol)和PPh3(4.80g,18.3mmol)开始,产生固体残余物,该残余物用乙酸乙酯和己烷结晶,产生480mg产物(产率=9.5%);熔点(Mp)=105.7℃;TLC硅胶,洗脱液乙酸乙酯∶己烷=1∶1,前沿比(Fr)=0.65;1H NMR(CDCl3,300MHz)δ8.00(brs,1H),7.65(s,1H),7.61(d,1H),7.40(m,3H),7.20(m,3H),6.85(d,2H),4.25(t,2H),3.82(d,6H),3.22(t,2H);HPLC柱Symmetry(5μm)(150×3.9mm),流动相CH3CN∶KH2PO450mM(50∶50v/v),pH=3,T=30℃,流速=0.5ml/min,205nm紫外检测器,保留时间=22.85分钟;元素分析(E.A.)与C22H21O5一致。
实施例174-[2-(1-萘基)乙氧基]苯甲基丙二酸二甲酯(ST1475)的制备除反应时间(1天代替5天)外,如实施例14所述(方法C)制备该产物,由1-(2-羟基乙基)萘(1.50g,8.70mmol)、如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(1.90g,7.90mmol)、DEAD(1.90g,11.3mmol)和PPh3(2.90g,11.3mmol)开始,纯化后产生1.90g油状产物(产率=61%);TLC硅胶,洗脱液乙酸乙酯∶己烷=2∶8,前沿比(Fr)=0.42;1HNMR(CDCl3,300MHz)δ8.10(d,1H),7.90(d,1H),7.70(t,1H),7.47(m,2H),7.42(d,2H),7.1 0(d,2H),6.80(d,2H),4.25(t,2H),3.62(s,6H),3.60(m,3H),3.20(d,2H);HPLC柱Symmetry(5μm)(150×3.9mm),流动相CH3CN∶KH2PO450mM(55∶45v/v),pH=3,T=30℃,流速=0.7ml/min,205nm紫外检测器,保留时间=28.46分钟;元素分析(E.A.)与C24H24O5一致。
实施例184-[2-(2-吡啶基)乙氧基]苯甲基丙二酸二甲酯(ST1476)的制备除了反应时间(3天代替5天)和色谱纯化中所用洗脱液(乙酸乙酯∶己烷[3∶7代替2∶8])外,如实施例14所述(方法C)制备该产物,由2-(2-羟基乙基)吡啶(800mg,6.40mmol)、如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(1.70g,6.90mmol)、DEAD(1.40g,8.00mmol)和PPh3(2.10g,8.00mmol)开始,产生850mg油状产物(产率=38%);TLC硅胶,洗脱液乙酸乙酯∶己烷=1∶1,前沿比(Fr)=0.36;1H NMR(CDCl3,300MHz)δ8.50(d,1H),7.60(td,1H),7.22(d,1H),7.12(m,1H),7.08(d,2H),6.80(d,2H),4.32(t,2H),3.70(s,6H),3.60(t,1H),3.22(t,2H),3.15(d,2H);HPLC柱Symmetry(5μm)(150×3.9mm),流动相CH3CN∶KH2PO450mM(25∶75v/v),pH=3,T=30℃,流速=0.5ml/min,205nm紫外检测器,保留时间=11.71分钟;元素分析(E.A.)与C19H21NO5一致,KF=3.14%H2O。
实施例194-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯(ST1493)的制备除了反应时间(3天代替5天)和色谱纯化中所用洗脱液(乙酸乙酯∶己烷[3∶7代替2∶8])外,如实施例14所述(方法C)制备该产物,由2-(4-氯苯基)乙醇(700mg,4.60mmol)、如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(1.20g,5.00mmol)、DEAD(1.10g,5.90mmol)和PPh3(1.60g,5.90mmol)开始,产生800mg油状产物(产率=47%);TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.47;1H NMR(CDCl3,300MHz)δ7.22(q,4H),7.11(d,2H),6.80(d,2H),4.20(t,2H),3.70(s,6H),3.6(t,1H),3.15(d,2H),3.05(t,2H);HPLC柱Symmetry(5μm)(150×3.9mm),流动相 CH3CN∶KH2PO450mM(55∶45v/v),pH=5.5,T=30℃,流速=1.0ml/min,205nm紫外检测器,保留时间=23.42分钟;元素分析(E.A.)与C20H21ClO5一致。
实施例205-[4-[2-(4-氯苯基)乙氧基]苯基亚甲基]噻唑烷-2,4-二酮(ST1862)的制备中间产物4-[2-(4-氯苯基)乙氧基]苯甲醛的制备除了反应时间(1夜代替5天)外,如实施例14所述(方法C)制备该产物,由4-羟基苯甲醛(2.00g,16.4mmol)、2-(4-氯苯基)乙醇(2.80g,18.0mmol)、PPh3(5.57g,21.3mmol)和DEAD(3.70g,21.3mmol)开始。纯化后获得2.60g产物(产率=61%);1H NMR(CDCl3,300MHz)δ9.90(s,1 H),7.80(d,2H),7.30(dd,4H),6.90(d,2H),4.20(t,2H),3.10(t,2H)。
5-[4-[2-(4-氯苯基)乙氧基]苯基亚甲基]噻唑烷-2,4-二酮(ST1862)的制备除了反应时间(5小时代替7小时)外,如实施例1所述(方法A),由4-[2-(4-氯苯基)乙氧基]苯甲醛(708mg,2.70mmol)在20ml无水甲苯中的溶液、与噻唑烷-2,4-二酮(320mg,2.70mmol)、乙酸(21mg,0.35mmol)和哌啶(29.8mg,0.35mmol)制备该产物。冷却混合物后,分离出黄色产物结晶,令其在0℃保持30分钟,然后过滤,先用冷甲苯再用水研磨,然后干燥。获得786mg产物(产率=81%);熔点(Mp)=202-203℃;TLC硅胶,洗脱液CH2Cl2∶CH3OH=9∶1,前沿比(Fr)=0.6;1H NMR(DMSOd6,300MHz)δ7.70(s,1H),7.50(d,2H),7.30(s,4H),7.1 0(d,2H),4.25(t,2H),3.05(t,2H);HPLC柱LunaC18(5μm)(4.6×250mm),T=30℃,流动相0.1M NH4H2PO4∶CH3CN(3∶7v/v),pH=按现状,流速=1ml/min,205nm紫外检测器,保留时间=11.25分钟;元素分析(E.A.)与C18H14NO3SCl一致。
实施例215-[4-[2-(4-氯苯基)乙氧基]苯基甲基]噻唑烷-2,4-二酮(ST1864)的制备向如实施例20所述制备的ST1862(600mg,1.67mmol)在无水甲醇(20ml)中的悬浮液中逐步少量地添加镁粉(607mg,25.0mmol)。反应混合物保持在25℃5小时。此后蒸发溶剂,向残余物中加水,并用1N HCl溶液酸化至pH2,水相用CH2Cl2萃取。合并的有机相用NaCl饱和溶液洗,过无水硫酸钠干燥和真空蒸发干燥。如此获得的残余物通过硅胶色谱纯化,使用CHCl3∶CH3OH=99.5∶0.5作为洗脱液,产生仍不纯的产物,用甲醇重结晶,产生180mg产物(产率=30%);熔点(Mp)=147-148℃;TLC硅胶,洗脱液CHCl3∶CH3OH=9.95∶0.05,前沿比(Fr)=0.16;1HNMR(DMSOd6,300MHz)δ12.00(brs,1H),7.40(s,4H),7.20(d,2H),6.90(d,2H),4.90(m,1H),4.20(t,2H),3.30(m,2H),3.00(m,2H);HPLC柱LunaC18(5μm)(4.6×250mm),T=30℃,流动相0.05MNH4H2PO4∶CH3CN(4∶6v/v),pH=4,流速=1ml/min,205nm紫外检测器,保留时间=14.31分钟;元素分析(E.A.)与C18H16NO3SCl一致。
实施例223-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯(ST1863)的制备中间产物3-羟基亚苄基丙二酸二甲酯的制备除反应时间(5小时代替7小时)外,如实施例1所述(方法A),由3-羟基苯甲醛(3.02g,24.7mmol)、丙二酸二甲酯(2.83ml,24.7mmol)、哌啶(314mg,3.68mmol)和冰醋酸(221mg,3.68mmol)开始,制备该产物。纯化后获得3.91g产物(产率=67%);1H NMR(CDCl3,300MHz)δ7.80(s,1H),7.30(m,1H),6.90(m,3H),3.90(s,6H)。
中间产物3-羟基苯甲基丙二酸二甲酯的制备将3-羟基亚苄基丙二酸酯(1.51g,6.40mmol)溶解于40ml甲醇中,添加151mg 10%Pd/C。然后在室温下50psi下对混合物进行催化氢化18小时。此后,将混合物用硅藻土过滤,有机相真空蒸发。如此获得的残余物通过硅胶色谱纯化,使用己烷∶乙酸乙酯=8∶2为洗脱液。获得1.31g产物(产率=86%);1H NMR(CDCl3,300MHz)δ7.20(t,1H),6.80(m,3H),3.60(s,7H),3.20(d,2H)。
3-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯(ST1863)的制备除了反应时间(1夜代替5天)外,如实施例14所述(方法C)制备该产物,由3-羟基苯甲基丙二酸酯(664mg,2.80mmol)、2-(4-氯苯基)乙醇(435mg,2.80mmol)、三苯基膦(953mg,3.64mmol)和DEAD(572μl,3.64mmol)开始。纯化后获得700mg产物(产率=66%);TLC硅胶,洗脱液己烷∶乙酸乙酯=8∶2,前沿比(Fr)=0.35;1H NMR(CDCl3,300MHz)δ7.20(m,5H),6.70(m,3H),4.10(t,2H),3.70(s,6H),3.65(t,1H),3.20(d,2H),3.00(t,2H);HPLC柱LunaC18(5μm)(4.6×250mm),T=30℃,流动相0.05M NH4H2PO4∶CH3CN(4∶6v/v),pH=4,流速=1ml/min,205nm紫外检测器,保留时间=25.72分钟;元素分析(E.A.)与C20H21ClO5一致。
实施例233-[2-(苯基)乙氧基]苯甲基丙二酸二甲酯(ST1895)的制备将如实施例22所述制备的ST1863(470mg,1.20mmol)溶解于25ml甲醇中,用10%Pd/C(50mg)在60psi室温下进行催化氢化72小时。悬浮液用硅藻土过滤,滤液真空蒸发,产生95mg产物(产率=22%);TLC硅胶,洗脱液己烷∶乙酸乙酯=8∶2,前沿比(Fr)=0.29;1H NMR(CDCl3,300MHz)δ7.30(m,6H),6.75(m,3H),4.15(t,2H),3.70(s+t,7H),3.20(d,2H),3.10(t,2H);HPLC柱Intertisil ODS-3(5μm)(4.6×250mm),T=30℃,流动相CH3CN∶H2O(70∶30v/v),pH=3.5,流速=0.75ml/min,205nm紫外检测器,保留时间=13.63分钟;KF=0.4%H2O;元素分析(E.A.)与C20H22O5一致。
实施例243-[N-(4-三氟甲基苯甲基)氨基甲酰基]-4-甲氧基苯甲基丙二酸二甲酯(ST1933)的制备中间产物5-甲酰基-2-甲氧基苯甲酸甲酯的制备按照EP0846693A1所述方法,由在DMF(45ml)中的5-甲酰基水杨酸(2.00g,12.0mmol)和碘代甲烷(10.2g,72.0mmol)与K2CO3(3.50g,25.2mmol)开始制备该产物,获得1.59g产物(产率=68%),分析数据与该参考文献中所报告的相符。
中间产物5-甲酰基-2-甲氧基苯甲酸的制备按照EP0846693A1所述方法,由无水AcOH(33ml)中的5-甲酰基-2-甲氧基苯甲酸甲酯(2.35g,12.1mmol)与浓盐酸(33ml)开始制备该产物,获得1.59g产物(产率=73%),分析数据与该参考文献中所报告的相符。
中间产物二甲基-3-羧基4-甲氧基亚苄基丙二酸酯的制备除反应时间(5小时代替7小时)外,按照实施例1所述方法(方法A),由在32ml无水甲苯中的5-甲酰基-2-甲氧基苯甲酸(800mg,4.44mmol)与丙二酸二甲酯(586mg,4.44mmol)、哌啶(57mg,0.67mmol)和冰醋酸(40.2mg,0.67mmol)开始制备该产物。此期终止时,将混合物冷却,在4℃保持30分钟后,分离结晶,将其过滤,用甲苯研磨数次。获得870mg产物(产率=67%);1H NMR(DMSOd6,300MHz)δ7.90(s,1H),7.80(s,1H),7.70(d,1H),7.20(d,1H),3.90(s,3H),3.80(d,6H)。
中间产物3-[N-(4-三氟甲基苯甲基)氨基甲酰基]4-甲氧基亚苄基丙二酸二甲酯的制备方法E在氮气流下,向二甲基-3-羧基-4-甲氧基亚苄基丙二酸酯(620mg,2.10mmol)的无水DMF(6.2ml)溶液中添加4-三氟甲基苄胺(368mg,2.10mmol)、氰化磷酸二乙酯(377mg,2.10mmol)和三乙胺(234mg,2.31mmol)。反应混合物在氮气流下室温下保持24小时。此后将反应混合物倒入水中,用乙酸乙酯萃取。然后用1N HCl、1N NaOH和水洗有机相,过无水硫酸钠干燥并真空蒸发。如此获得的残余物通过硅胶色谱纯化,使用己烷∶乙酸乙酯=6∶4为洗脱液。获得249mg产物(产率=26%);1H NMR(CDCl3,300MHz)δ8.30(s,1H),8.10(brs,1H),7.70(s,1H),7.50(m,5H),6.90(d,1H),4.70(d,2H),3.90(s,3H),3.80(d,6H)。
3-[N-(4-三氟甲基苯甲基)氨基甲酰基]-4-甲氧基苯甲基丙二酸二甲酯(ST1933)的制备将3-[N-(4-三氟甲基苯甲基)氨基甲酰基]4-甲氧基亚苄基丙二酸二甲酯(148mg,0.33mmol)溶解于甲醇(18ml),添加74mg 10%Pd/C。将如此获得的混合物在室温下57psi下氢化18小时。此后,通过硅藻土过滤悬浮液,滤液通过在真空中蒸发溶剂而干燥,产生140mg白色固体产物(产率=94%);熔点(Mp)=126-128℃;TLC硅胶,洗脱液己烷∶乙酸乙酯=6∶4,前沿比(Fr)=0.2;1H NMR(CDCl3,300MHz)δ8.30(m,1H),8.10(d,1H),7.60(d,2H),7.50(d,2H),7.30(dd,1H),6.90(d,1H),4.70(d,2H),3.90(s,3H),3.70(s+t,7H),3.20(d,2H);HPLC柱Inertisil-ODS 3(5μm)(4.6×250mm),T=30℃,流动相CH3CN∶H2O(70∶30v/v),流速=0.75ml/min,205nm紫外检测器,保留时间=8.85分钟;KF=1.55%H2O;元素分析(E.A.)与C22H22F3NO6一致。
实施例254-甲氧基-3-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯(ST1861)的制备中间产物3-羟基-4-甲氧基亚苄基丙二酸二甲酯的制备除色谱纯化所用洗脱液(己烷∶乙酸乙酯=8∶2代替7∶3)外,按照实施例1所述方法(方法A)制备该产物,由在120ml无水甲苯中的3-羟基-4-甲氧基苯甲醛(3.00g,19.7mmol)、丙二酸二甲酯(2.60g,19.7mmol)、哌啶(251mg,2.95mmol)和冰醋酸(177mg,2.95mmol)开始制备。获得5.20g产物(产率=98%);1H NMR(CDCl3,300MHz)δ7.70(s,1H),7.00(m,2H),6.90(d,1H),5.60(brs,1H),4.00(s,3H),3.90(s,3H),3.80(s,3H)。
中间产物3-羟基-4-甲氧基苯甲基丙二酸二甲酯的制备在室温、60psi下,将在180ml甲醇中的3-羟基-4-甲氧基亚苄基丙二酸二甲酯(5.20g,19.5mmol)用10%Pd/C(520mg)氢化18小时。此后,通过硅藻土过滤反应混合物,并真空蒸发溶剂。获得4.90g产物(产率=93.5%);1H NMR(CDCl3,300MHz)δ6.70(m,3H),3.90(s,3H),3.70(s,6H),3.60(t,1H),3.20(d,2H)。
4-甲氧基-3-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯(ST1861)的制备除了反应时间(1夜代替5天)和色谱纯化所用洗脱液(己烷∶乙酸乙酯=7∶3代替8∶2)外,如实施例14所述(方法C)制备该产物,由3-羟基-4-甲氧基苯甲基丙二酸二甲酯(900mg,3.38mmol)与在9ml无水THF中的2-(4-氯苯基)乙醇(582mg,3.79mmol)、三苯基膦(1.15g,4.39mmol)和DEAD(765mg,4.39mmol)开始。获得550mg产物(产率=40%);熔点(Mp)=55-56℃;TLC硅胶,洗脱液己烷∶乙酸乙酯=7∶3,前沿比(Fr)=0.8;1H NMR(CDCl3,300MHz)δ7.25(m,4H),6.75(m,3H),4.20(t,2H),3.80(s,3H),3.70(s,6H),3.60(t,1H),3.10(m,4H);HPLC柱SymmetryC18(5μm)(3.9×150mm),T=30℃,流动相CH3CN∶NH4H2PO4(50∶50v/v),流速0.75ml/min,pH=3.2,205nm紫外检测器,保留时间=23.23分钟;元素分析(E.A.)与C21H23ClO6一致。
实施例263-(2-苯基乙氧基)-4-甲氧基苯甲基丙二酸二甲酯(ST1892)的制备向如实施例25所述制备的ST1861(475mg,1.16mmol)的25ml甲醇溶液中添加10%Pd/C(48mg),所得悬浮液在室温、50psi、H2下保持2天。此后,通过硅藻土过滤悬浮液,溶剂真空蒸发。所得残余物通过硅胶色谱纯化,使用己烷∶乙酸乙酯=8∶2为洗脱液,产生130mg产物(产率=30%);TLC硅胶,洗脱液己烷∶乙酸乙酯=6∶4,前沿比(Fr)=0.55;1H NMR(CDCl3,300MHz)δ7.30(m,5H),6.75(m,3H),4.20(t,2H),3.80(s,3H),3.70(s,6H),3.60(t,1H),3.10(m,4H);HPLC柱InertisilODS-3(5μm)(4.6×250mm),T=30℃,流动相CH3CN∶50mM NH4H2PO4(50∶50v/v),流速=0.75ml/min,pH=3.2,205nm紫外检测器,保留时间=8.92分钟;元素分析(E.A.)与C21H24O6一致。
实施例274-[2-(4-甲氧基苯基)乙氧基]苯甲基丙二酸二甲酯的制备除了反应时间(1夜代替5天)外,如实施例14所述(方法C)制备该产物,由在15ml THF中的如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(600mg,2.52mmol)、2-(4-甲氧基苯基)乙醇(383mg,2.52mmol)、DEAD(568mg,3.27mmol)和三苯基膦(856mg,3.27mmol)开始。获得277mg产物(产率=29.5%);TLC硅胶,洗脱液己烷∶乙酸乙酯=8∶2,前沿比(Fr)=0.2;1H NMR(CDCl3,300MHz)δ7.20(d,2H),7.10(d,2H),6.80(m,4H),4.10(t,2H),3.80(s,3H),3.70(s,6H),3.60(t,1H),3.15(d,2H),3.00(t,2H);HPLC柱Inertisil ODS-3(5μm)(4.6×250mm),T=30℃,流动相CH3CN∶H2O(60∶40v/v),流速0.75ml/min,pH=按现状,205nm紫外检测器,保留时间=23.93分钟;元素分析(E.A.)与C21H24O6一致。
实施例284-[3-(4-甲氧基苯基)丙氧基]苯甲基丙二酸二甲酯(ST1894)的制备除了反应时间(1夜代替5天)外,如实施例14所述(方法C)制备该产物,由如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(600mg,2.52mmol)与在15ml无水THF中的3-(4-甲氧基苯基)-1-丙醇(419mg,2.52mmol)、DEAD(568mg,3.27mmol)和三苯基膦(857mg,3.27mmol)开始。获得400mg产物(产率=41.1%);TLC硅胶,洗脱液己烷∶乙酸乙酯=8∶2,前沿比(Fr)=0.22;1H NMR(CDCl3,300MHz)δ7.10(dd,4H),6.80(dd,4H),3.90(t,2H),3.80(s,3H),3.70(s,6H),3.60(t,1H),3.20(d,2H),2.70(t,2H),2.00(m,2H);HPLC柱Inertisil ODS-3(5μm)(4.6×250mm),T=30℃,流动相CH3CN∶H2O(60∶40v/v),流速0.75ml/min,pH=按现状,205nm紫外检测器,保留时间=32.46分钟;KF=0.15%H2O;元素分析(E.A.)与C22H26O6一致。
实施例294-[2-(2-萘基)乙氧基]苯甲基丙二酸二甲酯的制备除了反应时间(2天代替5天)和色谱纯化所用洗脱液(己烷∶乙酸乙酯=9∶1代替8∶2)外,如实施例14所述方法(方法C)制备该产物,由在15ml无水THF中的如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(476mg,2mmol)、2-萘-乙醇(344mg,2mmol)、DEAD(451mg,2.6mmol)和三苯基膦(681mg,2.6mmol)开始。如此获得的产物用异丙醇结晶进一步地纯化。获得167mg产物(产率=21.3%);熔点(Mp)=68.5℃;TLC硅胶,洗脱液己烷∶乙酸乙酯=8∶2,前沿比(Fr)=0.7;1H NMR(CDCl3,300MHz)δ7.80(m,4H),7.40(m,3H),7.10(d,2H),6.90(d,2H),4.20(t,2H),3.70(s,6H),3.60(t,1H),3.20(t,2H),3.10(d,2H);HPLC柱Symmetry-C18(5μm)(4.6×75mm),T=室温,流动相CH3CN∶H2O(60∶40v/v),流速0.9ml/min,pH=按现状,205nm紫外检测器,保留时间=10.80分钟;KF=0.3%H2O;元素分析(E.A.)与C24H24O5一致。
实施例30(2S)-2-苯甲酰氨基-3-[4-[(4-甲氧基苯甲基)氨基甲酰基]氧苯基]丙酸乙酯(ST1500)的制备方法D由溶解于无水THF(5ml)中的4-甲氧基苯甲基异氰酸酯(400mg,2.24mmol)和N-苯甲酰基-L-酪氨酸乙酯(700mg,2.24mmol)制备该产物。向此溶液中添加NEt3(20μl),反应物在室温下搅拌18小时。溶液蒸发,产生980mg白色固体产物(产率=92%);熔点(Mp)=149-151℃;[a]D20=+69.3(c=0.5%,在CHCl3中);TLC硅胶,洗脱液乙酸乙酯∶CH2Cl2=2∶8,前沿比(Fr)=0.61;1H NMR(CDCl3,300MHz)δ7.80(d,2H),7.50(m,3H),7.30(d,2H),7.10(dd,4H),6.90(d,2H),6.60(d,1H),5.30(m,1H),5.05(q,1H),4.40(d,2H),4.20(q,2H),3.80(s,3H),3.25(m,2H),1.30(t,3H);HPLC柱Symmetry(5μm)(250×4.6mm),流动相CH3CN∶50mM KH2PO4(50∶50v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=19.16分钟;KF=0.8%H2O;元素分析(E.A.)与C27H28N2O6一致。
实施例314-[[(4-甲氧基苯甲基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST1538)的制备除反应溶剂蒸发后获得的残余物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=3∶7为洗脱液外,如实施例30所述(方法D)制备该产物,在无水THF(10ml)和NEt3(20μl)中,由4-甲氧基苯甲基异氰酸酯(400mg,2.58mmol)和如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(700mg,3.02mmol)开始制备,产生740mg白色固体产物(产率=72%);熔点(Mp)=78.6℃;TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.22;1H NMR(CDCl3,300MHz)δ7.22(d,2H),7.20(d,2H),7.10(d,2H),6.90(d,2H),5.20(m,1H),4.40(d,2H),3.80(s,3H),3.70(s,6H),3.60(t,1H),3.20(d,2H);HPLC柱Symmetry(5μm)-(250×4.6mm),流动相CH3CN∶H2O(50∶50v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=16.12分钟;元素分析(E.A.)与C21H23NO7一致。
实施例324-[[(4-三氟甲苯基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST1620)的制备除反应溶剂蒸发后获得的残余物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=3∶7为洗脱液外,如实施例30所述(方法D)制备该产物,在无水THF(10ml)和NEt3(20μl)中,由4-三氟甲苯基异氰酸酯(410mg,2.19mmol)和如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(600mg,2.52mmol)开始制备,产生350mg白色固体产物(产率=37.1%);熔点(Mp)=109.1℃;TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.44;1H NMR(CDCl3,300MHz)δ7.60(q,4H),7.20(d,2H),7.10(d,3H),3.70(s,6H),3.60(t,1H),3.20(d,2H);HPLC柱Symmetry(5μm)(250×4.6mm),流动相CH3CN∶H2O(60∶40v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=16.44分钟;元素分析(E.A.)与C20H18F3NO6一致。
实施例334-[[(2.4-二氯苯基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST1818)的制备除反应溶剂蒸发后获得的残余物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=2∶8为洗脱液外,如实施例30所述(方法D)制备该产物,由在无水THF(3ml)中的2,4-二氯苯基异氰酸酯(73mg,0.38mmol)和如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(100mg,0.42mmol)与NEt3(10μl)开始制备,产生120g白色固体产物(产率=74%);熔点(Mp)=84℃;TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.39;1HNMR(CDCl3,300MHz)δ8.10(brd,1H),7.40(m,2H),7.22(m,3H),7.15(d,2H),3.70(s+t,7H),3.20(d,2H);HPLC柱Inertisil ODS-3(5μm)-(250×4.6mm),流动相CH3CN∶H2O(60∶40v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=28.13分钟;元素分析(E.A.)与C19H17Cl2NO6一致。
实施例344-[[(4-氯苯基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST1696)的制备除溶剂蒸发后,将反应残余物溶解于乙酸乙酯(130ml)中并用0.1NNaOH溶液萃取外,如实施例30所述(方法D)制备该产物,由在无水THF(16.6ml)中的4-氯苯基异氰酸酯(560mg,3.65mmol)和如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(1.00g,4.20mmol)与NEt3(20μl)开始制备。溶剂蒸发后所得残余物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=2∶8作为洗脱液,产生550mg白色固体产物(产率=38%);熔点(Mp)=125-127℃;TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.37;1H NMR(CDCl3,300MHz)δ7.40(d+s,2H),7.30-7.20(m,4H),7.10(d,2H),6.90(brs,1H),3.70(s,6H),3.65(t,1H),3.20(d,2H);HPLC柱Symmetry C18(5μm)-(250×4.6mm),流动相CH3CN∶H2O(65∶35v/v),pH=按现状,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=14.78分钟;元素分析(E.A.)与C19H18ClNO6一致。
实施例354-[2-(吡啶(pyridinio))乙氧基]苯甲基丙二酸二甲酯甲磺酸盐(ST1799)的制备中间产物4-[2-(羟基)乙氧基]亚苄基丙二酸二甲酯的制备向在无水DMF(40ml)中的4-羟基亚苄基丙二酸二甲酯(2.00g,8.47mmol)中添加NaH(244mg,10.2mmol),过约30分钟后,加入2-溴乙醇(1.37g,11.0mmol)。令反应混合物在70℃保持24小时。此后,向混合物中加入水(200ml),水相用乙酸乙酯(2×100ml)萃取。有机相用水(2×50ml)洗,过无水硫酸钠干燥,然后蒸发,产生2.00g油状产物(产量=84%);1H NMR(CDCl3,300MHz)δ7.70(s,1H),7.40(d,2H),6.90(d,2H),4.10(t,2H),4.00(t,2H),3.85(d,6H)。
中间产物4-[2-(羟基)乙氧基]苯甲基丙二酸二甲酯的制备由4-[2-(羟基)乙氧基]亚苄基丙二酸二甲酯(4.50g,16.0mmol)通过在甲醇(120ml)中在氢气氛(50psi)下用10%Pd/C(500mg)进行催化氢化24小时制备该产物。此后,将溶液用硅藻土过滤,将溶剂蒸发,产生4.20g油状产物(产率=93%);1H NMR(CDCl3,300MHz)δ7.10(d,2H),6.85(d,2H),4.10(t,2H),3.95(t,2H),3.70(s,3H),3.65(t,1H),3.20(d,2H)。
中间产物4-[2-(甲磺酰基)乙氧基]苯甲基丙二酸二甲酯的制备在0℃,向4-[2-(羟基)乙氧基]苯甲基丙二酸二甲酯(2.00g,7.00mmol)的CH2Cl2(50ml)溶液中滴加无水吡啶(1.66g,21.0mmol)和甲磺酰氯(2.43g,21.0mmol)。添加结束后,将混合物在50℃放6小时。将溶剂蒸发后,残余物再溶解于乙酸乙酯(100ml)中,有机相用水(2×50ml)洗,然后用1N HCl(2×50ml)洗,再用水洗至中性pH。有机相过无水硫酸钠干燥,蒸发,产生2.02g油状产物(产率=80%);1H NMR(CDCl3,300MHz)δ7.10(d,2H),6.85(d,2H),4.60(t,2H),4.22(d,2H),3.70(s,3H),3.65(t,1H),3.20(d,2H),3.10(s,3H)。
4-[2-(吡啶(pyridinio))乙氧基]苯甲基丙二酸二甲酯甲磺酸盐(ST1799)的制备方法F由溶解于吡啶(15ml)的4-[2-(甲磺酰基)乙氧基]苯甲基丙二酸二甲酯(960mg,2.60mmol)制备该产物。反应混合物在75℃放18小时。溶剂蒸发后,油状残余物用二乙醚洗。仍不纯的最后残余物通过硅胶快速色谱纯化,使用CHCl3∶MeOH=5∶5为洗脱液,产生940mg油状产物(产率=82.3%);TLC硅胶,洗脱液CHCl4.2∶甲醇2.8∶异丙醇0.7∶乙酸1.05∶水1.05,前沿比(Fr)=0.48;1H NMR(CDCl3,300MHz)δ9.40(brd,2H),8.42(brt,1H),8.00(brd,2H),7.05(d,2H),6.75(d,2H),5.35(m,2H),4.5(m,2H),3.70(s,6H),3.60(t,1H),3.10(d,2H),2.80(s,3H);HPLC柱Spherisorb-SCX(5μm)(250×4.6mm),流动相CH3CN∶50mMNH4H2PO4(40∶60v/v),pH=3.5,T=30℃,流速=0.75ml/min,205nm紫外检测器,保留时间=18.65分钟;KF=4.5%H2O;元素分析(E.A.)与C19H22NO5.CH3O3S一致。
实施例364-[[(4-硝基苯基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST1865)的制备除反应溶剂蒸发后获得的残余物通过硅胶快速色谱纯化,使用己烷∶乙酸乙酯=1∶1为洗脱液外,如实施例30所述(方法D)制备该产物,在无水THF(4ml)和NEt3(20μl)中,由如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(180mg,0.75mmol)、4-硝基苯基异氰酸酯(124mg,0.75mmol)开始制备。获得221mg产物(产率=73%);熔点(Mp)=128-130℃;TLC硅胶,洗脱液己烷∶乙酸乙酯=1∶1,前沿比(Fr)=0.55;1HNMR(CDCl3,300MHz)δ8.20(d,2H),7.60(d,2H),7.30(d,2H),7.10(d,2H),3.70(s+t,7H),3.25(d,2H);HPLC柱Luna C18(5μm)(4.6×250mm),T=30℃,流动相0.05M NH4H2PO4∶CH3CN(4∶6v/v),pH=4,流速=1ml/min,205nm紫外检测器,保留时间=8.56分钟;元素分析(E.A.)与C19H18N2O8一致。
实施例373-[[(4-甲氧基苯甲基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST1907)的制备除反应时间为72小时代替18小时和溶剂真空蒸发后残余物通过硅胶色谱纯化,使用己烷∶乙酸乙酯=7∶3为洗脱液外,如实施例30所述(方法D)制备该产物,在无水THF(5ml)中,由如实施例22所述制备的3-羟基苯甲基丙二酸二甲酯(200mg,0.84mmol)、对-甲氧基苯甲基异氰酸酯(188mg,1.16mmol)和NEt3(20μl)开始制备。获得181mg产物(产率=54%);熔点(Mp)=62-64℃;TLC硅胶,洗脱液己烷∶乙酸乙酯=6∶4,前沿比(Fr)=0.36;1H NMR(CDCl3,300MHz)δ7.30(m,4H),7.00(m,2H),6.90(d,2H),5.20(brm,1H),4.40(m,2H),3.80(s,3H),3.70(s+t,7H),3.20(d,2H);HPLC柱Symmetry-C18(5μm)(4.6×250mm),T=30℃,流动相CH3CN∶H2O(1∶1v/v),pH=按现状,流速=0.75ml/min,205nm紫外检测器,保留时间=17.58分钟;KF=0.18%H2O;元素分析(E.A.)与C21H23Cl2NO7一致。
实施例383-[[(4-丁基苯基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST1908)的制备除36小时后,再添加52.5mg(0.30mmol)对-丁基苯基异氰酸酯并且将反应物在室温下再放4天外,如实施例30所述(方法D)制备该产物,在5ml无水THF中,由如实施例22所述制备的3-羟基苯甲基丙二酸二甲酯(200mg,0.84mmol)、对-丁基苯基异氰酸酯(174mg,1.0mmol)和20μl NEt3开始制备。将溶剂真空蒸发,残余物通过硅胶色谱纯化,使用己烷∶乙酸乙酯=8∶2为洗脱液。获得130mg产物(产率=37.5%);熔点(Mp)=53-54℃;TLC硅胶,洗脱液己烷∶乙酸乙酯=8∶2,前沿比=0.26;1HNMR(CDCl3,300MHz)δ7.30(d,1H),7.20(m,2H),7.10(m,5H),6.80(brs,1H),3.70(s,6H),3.65(t,1H),3.20(d,2H),2.60(t,2H),1.60(m,2H),1.30(m,2H),0.90(t,3H);HPLC柱Symmetry-C18,(5μm)(4.6×250mm),T=30℃,流动相CH3CN∶H2O(7∶3v/v),pH=按现状,流速=0.75ml/min,205nm紫外检测器,保留时间=16.17分钟;元素分析(E.A.)与C23H27NO6一致。
实施例394-[[(4-丁基苯基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST1909)的制备除反应时间为24小时代替18小时和溶剂真空蒸发后产物通过硅胶色谱纯化,使用己烷∶乙酸乙酯=8∶2为洗脱液外,如实施例30所述(方法D)制备该产物,在5ml无水THF中,由如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(200mg,0.84mmol)、对-丁基苯基异氰酸酯(220mg,1.26mmol)和NEt3(20μl)开始制备,产生129mg产物(产率=37%);熔点(Mp)=90-92℃;TLC硅胶,洗脱液己烷∶乙酸乙酯=8∶2,前沿比(Fr)=0.23;1H NMR(CDCl3,300MHz)δ7.30(m,3H),7.10(d,2H),7.00(m,3H),6.80(brs,1H),3.70(s,6H),3.65(t,1H),3.25(d,2H),2.60(t,2H),1.60(m,2H),1.35(m,2H),0.90(t,3H);HPLC柱Symmetry-C18,(5μm)(4.6×250mm),T=30℃,流动相CH3CN∶H2O 7∶3(v/v),pH=按现状,流速=0.75ml/min,205nm紫外检测器,保留时间=15.96分钟;KF=0.52%H2O;元素分析(E.A.)与C23H27NO6一致。
实施例403-[[(4-氯苯基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST1856)的制备除溶剂真空蒸发后残余物用乙酸乙酯处理、过滤和滤液真空蒸发外,如实施例30所述(方法D)制备该产物,在30ml无水THF中,由如实施例22所述制备的3-羟基苯甲基丙二酸二甲酯(800mg,3.36mmol)、4-氯苯基异氰酸酯(774mg,5.04mmol)和NEt3(20μl)开始制备。所得残余物通过两次硅胶色谱纯化,第一次使用CHCl3∶己烷=8∶2为洗脱液,第二次用己烷∶乙酸乙酯=7∶3为洗脱液,产生520mg产物(产率=39.6%);熔点(Mp)=79-80℃;TLC硅胶,洗脱液己烷∶乙酸乙酯=6∶4,前沿比(Fr)=0.6;1H NMR(CDCl3,300MHz)δ7.40(d,1H),7.30(m,3H),7.10(m,2H),6.90(brs,1H),3.70(s+t,7H),3.25(d,2H);HPLC柱LunaC18(5μm)(4.6×75mm),T=50℃,流动相0.05M NaH2PO4∶CH3CN(50∶50v/v),流速=1ml/min,pH=按现状,205nm紫外检测器,保留时间=24.34分钟;元素分析(E.A.)与C19H18ClNO6一致。
实施例41(Z)-2-乙氧基-3-[4-[2-(4-氯苯基)乙氧基]苯基]乙基丙烯酸酯(ST2135)和(E)-2-乙氧基-3-[4-[2-(4-氯苯基)乙氧基]苯基]乙基丙烯酸酯(ST2136)的制备膦酸重氮基乙酸三乙酯的制备该产物如Tetrahedron,1992,48(19),3991-4004所述制备,由膦酸乙酸三乙酯(8.60g,38.1mmol)、80%NaH(1.04g,41.86mmol)和甲苯磺酰叠氮化物(tosylazide)(7.50g,38.1mmol)开始,产生6.60g产物(产率=69%)。分析数据同该文献报道的一样。
2-乙氧基膦酸乙酸三乙酯的制备该产物如Tetrahedron,1992,48(19),3991-4004所述方法制备,由膦酸重氮基乙酸三乙酯(5.00g,19.9mmol)、无水乙醇(36ml)和二价铑乙酸盐二聚物(88.3mg,0.199mmol)开始,产生3.20g产物(产率=60%)。1HNMR(CDCl3,300MHz)δ4.30-4.20(m,7H),3.70(dq,2H),1.40(m,12H)。
(Z)-2-乙氧基-3-[4-[2-(4-氯苯基)乙氧基]苯基]乙基丙烯酸酯(ST2135)和(E)-2-乙氧基-3-[4-[2-(4-氯苯基)乙氧基]苯基]乙基丙烯酸酯(ST2136)的制备方法H在0℃,将2-乙氧基膦酸乙酸三乙酯(3.1g,11.5mmol)添加到80%NaH(384mg,12.78mmol)在无水THF(20ml)中的悬浮液中,在室温下过大约30分钟,添加如实施例20所述制备的溶解于无水THF(20ml)中的4-[2-(4-氯苯基)乙氧基]苯甲醛(2.4g,9.2mmol)。加料结束后,将反应混合物在室温下搅拌20小时。待溶剂真空蒸发后,将残余物用两次硅胶色谱纯化,第一次使用乙酸乙酯∶己烷=2∶8,第二次使用乙酸乙酯∶己烷=5∶95作为洗脱液。获得2.70g两种异构体的混合物(产量=63%),该物质在随后的制备中原样用于ST2211(实施例43)和ST2130(实施例42)的合成。为了分离Z和E异构体,再通过两次硅胶色谱进一步纯化该混合物,第一次使用乙酸乙酯∶己烷=5∶95,第二次使用CH2Cl2作为洗脱液,产生330mg的ST2135(Z异构体)半固体(产率=9.6%)和380mg的ST2136(E异构体)油状产物(产率=11%)。
ST2135(Z异构体)的分析数据TLC硅胶,洗脱液乙酸乙酯∶己烷=2∶8,前沿比(Fr)=0.32;1HNMR(CDCl3,300MHz)δ7.65(d,2H),7.22(dd,4H),6.95(s,1H),6.85(d,2H),4.30(q,2H),4.20(t,2H),4.00(q,2H),3.10(t,2H),1.40(t,6H);HPLC柱Inertisil ODS-3 C18(5μm)(250×4.6mm),流动相CH3CN∶H2O(85∶15v/v),pH=按现状,T=室温,流速=0.9ml/min,205nm紫外检测器,保留时间=16.67分钟;元素分析(E.A.)与C21H23ClO4一致。
ST2136(E异构体)的分析数据TLC硅胶,洗脱液乙酸乙酯∶己烷=2∶8,前沿比(Fr)=0.36;1HNMR(CDCl3,300MHz)δ7.25(dd,4H),7.10(d,2H),6.80(d,2H),6.10(s,1H),4.20(q+t,4H),3.90(q,2H),3.05(t,2H),1.40(t,3H),1.18(t,3H);HPLC柱Inertisil ODS-3 C18(5μm)(250×4.6mm),流动相CH3CN∶H2O(85∶15v/v),pH=按现状,T=室温,流速=0.9ml/min,205nm紫外检测器,保留时间=10.79分钟;元素分析(E.A.)与C21H23ClO4一致。
实施例42(R.S)-2-乙氧基-3-[4-[2-(苯基)乙氧基]苯基]乙基丙酸酯(ST2130)的制备向如实施例41所述获得的ST2135和ST2136混合物(600mg,1.6mmol)的无水乙醇(20ml)溶液中添加10%Pd/C(60mg),将混合物留置40psi氢气氛、室温下6小时。硅藻土过滤后,将溶剂真空蒸发,残余物通过硅胶色谱纯化,使用己烷∶乙酸乙酯=95∶5为洗脱液,产生470mg产物(产率=86%);TLC硅胶,洗脱液乙酸乙酯∶己烷=2∶8,前沿比(Fr)=0.46;1H NMR(CDCl3,300MHz)δ7.25(dd,4H),7.18(d,2H),6.80(d,2H),4.20(t,4H),3.95(t,1H),3.60(m,1H),3.35(m,1H),3.10(t,2H),2.90(d,2H),1.22(t,3H),1.18(t,3H);HPLC柱Inertisil ODS-3C18(5μm)(250×4.6mm),流动相CH3CN∶H2O(85∶15v/v),pH=按现状,T=室温,流速=0.9ml/min,205nm紫外检测器,保留时间=8.98分钟;元素分析(E.A.)与C21H26O4一致。
实施例43(R,S)-2-乙氧基-3-[4-[2-(4-氯苯基)乙氧基]苯基]甲基丙酸酯(ST2211)的制备向如实施例41所述获得的ST2135和ST2136混合物(1.15g,3.06mmol)的无水甲醇(73ml)溶液中添加镁粉(1.17g)和少量I2晶体,将混合物留置室温下6小时。此后,将溶剂蒸发,向残余物中加水并用1NHCl溶液酸化至pH2,水相用二氯甲烷萃取。有机相过无水硫酸钠干燥,将溶剂真空蒸发。残余物用硅胶色谱纯化,使用乙酸乙酯∶己烷=5∶95作为洗脱液,产生790mg油状产物(产率=71%);TLC硅胶,洗脱液乙酸乙酯∶己烷=2∶8,前沿比(Fr)=0.42;1H NMR(CDCl3,300MHz)δ7.25(m,4H),7.20(d,2H),6.80(d,2H),4.20(t,2H),3.95(t,1H),3.70(s,3H),3.60(m,1H),3.40(m,1H),3.10(t,2H),3.00(d,2H),1.20(t,3H);HPLC柱Inertisil ODS-3 C18(5μm)(250×4.6mm),流动相CH3CN∶H2O(85∶15v/v),pH=按现状,T=室温,流速=1ml/min,205nm紫外检测器,保留时间=6.56分钟;元素分析(E.A.)与C20H23ClO4一致。
实施例444-[2-(2,3-二甲基-1-吲哚基)乙氧基]苯甲基丙二酸二甲酯(ST2206)的制备中间产物2,3-二甲基-1-(2-苄氧基乙基)吲哚的制备向2,3-二甲基-1-吲哚(2.00g,13.8mmol)的无水DMSO(80ml)溶液中添加研制后的KOH(1.55g,27.6mmol)和苄基2-溴乙基醚(5.80g,27.6mmol)。将反应混合物留置室温下20小时。此期结束时向混合物中加水(200ml),产物用乙酸乙酯萃取(3×100ml)。有机萃取物过无水硫酸钠干燥,溶剂真空蒸发,产生3.20g油状产物(产率=83%);1HNMR(CDCl3,300MHz)δ7.55(d,1H),7.30-7.10(m,8H),4.42(s,2H),4.30(t,2H),3.80(t,2H),2.40(s,3H),2.30(s,3H)。
中间产物2,3-二甲基-1-(2-羟基乙基)吲哚的制备由溶解于无水乙醇(100ml)中的2,3-二甲基-1-(2-苄氧基乙基)吲哚(3.20g,11.5mmol)与10%Pd/C(800mg)在50psi氢气氛、室温下反应4天来制备该产物。反应混合物经硅藻土过滤后,将有机溶剂真空蒸发,残余物用硅胶色谱纯化,使用己烷∶乙酸乙酯=6∶4为洗脱液,产生900mg产物(产率=44%);1H NMR(CDCl3,300MHz)δ7.60(brd,1H),7.30(d,1H),7.15(m,2H),4.30(t,2H),3.95(t,2H),2.40(s,3H),2.30(s,3H)。
4-[2-(2,3-二甲基-1-吲哚基)乙氧基]苯甲基丙二酸二甲酯(ST2206)的制备除反应时间由1天代替5天和纯化中所用洗脱液即己烷∶乙酸乙酯=7∶3代替8∶2外,按照实施例14所述方法(方法C)来制备该产物,在90ml无水THF中,由如实施例13所述制备的4-羟基苯甲基丙二酸二甲酯(1.13g,4.76mmol)、2,3-二甲基-1-(2-羟乙基)吲哚(900mg,4.76mmol)、DIAD(1.25g,6.2mmol)和三苯基膦(1.62g,6.2mmol)开始制备。产物经过两次硅胶色谱进一步纯化,第一次使用己烷∶乙酸乙酯=9∶1,第二次使用CH2Cl2作为洗脱液,产生506mg产物(产率=26%);TLC硅胶,洗脱液乙酸乙酯∶己烷=3∶7,前沿比(Fr)=0.50;1H NMR(CDCl3,300MHz)δ7.50(d,1H),7.30(d,1H),7.10(m,2H),7.05(d,2H),6.70(d,2H),4.50(t,2H),4.20(t,2H),3.70(s,3H),3.60(t,1H),3.10(d,2H),2.40(s,3H),2.20(s,3H);HPLC柱Inertisil-ODS-3(5μm)(250×4.6mm),流动相CH3CN∶H2O(80∶20v/v),pH=按现状,T=室温,流速=0.9ml/min,205nm紫外检测器,保留时间=9.96分钟;元素分析(E.A.)与C24H27NO5一致。
实施例45(R,S)-2-乙氧基-3-[3-[2-(4-氯苯基)乙氧基]苯基]甲基丙酸酯(ST2324)的制备中间产物(Z,E)-2-乙氧基-3-[3-[2-(4-氯苯基)乙氧基]苯基]乙基丙烯酸酯的制备如实施例41所述(方法H)制备该产物,将如实施例41所述制备的2-乙氧基膦酸乙酸三乙酯(3.6g,13.42mmol)在0℃添加到80%NaH(480mg,15.96mmol)在无水THF中的悬浮液中,在室温下过约30分钟后,添加溶解于无水THF(20ml)的3-[2-(4-氯苯基)乙氧基]苯甲醛(3.0g,11.50mmol)。将溶剂真空蒸发后,将残余物纯化,产生1.29g两种异构体的混合物(产率=30%);TLC硅胶,洗脱液乙酸乙酯∶己烷=2∶8,前沿比(Fr)=0.32;1H NMR(CDCl3,300MHz)δ7.65(d,2H),7.22(dd,4H),6.95(s,1H),6.85(d,2H),4.30(q,2H),4.20(t,2H),4.00(q,2H),3.10(t,2H),1.40(t,6H)。
(R,S)-2-乙氧基-3-[3-[2-(4-氯苯基)乙氧基]苯基]甲基丙酸酯(ST2324)的制备向(Z,E)-2-乙氧基-3-[3-[2-(4-氯苯基)乙氧基]苯基]乙基丙烯酸酯混合物(1.29g,3.44mmol)的无水甲醇(73ml)溶液中添加镁粉(1.65g)和少量I2晶体,将混合物在室温下留置24小时。此后,将溶剂蒸发,残余物中加水,并用1N HCl溶液酸化至pH2,水相用二氯甲烷萃取。有机相过无水硫酸钠干燥,溶剂真空蒸发。残余物通过硅胶色谱纯化,使用乙酸乙酯∶己烷=5∶95为洗脱液,产生916mg油状产物(产率=80%);TLC硅胶,洗脱液乙酸乙酯∶己烷=2∶8,前沿比(Fr)=0.45;1H NMR(CDCl3,300MHz)δ7.25-7.20(m,5H),6.80(m,3H),4.15(t,2H),4.00(t,1H),3.70(s,3H),3.60(m,1H),3.35(m,1H),3.05(t,2H),2.95(d,2H),1.15(t,3H);HPLC柱Inertisil ODS-3 C18(5μm)(250×4.6mm),流动相CH3CN∶H2O(85∶15v/v),pH=按现状,T=30℃,流速=1ml/min,205nm紫外检测器,保留时间=6.42分钟;元素分析(E.A.)与C20H23ClO4一致。
实施例465-[3-[2-(4-氯苯基)乙氧基]苯基亚甲基]噻唑烷-2.4-二酮(ST2431)的制备除反应时间(5小时代替7小时)外,如实施例1所述(方法A)制备该产物,由3-[2-(4-氯苯基)乙氧基]苯甲醛(1.22g,4.70mmol)在33ml无水甲苯中的溶液与噻唑烷-2,4-二酮(550mg,4.70mmol)、乙酸(37mg,0.62mmol)和哌啶(53mg,0.62mmol)反应。将混合物冷却后,分离黄色产物晶体,将其在0℃放置30分钟,然后过滤,先用冷甲苯、再用水研制,然后干燥。获得1.28g产物(产率=76%);熔点(Mp)=186-187℃;TLC硅胶,洗脱液CH3Cl∶CH3OH=9.8∶0.2,前沿比(Fr)=0.45;1HNMR(DMSOd6,300MHz)δ12.60(brs,1H),7.70(s,1H),7.40-7.30(m,6H),7.1 0(m,2H),4.25(t,2H),3.05(t,2H);HPLC柱SymmetryC18(5μm)(4.6×150mm),T=室温,流动相0.05M NH4H2PO4∶CH3CN(4∶6v/v),pH=按现状,流速=0.75ml/min,205nm紫外检测器,保留时间=11.25分钟;元素分析(E.A.)与C18H14NO3SCl一致。
实施例475-[3-[2-(4-氯苯基)乙氧基]苯基甲基]噻唑烷-2,4-二酮(ST2390)的制备向如实施例46所述制备的ST2431(900mg,2.50mmol)在无水甲醇(52ml)中的悬浮液中逐步少量地添加镁粉(972mg,40.0mmol)。将反应混合物留置25℃5小时。此后,将溶剂蒸发,残余物中加水,并用1N HCl溶液酸化至pH2,水相用二氯甲烷萃取。合并的有机相用饱和氯化钠溶液洗,过无水硫酸钠干燥,并真空蒸发干燥。如此获得的残余物通过硅胶色谱纯化,使用三氯甲烷为洗脱液,产生仍不纯的产物,将其用甲醇重结晶,然后通过硅胶色谱再次纯化,使用三氯甲烷为洗脱液,产生255mg产物(产率=28%);熔点(Mp)=90-91℃;TLC硅胶,洗脱液三氯甲烷∶甲醇=9.8∶0.2,前沿比(Fr)=0.45;1H NMR(DMSOd6,300MHz)δ12.00(brs,1H),7.40(m,5H),7.20(t,1H),6.80(m,3H),4.90(dd,1H),4.15(t,2H),3.35(m,1H),3.00(m,3H);HPLC柱SymmetryC18(5μm)(4.6×250mm),T=室温,流动相0.05M NH4H2PO4∶CH3CN(4∶6v/v),pH=按现状,流速0.7ml/min,205nm紫外检测器,保留时间=12.22分钟;元素分析(E.A.)与C18H16NO3SCl一致。
实施例483-[[(4-三氟甲苯基)氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST2413)的制备除反应溶剂蒸发后获得的残余物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=8∶2为洗脱液外,如实施例30(方法D)所述制备该产物,由4-三氟甲苯基异氰酸酯(1.29g,6.93mmol)和如实施例22所述制备的3-羟基苯甲基丙二酸二甲酯(1.10g,4.62mmol)在无水THF(30ml)和NEt3(20μl)中开始反应,产生650mg白色固体产物(产率=33%);熔点(Mp)=93-94℃;TLC硅胶,洗脱液乙酸乙酯∶己烷=2∶8,前沿比(Fr)=0.13;1H NMR(CDCl3,300MHz)δ7.60(m,4H),7.30(m,2H),7.05(m,2H),3.70(s+t,7H),3.20(d,2H);HPLC柱SymmetryC18(5μm)(150×4.6mm),流动相CH3CN∶H2O(60∶40v/v),pH=按现状,T=室温,流速=0.75ml/min,205nm紫外检测器,保留时间=8.77分钟;元素分析(E.A.)与C20H18F3NO6一致。
实施例493-[[(2,4-二氯苯基)-氨基甲酰基]氧]苯甲基丙二酸二甲酯(ST2424)的制备除反应溶剂蒸发后获得的残余物通过硅胶快速色谱纯化,使用乙酸乙酯∶己烷=2∶8为洗脱液外,如实施例30(方法D)所述制备该产物,由2,4-二氯苯基异氰酸酯(707mg,3.78mmol)和如实施例22所述制备的3-羟基苯甲基丙二酸二甲酯(600mg,2.52mmol)的无水THF(7ml)溶液与NEt3(10μl)开始反应,产生610mg产物(产率=56.9%);TLC硅胶,洗脱液乙酸乙酯∶己烷=2∶8,前沿比(Fr)=0.40;1H NMR(CDCl3,300MHz)88.20(d,1H),7.40(m,4H),7.10(m,2H),3.70(s+t,7H),3.25(d,2H);HPLC柱Symmetry C18(5μm)-(150×4.6mm),流动相CH3CN∶H2O(60∶40v/v),pH=按现状,T=室温,流速=0.75ml/min,205nm紫外检测器,保留时间=9.51分钟;元素分析(E.A.)与C19H17Cl2NO6一致。
本文所述的本发明化合物可用作药物,特别是用于制备具有血清葡萄糖和血清脂降低活性的药物。优选的应用是预防和治疗糖尿病,特别是2型糖尿病及其并发症、综合征X、各种形式的胰岛素抗性和高脂血症。
本文所述本发明化合物充分有利地具有良好的药理学活性,而肝脏毒性降低。
已对糖尿病小鼠模型进行了体内实验和对脂肪细胞3T3-L1细胞系进行了体外实验(报道于文献中可能的抗糖尿病活性的预测分析中-参见例如Sarges等,J.Med.Chem.,394783-4803,1996,Luo等,DiabeticMed 15367-374,1998和Bierer等,J Med Chem 41894-901,1998)。
药理活性在3T3-L1细胞中葡萄糖消耗的测定在分化的3T3-L1细胞中评估葡萄糖消耗在5%CO2的增湿环境中、37℃下,以密度为5×103/cm2接种小鼠成纤维细胞(3T3-L1)并在12-孔平板上含25mM葡萄糖的1ml DMEM中培养,并添加10%CS、4mM谷氨酰胺、1mM丙酮酸、50U/ml青霉素和50μg/ml链霉素。
融合后2-3天,添加1.5ml含0.5mM 3-异丁基-1-甲基黄嘌呤(IBMX)、1μM地塞米松和在25mM葡萄糖和10%FBS中的10μg/ml猪胰岛素的DMEM来诱导分化。
2天后,将细胞暴露于无IBMX和地塞米松的相同培养基中再培养2天。
然后将细胞维持在含25mM葡萄糖和10%FBS的DMEM中再过几天,间隔2-3天更换培养基(Clancy BM和Czech MP,J.Biol.Chem.,26512434-12443,1990;Frost SC和Lane M.D.,J.Biol. Chem.2602645-2652,1985)。
诱导分化后10-12天使用该细胞,通过评估甘油三酯累积进行监测。
为了评价葡萄糖消耗,将细胞在含25mM葡萄糖、0.25nM胰岛素(亚最大浓度)和溶解于DMSO的化合物(1、5、10、25μM)(终浓度0.1%)的DMEM中温育22小时。
使用罗格列酮作为阳性对照。
借助于Cobas Mira S自动分析仪(Roche),使用HK 125 GlucoseKit(ABX Diagnostics)对培养基中葡萄糖进行分析。评价被上述产品刺激的葡萄糖消耗为与对照化合物相比的%增加。
采用化合物22作为实例,表1给出与对照化合物(罗格列酮)相比,测定为诱导葡萄糖消耗增加40%的最低浓度。
从所得结果可以推论所研究的化合物能增加3T3-L1细胞中葡萄糖的消耗,其程度与参照化合物(罗格列酮)所达到的相似。
表1
在db/db小鼠中抗糖尿病和血清脂降低活性实验动物的突变使得可能开发出存在与肥胖、高脂血症和胰岛素抗性有关的非胰岛素依赖型糖尿病的模型,并且该模型能使我们测试新的抗糖尿病化合物的效力(Reed和Scribner,Diabetes,obesity,andmetabolism 175-86,1999)。
常被药物公司使用的遗传性糖尿病小鼠模型是C57BL/KsJ db/db小鼠。
此模型的遗传基础是苗条蛋白受体基因缺陷,导致苗条蛋白抗性和引起饮食过多、肥胖、高胰岛素血症和胰岛素抗性,随后产生胰岛素分泌不足和高血糖症状(Kodama等,Diabetologia 37739-744,1994;Chen等,Cell 84491-495,1996)。
由于高血糖伴有肥胖和胰岛素抗性,db/db小鼠具有类似人的2型糖尿病的特征,被用于测定胰岛素致敏化合物。
噻唑烷二酮构成一类所述化合物(Day,Diabet.Med.16179-192,1999;Mudaliar和Herry,Annu.Rev.Mred.52239-257,2001,Drexler等,Geriatrix 5620-33,2001)。
在投向市场的三种噻唑烷二酮中,曲格列酮由于其严重的肝脏毒性已被撤出,而其他两种化合物罗格列酮和吡格列酮能有效降低糖尿病高血糖症,但已知存在体重增加、水肿、肝脏毒性、LDL-胆固醇增加和贫血的副作用(Schoonjans和Auwerx,The Lancet 3551008-1010,2000;Peters,Am.J.Manag.Care 7587-595,2001;Gale,The Lancet3571870-1875,2001)。
实验中的C57BL/KsJ db/db小鼠由Jackson实验室提供(经由Ch.River)。在标准条件(22±2℃,55±15%湿度;换气15-20/小时;12小时光-暗循环,光照从上午7.00到下午7.00)下,给予标准4 RF21饮食(Mucedola),适应环境10天后,在吸收后状态下(从上午8.30到下午4.30禁食),借助于Jelco 22G导管(Johnson and Johnson)从尾静脉取血样。监测葡萄糖、胰岛素、甘油三酯、胆固醇、游离脂肪酸和尿素的血浆水平以确保处理组中小鼠的良好匹配分布。
处理开始时,检查动物体重,进行监测水和食物消耗的准备。
将小鼠进行每天口服两次(上午8:30和下午6.30)处理2周。
化合物给药剂量相当于10ml/kg载体(1%CMC,含在去离子水中的0.5%吐温80)中的25mg/kg实施例22中化合物。罗格列酮的给药剂量是5mg/kg(Lohray等,J.Med.Chem.41,1619-1630,1998)。
最后处理后7小时,在吸收后状态下(从上午9.30到下午4.30禁食)处死(通过断头术)动物。测量多种重要的脂类和碳水化合物代谢变量的血清水平。
本文所述本发明化合物显示出以类似于参照化合物罗格列酮的方式降低血清甘油三酯水平的良好能力。表2以举例方式显示实施例22中化合物和罗格列酮的血清脂降低活性。
此外,所述化合物象罗格列酮一样也能降低血清葡萄糖水平(表3),而实现此效果时体重和转氨酶(GPT)值变化较小,这表示对肝脏的损害较小(表4)。例如,表3提供实施例22化合物降低血清葡萄糖的活性,表4提供对于同一化合物体重和转氨酶值的改变,仍与罗格列酮相比。
此外,与罗格列酮不同,本发明化合物增加HDL-胆固醇水平。例如,表4提供实施例22化合物和参照化合物罗格列酮的HDL-胆固醇水平变化。HDL-胆固醇增加指示PPARα激动作用和动脉粥样硬化风险降低。事实上,PPARα激动作用增加组织中的脂肪酸氧化,减少胞内甘油三酯的积聚,而胞内甘油三酯会促进胰岛素抗性(Virkamki等,Diabetes 50,2337-2343,2001;Mensink等,Diabetes 50,2545-2554,2001;Kelley和Goodpaster,Diabetes Care 24,933-941,2001)。例如,已知贝特类(fibrates)是PPARα激动剂,不仅能降低高脂血症,而且能改善胰岛素敏感性(Matsui等,Diabetes 46,348-353,1997)、动脉粥样硬化和心血管损伤(Fruchart等,Current Atherosclerosis Reports 3,83-92,2001),动脉粥样硬化和心血管损伤是糖尿病病程中一种严重的并发症和死亡原因。
这些化合物纠正高脂血症、糖尿病和伴随这些疾病的心血管并发症的有效性是明显的。
表2在db/db小鼠中的血清脂降低活性
学生‘t’-检验▲表示相对对照,P<0.001。
表3在db/db小鼠中的血清葡萄糖降低活性
学生‘t’-检验△表示相对对照,P<0.01。
表4在db/db小鼠中体重增加和GPT及HDL-胆固醇血清水平的变化
学生‘t’-检验▲表示相对对照,P<0.001。
本文所述本发明的主题是含有至少一种式(I)化合物作为其活性成分的药物组合物,或含一种或多种所述式(I)化合物联合用于治疗本文所述本发明所指疾病的其他活性成分,例如具有降低血清葡萄糖和血清脂的活性的其他产品作为其活性成分的药物组合物,以单独的剂型或适用于联合疗法的形式。本文所述本发明活性成分将是与药剂学常规使用的适宜的载体和/或赋形剂如最新版的“Remington’s PharmaceuticalSciences Handbook”中所述的那些的混合物。本发明组合物含治疗有效量的活性成分。剂量由本部门专家例如临床医生或初级保健护理医生根据待治疗的疾病类型和患者的状况确定,或伴随服用其他活性成分。例如我们可以指示0.1-200mg/天的剂量范围。
药物组合物的实例是允许经口或肠道外、静脉内、肌肉内、皮下和经皮给药的那些。适用于此目的的药物组合物是片剂、硬胶囊或软胶囊、粉剂、溶液、悬浮剂、糖浆剂、和用于当场配成液体药剂的固体形式。肠道外给药的组合物是例如所有的肌肉内、静脉内和皮下可注射形式,其形式为溶液、悬浮液和乳液。还可提及脂质体制剂。还包括其特征在于控制活性成分释放的形式,无论是口服形式-用适宜的层包衣的片剂、微胶囊化粉剂、与环糊精的复合物,或例如皮下类型的长效制剂形式如长效针剂或植入制剂。
权利要求
1.式(I)化合物 其中A是CH;2-4个碳原子的亚次烷基,特别是CH2-CH;2-4个碳原子的亚次烯基,特别是CH=C;Ar是单环或双环C6-C10芳基或杂芳基,含一个或多个选自氮、氧和硫的杂原子,可能被卤素、NO2、OH、C1-C4烷基和烷氧基取代,所述烷基和烷氧基可能被至少一个卤素取代;单环、双环或三环芳烷基或杂芳烷基,含一个或多个选自氮、氧和硫的杂原子,其中的烷基残基含1-3个碳原子,所述芳烷基或杂芳烷基可能被卤素、NO2、OH、C1-C4烷基和烷氧基取代,所述烷基和烷氧基可能被至少一个卤素取代;f是数字0或1;h是数字0或1;m是0-3的整数;n是数字0或1,如果n是0,R1不存在,COY直接结合到苯上;Q和Z可以相同或不同,选自NH、O、S、NHC(O)O、NHC(O)NH,NHC(O)S,OC(O)NH,S(CO)NH,C(O)NH和NHC(O);R选自R2、OR2;R1选自H、COW、SO3-、OR3、=O、CN、NH2、NHCO(C6-C10)Ar,其中Ar可能被卤素、NO2、OH、C1-C4烷基和烷氧基取代,所述烷基和烷氧基可能被至少一个卤素取代;R2选自H、直链或支链C1-C4烷基,可能被至少一个卤素取代;R3选自H、直链或支链C1-C4烷基,可能被至少一个卤素取代,(C6-C10)ArCH2,其中Ar可能被卤素、NO2、OH、C1-C4烷基和烷氧基取代,所述烷基和烷氧基可能被至少一个卤素取代;W选自OH、OR4、NH2;R4是直链或支链C1-C4烷基;Y选自OH、OR5、NH2;R5是直链或支链C1-C4烷基;或A、COY和R1共同形成下列类型的环 其药理学上可接受的盐、外消旋混合物、各对映体、几何异构体或立体异构体和互变异构体。
2.如权利要求1所述化合物,其中Ar是杂芳基,优选含氮为杂原子,并且优选f是0,m是1或2,Q是氧,R是氢。
3.如权利要求1所述化合物,其中Ar是芳基,可能被一个或多个卤素原子、烷基、烷氧基或低级卤代烷基、硝基、单-或二-烷基胺取代,并且优选f是0,m是0、1或2,Q是氧或HNC(O)O,R是氢。
4.如权利要求1-3中任一项所述的化合物,其中R1是COW。
5.如权利要求1所述化合物,选自下组i.4-[2-(1-吲哚基)乙氧基]亚苄基丙二酸二乙酯;ii.4-[2-(1-吲哚基)乙氧基]苯甲基丙二酸二乙酯;iii.4-[2-(1-吲哚基)乙氧基]亚苄基丙二酸二甲酯;iv.4-[2-(1-吲哚基)乙氧基]苯甲基丙二酸二甲酯;v.4-[2-(1-吲哚基)乙氧基]苯甲基丙二酸;vi.(2S)-氨基-2-[4-[2-(1-吲哚基)乙氧基]苯基]-乙酸甲酯;vii.4-[2-(1-吲哚基)乙氧基]苯甲酸甲酯;viii.3-[4-[2-(1-吲哚基)乙氧基]苯基]丙酸甲酯;ix.2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯;x.2-磺基-2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯钠盐;xi.(S)-2-苯甲酰氨基-2-[4-[2-(1-吲哚基)乙氧基]苯基]乙酸甲酯;xii.2-羟基-3-[4-[2-(1-吲哚基)乙氧基]苯基]丙酸甲酯;xiii.4-[2-[4-(二甲基氨基)苯基]乙氧基]苯甲基-丙二酸二甲酯;xiv.3-[4-[2-(1-吲哚基)乙氧基]苯基]-2-氰基-丙烯酸甲酯;xv.3-[4-[2-(1-吲哚基)乙氧基]苯基]-2-氰基-丙酸甲酯;xvi.4-[2-(3-吲哚基)乙氧基]亚苄基丙二酸二甲酯;xvii.4-[2-(1-萘基)乙氧基]苯甲基丙二酸二甲酯;xviii.4-[2-(2-吡啶基)乙氧基]苯甲基丙二酸二甲酯;xix.4-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯;xx.5-[4-[2-(4-氯苯基)乙氧基]苯基亚甲基]-噻唑烷-2,4-二酮;xxi.5-[4-[2-(4-氯苯基)乙氧基]苯基甲基]-噻唑烷-2,4-二酮;xxii.3-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯;xxiii.3-[2-(苯基)乙氧基]苯甲基丙二酸二甲酯;xxiv.3-[N-(4-三氟甲基苯甲基)氨基甲酰基]-4-甲氧基苯甲基丙二酸二甲酯;xxv.4-甲氧基-3-[2-(4-氯苯基)乙氧基]苯甲基丙二酸二甲酯;xxvi.3-(2-苯基乙氧基)-4-甲氧基苯甲基丙二酸二甲酯;xxvii.4-[2-(4-甲氧基苯基)乙氧基]苯甲基丙二酸二甲酯;xxviii.4-[3-(4-甲氧基苯基)丙氧基]苯甲基丙二酸二甲酯;xxix.4-[2-(2-萘基)乙氧基]苯甲基丙二酸二甲酯;xxx.(2S)-2-苯甲酰氨基-3-[4-(4-甲氧基苯甲基)氨基甲酰基]氧苯基]乙基丙酸酯;xxxi.4-[[(4-甲氧基苯甲基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯;xxxii.4-[[(4-三氟甲苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯;xxxiii.4-[[(2,4-二氯苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯;xxxiv.4-[[(4-氯苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯;xxxv.4-[(2-(吡啶)乙氧基)苯甲基丙二酸二甲酯甲磺酸盐;xxxvi.4-[[(4-硝基苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯;xxxvii.3-[[(4-甲氧基苯甲基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯;xxxviii.3-[[(4-丁基苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯;xxxix.4-[[(4-丁基苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯;xl.3-[[(4-氯苯基)氨基甲酰基]氧]苯甲基-丙二酸二甲酯;xli.(Z)-2-乙氧基-3-[4-[2-(4-氯苯基)乙氧基]苯基]乙基丙烯酸酯;xlii.(E)-2-乙氧基-3-[4-[2-(4-氯苯基)乙氧基]苯基]乙基丙烯酸酯;xliii.(R,S)-2-乙氧基-3-[4-[2-(苯基)乙氧基]苯基]乙基丙酸酯;xliv.(R,S)-2-乙氧基-3-[4-[2-(4-氯苯基)乙氧基]苯基]甲基丙酸酯;xlv.4-[2-(2,3-二甲基-1-吲哚基)乙氧基]苯甲基-丙二酸二甲酯。
6.如权利要求1-5中任一项所述的化合物,作为药物。
7.药物组合物,含至少一种权利要求1-5中任一项所述化合物,与药用可接受的载体和/或赋形剂混合。
8.如权利要求1-5中任一项所述化合物用于制备具有血清葡萄糖和血清脂降低活性的药物的应用。
9.如权利要求1-5中任一项所述化合物用于制备预防和治疗糖尿病,特别是2型糖尿病及其并发症、综合征X、各种形式的胰岛素抗性和高脂血症的药物的应用。
全文摘要
本发明描述了式(I)的化合物其中的基团的定义如下文,及其用作药物,特别是用作血清葡萄糖和血清脂降低剂的应用。所述药物用于预防和治疗糖尿病,特别是2型糖尿病及其并发症、综合征X和各种形式的胰岛素抗性,和高脂血症,并具有减轻的副作用,特别是肝脏毒性减轻或无肝脏毒性。
文档编号A61P3/04GK1617854SQ03802295
公开日2005年5月18日 申请日期2003年1月13日 优先权日2002年1月15日
发明者F·詹尼斯, E·塔松尼, N·德吕穆, T·布吕内蒂, M·O·坦迪, A·阿杜尼, P·佩松托 申请人:希格马托制药工业公司