一种超声波气体流量计及测量方法
【技术领域】
[0001] 本发明设及管道内流体的流速流量测量领域,具体设及一种超声波气体流量计及 测量方法。
【背景技术】
[0002] 为提高安全性及生产效率,天然气、石油、化工,及蒸气等行业需要大量的气体流 量在线检测设备。目前采用的一般是传统的机械式流量计,如满街,满轮,转子和文丘里等 流量计。由于机械转动部件引起容易磨损,或由于传感器受介质的污染乃至腐蚀,运些流量 计的性能容易变差,一般都需要定期离线维护和年检。并且,其性能受被测流体溫度、压力、 粘度、密度等参数的影响较大。
[0003] 管段式时差法超声波气体流量计是一种更先进的气体测量设备。运种流量计的管 段上预先装有一对或多对超声传感器。每对两只传感器沿流体流动方向上下游按一定距离 分开布置。通过测量超声波脉冲沿顺流方向和逆流方向的传播时间差来测量流体速度。运 种技术的优点是没有转动部件,无需经常维护,其精度可W做到很高,但其成本比传统的机 械式流量计要高两个数量级,无法推广使用。另外一个主要缺点是其超声传感器直接与介 质接触,因此无法对强腐蚀性、放射性及易燃易爆介质进行检测。除此而外,其安装跟传统 的流量计一样,仍然需要把管道断开,要求工厂停产,并通过严格的安全预防程序,代价很 大。
[0004] 近年来国际上出现了基于时差法的外夹式超声波气体流量计。运种流量计跟前面 提到的管段式超声波气体流量计的工作原理是一样的,仍然通过测量超声波脉冲沿顺流方 向和逆流方向的传播时间差来测量流体速度。但是,运种流量计的传感器不是装在管段里 的,而是直接绑在气体管道外面的,因此,无需破坏管道,无需停工停产。
[0005] 然而,由于管道壁金属与管内气体的密度相差太大,超声波穿透管道壁的能力很 差,99.9999%的能量都损失掉了。特别是当管内气体压力不太高或管径比较小时,运些损 失的能量残留在管道壁里变成了强大的噪音,使得有用的信号几乎无法被检测到,因此,运 种技术只能用在气压较高的场合。
【发明内容】
[0006] 本发明所要解决的技术问题是提供一种超声波气体流量计及测量方法,将超声波 发生传感器及超声波接收器传感器W外夹方式固定在气体管道上,气体流量计算基于互相 关原理,通过测量两个受流体调制的超声信号之间的相关时间延迟实现。
[0007] 为解决上述技术问题,本发明采用的技术方案是:
[000引一种超声波气体流量测量方法,包括W下步骤:
[0009]在管道一侧通过超声波发生传感器,发送一定频率的超声波信号到管道里的气体 介质中;在管道另一侧通过两个超声波接收传感器,接收经过流体调制后的超声波信号;超 声波接收传感器接收到流体调制后的信号,将该信号转换成电信号送到接收器;接收器对 接收到的电信号进行放大、滤波、相关正交解调;计算出解调后的两路信号的时间差,即延 迟时间τ?2;根据公式ti2 = D/V计算出流体的速度V,式中,D为两个超声波接收器之间的距 离;计算流体流量。
[0010] 根据上述方案,所述相关正交解调,即对两路调制信号之间的互相关函数计算采 用专用高速信号处理DSP忍片。
[0011] 根据上述方案,还包括对超声波进行吸波处理,提高超声波信号的信噪比,即在两 个超声波接收传感器之间的管段上W及超声波接收传感器的上下游裹一层吸声材料。
[0012] 根据上述方案,包括将超声波发生传感器所发送的超声波信号按一定入射角度有 效地发送进管道,或把一定角度的超声波信号从管道有效地接收回来,所述角度为超声波 信号入射方向与管道壁法线之间的夹角,且角度在30度到60度之间。
[0013] 根据上述方案,在所述相关正交解调中,采用互相关时延算法计算解调后两路信 号的互相关函数。
[0014] -种超声波气体流量计,在管道一外侧固定有超声波发生传感器,另一外侧固定 有第一超声波接收传感器,在与所述第一超声波接收传感器相距一定距离设置有第二超声 波接收传感器,所述第二超声波接收传感器固定在管道上,与第一超声波接收传感器同侧; 所述第一超声波接收传感器连接到第一前置放大单元,所述第二超声波接收传感器连接到 第二前置放大单元,第一前置放大单元和第二前置放大单元共同连接到信号处理单元,所 述信号处理单元连接到流速计算单元,所述流速计算单元连接到显示单元。
[0015] 根据上述方案,所述第一超声波接收传感器与第二超声波接收传感器之间的距离 为管道直径的1到3倍。
[0016] 根据上述方案,在所述超声波发生传感器和超声波接收传感器上还固定有声模, 在所述声模与管道壁触面之间添加有禪合剂,用于将超声波信号有效地入射到管道内部流 体中。
[0017] 根据上述方案,在超声波发生传感器和超声波接收传感器之间,或者整个管道测 量段固定有一个或多个声吸收块。
[0018] 根据上述方案,所述超声波发生传感器和超声波接收传感器采用PZT压电陶瓷材 料。
[0019] 与现有技术相比,本发明的有益效果是:本发明没有机械转动部件,不磨损,使用 寿命长;造价低,适合推广使用;整体装置都是W外绑式安装在管道外壁,使用和维修方便; 本发明测量精度高;本发明不但可W测量高压气体,还可W测量很低压力的气体,不但可W 测量大口径管道,还可W测量小口径管道,还可W用来测量气体与液体或气体与固体的两 相流体。
【附图说明】
[0020] 图1是本发明中单频率互相关测量系统结构示意图。
[0021] 图2是本发明中互相关正交解调器及信号处理单元。
[0022] 图3是本发明中第一超声波接收传感器接收到的信号。
[0023] 图4是本发明中第二超声波接收传感器接收到的信号。
[0024] 图5是本发明中对两个超声波接收传感器接收到的信号进行解调后的信号。
[0025]图6是本发明中互相关测量系统的信号解析结果。
[00%]图7是本发明中声吸收块结构示意图。
[0027] 图8是本发明中声模结构示意图。
[0028] 图9是本发明中超声吸声块对多相关峰的作用示意图。
[0029] 图10是本发明中双频率互相关测量系统结构示意图。
【具体实施方式】
[0030] 下面结合附图和【具体实施方式】对本发明作进一步详细的说明。
[0031] 如图1所示,本发明系统包括一个超声波信号发射换能器Ts(超声波发生传感器), 两个或多个超声波信号接收传感器(Τη,Τη,···,?Υη)(超声波接收传感器),信号处理模块 Ρ1和流速计算显示单元U1。信号发送和采集传感器W外绑的方式按一定距离安装在气体管 道外壁,管道材料可W为碳钢、不诱钢、PVC材料等,管道内流动的待测流速介质为气体、蒸 汽或气液二相介质。换能器由ΡΖΤ压电陶瓷材质制成。压电陶瓷外安装声模I将超声波信号 按一定的角度入射,换能器的声模跟管道外壁接触面用声禪合剂,W提高声波的禪合效率。
[0032] 本发明系统的测量对象为管道中流体速度,系统由信号发射和采集传感器、信号 处理单元W及流速计算显示单元组成。发射换能器Ts产生连续的单频率超声波,其频率依 据管道的口径、材料及气体介质密度而定,通常在50KHZ到2MHz之间。发射换能器安装声模 I,可使超声波信号入射方向与管道壁法线夹角呈一定的入射角度化,化在30度到60度之 间。管道的管道壁厚度为P,P由管道具体尺寸确定。发射换能器Ts产生纵波和横波,在管道 壁中W横波的形式经由管道壁与空气交界面的多次反射,沿着管道壁并与管道壁法线呈化 角度的折线路径传播,相邻反射点距离为Li。在横波传播的每个管道壁与管道内部流体交 界的反射点,管道壁内部传播的横波都有部分通过交界面透射进入管道内部流体,在每个 交界点超声波透射方向与管道壁法线夹角固定为化。化、Φ3由入射角度W及交界面两介质 折射率根据Snell折射定律计算。折射入管道内部的超声波通过流体传播,由于流体介质密 度不均匀、内部的悬浮颗粒W及流体流动产生的素流縱满,当超声波经过流体后,会产生波 动信号在时间相位和能量上的变化,运些改变体现为超声信号的相位和幅度调制,在信号 处理中定义为被测流体的特征信号。
[0033] 在管道的另一侧与发射换能器相对,W间隔D的距离安装超声波接收传感器,用W 接收穿过流体和经过管道壁的超声波信号。超声波接收传感器至少要两个,如图1所示的 Tri和Τη, W便接收至少两个声道的信号。接收传感器沿管线的安装距离D等于Li的整数倍, 其中Li是两个相邻反射点或声束之间的距离,Li由管道壁厚度W及化来计算确定。
[0034] 接收传感器化1和化2采集带有流体特征信息的超声波,将其转换成电信号送入信 号处理单元,在该单元对信号进行放大W及滤波处理,再做相关正交解调,W提取流体的调 制信号,流速计算显示单元通过计算两个通道接收调制信号的互相关函数,计算流体流速。
[0035] 图1的发射和接收换能器声模I经过特别设计,包括设计声模材质W及入射角度, 相应地改变反射角恥W及折射角化,并在声模与管道壁接触面添加禪合剂,使信号能够更有 效地入射到管道内部流体中,按一定入射角度有效地发送进管道,或把一定角度的超声波 能量从管道有效地接收回来。
[0036] 如图1所示,超声波发射换能器W-定角度外绑安装在管道壁外,超声波信号折射 进入管道壁,在管道壁内w横波形式多次反射沿折线传播。部分发射信号能量将沿管道壁 传入超声波接收传感器,对接收的调制信号造成干扰。工业环境中,管道本身就可能十分增 杂,给接收传感器带来机械噪音。此外,气体或蒸汽密度非常低,管道内部透射到接收传感 器的信号极小,因此,管道壁传导的信号强度远高于管道内部低密度流体透射到接收传感 器的信号。为了降低干扰信号,本发明包括了一个或几个声吸收块,通过外绑的方式安装在 接收传感器之间附近的上下游(图1中的Sa)。为达到最佳吸声效果,用多个声吸收块来包住 发送及接收传感器附近上下游部分的整个管段。
[0037]如图2所示,超声波接收传感器Tri和Tr2分别采集两路经过流体调制的超声波信 号,如图中的ri(t)及n(t)所示,其中ri(t)是第一个接收传感器(上游传感器)接收到的信 号
,n(t)是第二个接收传感器(下游传感器)接收到的信号。在信号处理单元先进行预处 理,通过抗干扰滤波器滤除高频噪声等干扰信号,由AGC自动增益控制对信号进行放大及幅 度调节,传感器接收到的信号中与传输频率接近的信号都会被放大。预处理后的信号送入 相关解调器,分别经过不同的乘法器W中屯、频率fo被正交相关解调,正交相关解调后每一 路接收信号被分成两部分(如图2中11、91、12、92)。随后运两路1/9分量信号被低通滤波、放 大W及数字化,产生数字输出信号。两个通道的数字I/Q分量分别送入数字信号处理器DSP, 在DSP中计算解调后低频信号的振幅包络,
[003引图3至图6详细描述了互相关测量系统的信号解析过程。本发明采用了互相关时延 算法,对解调后的信号I化及IQ2的互相关函数进行计算。ri及η分别为传感器化1和化2接收 到的信号,该信号为经过流体对载波信号进行幅度和相位调制了的窄带信号,载波频率为 发射超声波频率(50Ifflz到2MHz),流体特征调制信号频率在一两百化。本发明中,先通过相 关解调器,把接收到的高频信号里的低频调试信号提取出来,运个过程等于在几百K化到几 MHz的高频载波上实现了一两百化的超窄带滤波器,该算法进一步滤除了通过管道壁传过 来的强大的背景噪声。I化及I化为相关解调后的调制信号(流体特征信号),通过相关解调器 得到的低频信号的信噪比有很大提高,但是仍然无法通过简单对比来确定时延。由于两路 接收样本信号来自同源发射端,路经同一被测流体对象,只是接收距离不同,因而带有同一 流体介质相邻时刻的相关特征信息。两接收传感器安装距离接近,可W保证两路接收信号 的相关似性,I化及IQ2里的一部分信号是相似的,只是第二路信号IQ2在时间上比第一路信 号IQ诞迟了一个时间τ?2。图6中,曲线Ri2为两路接收样本信号IQi和I化信号的互相关函数, 两路信号经过时延τ?2时最相似,图中Ri趣到最大值所对应的时刻即为τ?2。在DSP中对I化及 地进行互相关计算,通过捜寻互相关函数峰值,即可准确地确定时延心。心表明流体流经 两个接收传感器间离D所花费的时间。时延τ?2与流速成反V比例关系,通过V = DAi2可计算 流体速度V,从而得到管道内气体流量。
[0039]图7为本发明中超声波吸声块结构。为了更有效地吸收管道壁传导的超声波信号, 吸声块下端设计为梯形结构,其跟管道壁接触的面做成弧形,尽可能地增大跟管道壁的接 触面积。为了最好地与管道壁贴合,接触面的弧形半径与管道壁半径D-致。吸声块侧面边 缘结构为银齿形,声波从吸声块梯形底部传入后,达到边缘的银齿形反射面,在此形成多次 反射,声波之间相互抵消,从而衰减超声波信号。声吸收块与管道壁接触面要用声禪合剂, W提高吸声效果。超声波吸声块的制作材料选用声阻抗与管道声阻抗接近的材料,如铜,侣 或不诱钢。
[0040] 图8本发明中超声波传感器声模结构示意图。超声波传感器安装在声模上,声模为 开槽的矩形,矩形底部设计为弧形,弧形半径根据管道壁半径确定,W便超声波更有效地入 射到管道内部。传感器通过螺钉安装在声模上,同一传感器配用多种管径的声模,根据不同 的管道选用不同弧形半径的声模。
[0041] 图9为超声吸声块对多相关峰的作用实例的详细图形曲线描述。在某些复杂应用 场合,互相关函数里常常出现几个相关峰(伪相关峰)。运主要是由于管道壁内超声波多次 反射,使得接收传感器收到的不仅是它所对应声道的信号,还包括通过其它声道传来的信 号,使得解调后的信号I化及I化含有很大噪声。同时,管道壁里来回传播的杂散信号,多路径 发射信号,管道振动干扰信号等,运些干扰信号形成了强大的背景噪声。特别是,由于管内 介质的声阻抗比管道壁的声阻抗小很多,通过流体的信号非常微弱,真实信号被淹没在强 大的背景噪声里,使得在信号处理前端不能够完全滤除干扰噪声。本发明通过在发送及接 收传感器附近上下游管段,管道壁外绑安装声吸收块,设法转移和减少管道壁噪声信号能 量,W防止强大能量的噪声信号在信号相关函数曲线中产生明显的伪相关峰,有效吸收噪 声能量,减小伪相关峰值,提高真实相关峰值的辨识度。如图中位置较高的曲线,其为未使 用声吸收块的接收信号相关曲线,曲线中有Ξ个幅度接近的峰值,其中两个是伪相关峰,其 峰值与真实相关峰值非常接近,时间上大大早于来自流体的真实峰值。在DSP进行峰值寻找 计算时,很容易跟踪到第一个错误的峰值,从而造成流速计算错误。如图中位置较低的曲 线,其为安装声吸收块后的相关曲线,该曲线只有一个真实的主峰,伪相关峰值被有效地降 低了。
[0042] 图10描述了双频互相关测量系统。在图10中,气体或蒸汽测量系统安装了一对发 射换能器Tsi和TS2,分别发射两路频率不同的超声波(频率fi和f2)。发射传感器按一定距离D 沿管道分上下游安装在管道的一侧,在管道相对的另一端分上下游安装接收传感器化1和 化2。化1和化2安装间距与发射换能器间距相同,都为D。接收传感器与发射换能器对应位置 安装,相对位置按Snel 1定律确定,保证上下游发射的声波通过管道壁进入管内介质,通过 介质到达对面后,再穿过对面管道壁,分别到达对应的上下游接收传感器。一般而言,接收 传感器化1和化2最好被固定在它们对应的发射换能器Tsi和TS2下游几英寸的位置。
[0043] 为了保证上下游调制信号的相关性,传感器间距D不宜太长,最好在该流体的素流 相关尺度内。另一方面,间距D不宜太短,否则,相关时延太小,使得时延测量精度变差。通常 选取D为导管直径的1到3倍。
[0044] Tsi和Ts2运两个传感器分别W不同的频率发射超声波信号,为了有效接收信号,两 个接收传感器化1和化2的谐振频率分别与对应的发射换能器Tsi和TS2相匹配。信号频率需足 够高,才能使穿过流动气体或蒸汽的信号被液体流中的杂质或干扰物质有效调制。运两个 频率还需设置得尽量接近,才能使两个解调信号相互之间保持高度相似,具有良好的相关 性。例如,传感器可分别采用950K化和IMHz的频率。
[0045] 由于处理两路频率接近的信号,双频系统的信号预处理单元必需具有良好的信号 分辨能力。本发明中的相关正交解调器,采用与发射频率同源同频率的信号作为解调器的 参考信号,分别对两路接收信号进行正交解调。解调器的低频部分采用4阶切比雪夫滤波 器,有效地滤除相差几千赫到几十千赫的高频载波信号,使两对不同频率的发射器和接收 器之间的邻频叠加干扰最小化,提高解调后低频信号的信噪比,保证两路信号的相关检测 计算精确可靠。
【主权项】
1. 一种超声波气体流量测量方法,其特征在于,包括以下步骤: 在管道一侧通过超声波发生传感器,发送一定频率的超声波信号到管道里的气体介质 中;在管道另一侧通过两个超声波接收传感器,接收经过流体调制后的超声波信号;超声波 接收传感器接收到流体调制后的信号,将该信号转换成电信号送到接收器;接收器对接收 到的电信号进行放大、滤波、相关正交解调;计算出解调后的两路信号的时间差,即延迟时 间1 12;根据公式t12 =D/V计算出流体的速度V,式中,D为两个超声波接收器之间的距离;计 算流体流量。2. 如权利要求1所述的超声波气体流量测量方法,其特征在于,所述相关正交解调,即 对两路调制信号之间的互相关函数计算采用专用高速信号处理DSP芯片。3. 如权利要求1所述的超声波气体流量测量方法,其特征在于,还包括对超声波进行吸 波处理,提高超声波信号的信噪比,即在两个超声波接收传感器之间的管段上以及超声波 接收传感器的上下游裹一层吸声材料。4. 如权利要求1所述的超声波气体流量测量方法,其特征在于,包括将超声波发生传感 器所发送的超声波信号按一定入射角度有效地发送进管道,或把一定角度的超声波信号从 管道有效地接收回来,所述角度为超声波信号入射方向与管道壁法线之间的夹角,且角度 在30度到60度之间。5. 如权利要求2所述的超声波气体流量测试方法,其特征在于,在所述相关正交解调 中,采用互相关时延算法计算解调后两路信号的互相关函数。6. -种超声波气体流量计,其特征在于,在管道一外侧固定有超声波发生传感器,另一 外侧固定有第一超声波接收传感器,在与所述第一超声波接收传感器相距一定距离设置有 第二超声波接收传感器,所述第二超声波接收传感器固定在管道上,与第一超声波接收传 感器同侧;所述第一超声波接收传感器连接到第一前置放大单元,所述第二超声波接收传 感器连接到第二前置放大单元,第一前置放大单元和第二前置放大单元共同连接到信号处 理单元,所述信号处理单元连接到流速计算单元,所述流速计算单元连接到显示单元。7. 如权利要求6所述的一种超声波气体流量计,其特征在于,所述第一超声波接收传感 器与第二超声波接收传感器之间的距离为管道直径的1到3倍。8. 如权利要求6所述的一种超声波气体流量计,其特征在于,在所述超声波发生传感器 和超声波接收传感器上还固定有声楔,在所述声楔与管道壁触面之间添加有耦合剂,用于 将超声波信号有效地入射到管道内部流体中。9. 如权利要求6所述的一种超声波气体流量计,其特征在于,在超声波发生传感器和超 声波接收传感器之间,或者整个管道测量段固定有一个或多个声吸收块。10. 如权利要求6至9任一项所述的一种超声波气体流量计,其特征在于,所述超声波发 生传感器和超声波接收传感器采用PZT压电陶瓷材料。
【专利摘要】本发明公开了一种超声波气体流量计及测量方法,方法包括以下步骤:在管道一侧通过超声波发生传感器,发送一定频率的超声波信号到管道里的气体介质中;在管道另一侧通过两个超声波接收传感器,接收经过流体调制后的超声波信号;超声波接收传感器接收到流体调制后的信号,将该信号转换成电信号送到接收器;接收器对接收到的电信号进行放大、滤波、相关正交解调;计算出解调后的两路信号的时间差τ12;根据公式τ12=D/V计算出流体的速度V;计算流体流量。本发明没有机械转动部件,不磨损,使用寿命长;造价低,适合推广使用;整体装置都是以外绑式安装在管道外壁,使用和维修方便;本发明测量精度高。
【IPC分类】G01F1/66
【公开号】CN105486363
【申请号】CN201610039786
【发明人】傅华锋, 张宏
【申请人】成都声立德克技术有限公司
【公开日】2016年4月13日
【申请日】2016年1月21日