车辆控制装置及车辆控制方法

xiaoxiao2020-11-18  45

车辆控制装置及车辆控制方法
【技术领域】
[0001 ]本发明涉及车辆控制装置及车辆控制方法。
【背景技术】
[0002]JP2002 — 142310A公开有如下的控制装置,其基于路面的坡度设定爬行扭矩,例如在平坦路抑制不需要的爬行扭矩的产生。
[0003]在上述的控制装置中,基于车辆的驱动力、车速、作用在车辆上的加速阻力及行驶阻力等各种阻力算出路面的坡度。但是,在车辆停车前到刚停车后的期间,检测车速的传感器不能检测正确的车速,恐怕不能正确地算出路面的坡度。因此,即使在路面为爬坡路,在车辆停车前到刚停车后的期间,会误推定路面为平坦路,将爬行扭矩设定得过小,使车辆溜车。

【发明内容】

[0004]本发明是为了解决这样的问题点而发明的,其目的在于在车辆在爬坡路等斜坡路上停车的情况下,防止车辆溜车。
[0005]本发明一方面提供一种车辆控制装置,其中,具有:驱动源控制装置,其基于在车辆在斜坡路上停车的情况下使所述车辆不溜车而设定的爬行驱动力控制驱动源;制动力算出装置,其算出基于驾驶员的制动操作而产生的制动力,所述驱动源控制装置在所述车辆停车时,所述制动力比所述爬行驱动力大的情况下,将由所述驱动源产生的驱动力降低。
[0006]本发明另一方面提供一种车辆控制方法,其中,基于在车辆在斜坡路上停车的情况下使所述车辆不溜车而设定的爬行驱动力来控制驱动源,算出基于驾驶员的制动操作而产生的制动力,在所述车辆停车时,所述制动力比所述爬行驱动力大的情况下,将由所述驱动源产生的驱动力降低。
【附图说明】
[0007]图1是本实施方式的车辆的概略构成图;
[0008]图2是说明本实施方式的驱动力控制的流程图。
【具体实施方式】
[0009]以下,参照附图对本发明的实施方式进行说明。
[0010]关于本发明实施方式的车辆10,使用图1进行说明。图1是本实施方式的车辆10的概略构成图。
[0011]本实施方式的车辆10为混合动力车。车辆10具有作为驱动源的发动机I及电动发动机2、作为电力源的蓄电池3、控制电动发动机2的变换器4、将驱动源的输出向车轮9传递的驱动系5。另外,车辆10具有用于控制发动机1、电动发动机2、驱动系5的控制器7。
[0012]电动发动机2为在转子中埋设永久磁石并在定子上卷绕有定子线圈的同步型电动发动机。电动发动机2具有接受电力的供给而旋转驱动的作为电动机的功能、和在转子因外力而旋转时在定子线圈的两端产生电动势的作为发电机的功能。
[0013]蓄电池3向电动发动机2等各种电气零件供给电力,并且蓄积由电动发动机2发电的电力。
[0014]变换器4为将直流和交流两种电气交替地转换的电流变换机。变换器4将来自蓄电池3的直流变换成任意频率的三相交流而向电动发动机2供给。另一方面,在电动发动机2作为发电机起作用时,将来自电动发动机2的三相交流变换成直流而向蓄电池3供给。
[0015]驱动系5具有离合器50、自动变速器51、前进后退切换机构52、终减速差动装置53、驱动轴54。
[0016]离合器50设置在发动机I与电动发动机2之间。离合器50通过使扭矩容量变化而被控制成联接状态、滑移状态(半离合状态)及释放状态这三个状态。
[0017]自动变速器51是具有初级带轮、次级带轮、卷绕在初级带轮和次级带轮上的带的无级变速器。通过变更带与各带轮的接触半径而变更变速比。
[0018]前进后退切换机构52将行星齿轮机构作为主要的构成要素,具有前进离合器及后退制动器,在前进时将前进离合器联接且将后退制动器释放,在后退时将前进离合器释放且将后退制动器联接。前进离合器及后退制动器通过使扭矩容量变化,被控制成联接状态、滑移状态(半离合状态)及释放状态这三个状态。
[0019]终减速差动装置53将终减速装置和差动装置一体化,在使从自动变速器51的输出轴传递的旋转减速之后将其向左右驱动轴54传递。另外,在转弯行驶时等需要在左右驱动轴54的转速上产生速度差时,能够自动地赋予速度差而进行顺畅地行驶。在左右驱动轴54的前端分别安装车轮9。
[0020]在车轮9上,若踏下制动踏板则根据制动踏板的踏入量,由摩擦制动机构产生制动力。即,摩擦制动机构基于驾驶员的制动操作产生制动力。另外,摩擦制动机构在车辆10在斜坡路上停车时,不与驾驶员的制动操作直接相关,具有使车辆10不溜车而产生制动力的坡路起步辅助功能(防倒滑功能)。具体地,坡路起步辅助功能在车辆10在规定的坡度以上的路面上停车时动作,即使驾驶员从踏下制动踏板的状态松开踏板,直至规定的坡路起步辅助解除条件成立为止,都保持制动踏板被踏下时的(松开踏板前的)制动油压并保持制动力。由于具有这样的功能,在从斜坡路起步的情况下,能够抑制车辆10溜车。另外,摩擦制动机构也可以在制动油压回路上设置加压栗,在使坡路起步辅助功能起作用时,在将制动油压升压后进行保持。
[0021]控制器7由具有中央运算装置(CPU)、读取专用存储器(R0M)、随机存取器(RAM)以及输入输出接口(I/O接口)的微型计算机构成。
[0022]控制器7被输入来自检测加速踏板的踏入量的加速踏板传感器20的信号、来自检测车速的车速传感器21的信号、来自检测制动油压(液压)的制动油压传感器22的信号、来自检测是否进行了转向操作的转向传感器23的信号、来自转向开关24的信号、来自G传感器25的信号、来自检测自动变速器51的油温的油温传感器26的信号、来自检测换档杆的位置的档位开关27的信号等。控制器7基于被输入的信号控制发动机1、电动发动机2、离合器50、前进后退切换机构52及自动变速器51。
[0023]控制器7为了在EV模式选择中、加速踏板未被踏下的加速踏板全闭时也能够在低车速时进行爬行行驶,通过电动发动机2产生规定的爬行驱动力。在由驾驶员踏下制动踏板并使车辆10停车的情况下,能够逐渐减小该爬行驱动力。
[0024]在车辆10停车的路面例如为爬坡路的情况下,在与平坦路相同的时刻减小爬行驱动力的话,车辆10会向后方溜车。因此,目前,使用车速传感器21、G传感器25等检测路面的坡度,考虑路面的坡度调整爬行驱动力。
[0025]但是,在车辆10停车前到停 车后,这些传感器21、25的值伴随着车辆10的间距方向的摆动而波动,故而具有检测到的值不正确的情况,不论是否例如为爬坡路,也会误推定为平坦路。在被误推定且将路面的坡度过小地检测的情况下,爬行驱动力变小,车辆10会溜车。另外,在直到摆动收敛为止都不进行路面坡度的检测的情况下,例如在平坦路停车,不论是否能够降低爬行驱动力,在直至摆动收敛为止的期间,都由电动发动机2产生在爬坡路上车辆10不溜车的程度的大小的爬行驱动力,不能够提高耗电率。
[0026]因此,在本实施方式中,进行以下说明的驱动力控制。
[0027]使用图2的流程图对本实施方式的驱动力控制进行说明。在此,不将加速踏板踏入,控制器7为了使车辆10进行爬行行驶,由电动发动机2产生规定的爬行驱动力。
[0028]在步骤SlOO中,控制器7算出基于驾驶员的制动操作产生的对车辆10施加的制动力。具体地,基于由制动油压传感器22检测到的油压算出制动力。
[0029]在步骤SlOl中,控制器7基于由车速传感器21检测到的车速判定车辆10是否停车。若判定为车辆10停车,则处理进入步骤S102,若判定为车辆10在行驶中,则结束此次的处理。
[0030]在步骤S102中,控制器7比较由驾驶员的制动操作产生的制动力和爬行驱动力。爬行驱动力为在坡路起步辅助功能起作用的规定的坡度(最小坡度)与在车辆10溜车的方向上作用的力平衡的力。另外,爬行驱动力只要为该平衡力以上即可。在制动力为爬行驱动力以上的情况下,处理进入步骤S103,在制动力比爬行驱动力小的情况下,结束此次的处理。
[0031]在步骤S103中,控制器7将由电动发动机2产生的爬行驱动力降低。另外,在此,将由电动发动机2产生的爬行驱动力降低到零。由此,能够提高电动发动机2的耗电力。
[0032]在步骤S102中,若判定为制动力为爬行驱动力以上,则在(a)路面的坡度比规定的坡度小的情况下,即使没有由驱动发动机2产生的驱动力,也通过由驾驶员的制动操作产生的制动力而使车辆10不溜车。另外,在(b)路面的坡度为规定的坡度以上的情况下,由于坡路起步辅助功能起作用,故而车辆10不溜车。即,在制动力为爬行驱动力以上的情况下,SP使由电动发动机2不产生驱动力,车辆10也不溜车。因此,在步骤S103中,控制器7将由电动发动机2产生的驱动力降低。
[0033]另外,在步骤S102中判定制动力比爬行驱动力小之后,在能够正确地检测路面的坡度的时刻之后,检测路面的坡度,在路面的坡度为坡路起步辅助功能起作用的最小坡度以上的情况、且坡路起步辅助起作用的时刻之后,控制器7也可以将由电动发动机2产生的驱动力降低。由此,能够提高电动发动机2的耗电率。
[0034]接着,对本实施方式的效果进行说明。
[0035]对基于驾驶员的制动操作产生的制动力、在车辆10在斜坡路上停车的情况下使车辆10不溜车而设定的爬行驱动力进行比较,在制动力比爬行驱动力大的情况下,将由电动发动机2产生的驱动力降低。这样,在产生车辆10不溜车的制动力的情况下,将由电动发动机2产生的驱动力降低,故而即使在车辆10在斜坡路上停车的情况下,也能够防止车辆10溜车。另外,通过将由电动发动机2产生的驱动力降低,能够提高电动发动机2的耗电率。
[0036]在将爬行驱动力设为在坡路起步辅助功能起作用的规定的坡度(最小坡度)与在车辆1溜车的方向上作用的力平衡的力,S卩使为坡路起步辅助功能不起作用的斜坡路,也能够防止车辆10的溜车。这样,在本实施方式中,即使降低爬行驱动力,也能够防止由路面的坡度引起的车辆10的溜车。
[0037]以上,对本发明的实施方式进行了说明,但上述实施方式只不过表示本发明的适用例的一部分,并非将本发明的技术范围限定为上述实施方式的具体构成。
[0038]在上述实施方式中,使用混合动力车10进行了说明,但也可以用于电动车、仅搭载有发动机I的车辆10。在车辆10停车时,在由发动机I产生驱动力的情况下,通过进行与上述的驱动力控制同样的控制,能够防止车辆10溜车,提高发动机I的燃耗率。
[0039]另外,在踏下加速踏板的情况、转向操作的情况、操作转向开关24的情况等需要由驾驶员的操作而需要驱动力的情况、由于自动变速器51的油温上升或下降而具有自动变速器51的控制性变差的可能性的情况下,也可以不进行上述驱动力控制。
[0040]本申请基于2013年8月5日在日本专利局提出申请的特愿2013 —162457而主张优先权,该申请的全部内容通过参照而编入本说明书中。
【主权项】
1.一种车辆控制装置,其中,具有: 驱动源控制装置,其基于在车辆在斜坡路上停车的情况下使所述车辆不溜车而设定的爬行驱动力控制驱动源; 制动力算出装置,其算出基于驾驶员的制动操作而产生的制动力, 所述驱动源控制装置在所述车辆停车时,所述制动力比所述爬行驱动力大的情况下,将由所述驱动源产生的驱动力降低。2.如权利要求1所述的车辆控制装置,其中, 所述爬行驱动力为在防倒滑功能起作用的最小坡度与在所述车辆溜车的方向上作用的力平衡的力以上的力。3.—种车辆控制方法,其中, 基于在车辆在斜坡路上停车的情况下使所述车辆不溜车而设定的爬行驱动力来控制驱动源, 算出基于驾驶员的制动操作而产生的制动力, 在所述车辆停车时,所述制动力比所述爬行驱动力大的情况下,将由所述驱动源产生的驱动力降低。
【专利摘要】一种车辆控制装置,具有:基于车辆在斜坡路上停车的情况下使车辆不溜车而设定的爬行驱动力控制驱动源的驱动源控制部;算出基于驾驶员的制动操作而产生的制动力的制动力算出部,驱动源控制部在车辆停车时制动力比爬行驱动力大的情况下,将由驱动源产生的驱动力降低。
【IPC分类】B60W10/18, B60K6/48, B60K6/543, B60W20/12, B60L15/20
【公开号】CN105555592
【申请号】CN201480051897
【发明人】有吉伴弘, 吉野太容, 小野雅司
【申请人】日产自动车株式会社
【公开日】2016年5月4日
【申请日】2014年7月3日
【公告号】EP3031661A1, US20160185254, WO2015019766A1

最新回复(0)